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Figure 1: Focus of attention applied to visual inspectionrgfans within the human torso.

Abstract 1 Introduction

This paper introduces a concept for automatic focusiigualization is an application-oriented research area
on features within a volumetric data set. The user seleg@mnbining knowledge from various fields of science
afocus, i.e., object of interest, from a set of pre-defin&#l daily life and representing it by means of graph-
features. Our system automatically determines the miggl elements. There can be many reasons for visu-
expressive view on this feature. An optimal viewpoir@tlization [15]: visual analysis and visual presentation
is estimated by a novel information-theoretic framewof underlying data are the most important ones. The
which is based on mutual information measure. Vieirstly mentioned reason for visualization helps scien-
points change smoothly by switching the focus from oriigts to find relations and correspondence in various nat-
feature to another one. This mechanism is controlled B§a! phenomena. The visual stimulus is the strongest
changes in the importance distribution among featuregrception cue and visual analysis helps peopthitd

in the volume. The highest importance is assigned \tsually. The second goal serves as a communication
the feature in focus. Apart from viewpoint selection, th@edium and can be motivated by several reasons such as
focusing mechanism also steers visual emphasis by @éucation, infographics, or commercial purposes. The
signing a visually more prominent representation. To &pproach of this paper helps in improving visual pre-
low a clear view on features that are normally occludgé@ntation rather than visual analysis.

by other parts of the volume, the focusing also incorpRecent developments of 3D scanning modalities such as

rates cut-away views. computed tomography (CT) allows to unveil insights of
. __ different species, material, or bodies. One of the most
CR Categories: 1.3.3 [Computer Graphics]: important application areas is medical diagnostic imag-

Picture/Image Generation—Display algorithms; 1.3;3g. Besides medical visualization there are other sci-
[Computer Graphics]:  Picture/lmage Generationence directions exploiting 3D scanning technology. For
Viewing algorithms; example high-resolution CT scanning has been applied
. L o . . to provide Visible Man datasets or recently the mummy
Keywords: illustrative visualization, volume wsuahza-data set of Egypt's boy pharaoh Tut. Industrial scanners
tiop, inte_racti_ng with volumetric datasgts, optimal VieWs e sed for material quality validation, but can be used
point estimation, facus+context techniques for scanning of small species, e.g., insects as Wwell [24].
*{viola | meiste} @cg.tuwien.ac.at An interesting example of exploiting 3D scanning tech-
T{feixas| mate} @ima.udg.es nology is theDigital Morphology library [5], a large dy-




2 2 RELATED WORK

namic archive of information on digital morphology obbjects. This framework easily integrates the impor-
biological specimens. tance of objects within the volumetric data set. Another
L o . I contribution is a concept of focus of attention for inter-
As medical imaging is an important application area

. . . active volume visualization. Here an expressive view-
medical workstations in general feature the broade§. P

: ) . : oint is selected in combination with a visually pleasing
spectrum of functionality for handling volumetric data,.” .~~~ . .
o . o ; . discrimination of focus from context information. By
sets. This includes visualization, image processin

X o ; . ctianging the object of interest, both viewpoint settings
measurements, or (semi-)automatic diagnosis estima-, ~ .
and visual parameters are smoothly changing to put em-

tion. Medical workstations, however, are designetﬁ . : .
: S . . asis on the newly selected object of interest.
mostly for visual analysis in diagnostic scenarios, rather

than for presentation purposes. Medical workstatiome paper is organized as follows: Sectidn 2 describes
currently do not include much functionality that is negsrevious work related to importance-driven focus of at-
essary for presentation purposes. tention. The following Sectiofll 3 describes the concept

of focusing. Technical details of optimal viewpoint es-

Other areas of science on the other hand are in 9Y%fhation are discussed in Sectigh 4. Interaction aspects

eral not targeted specifically to visual analysis and Viz focusing are presented in Sectdn 5. Implementation
sual presentation is often more required. One of th

: : ) ) . §ues and performance are discussed in Section 6. Fi-
examples is the collection of different specimens in tl?1

Il lusi ize th i
Digital Morphology library. The aspect of visual pre-s%éc)t/igvr%draw conclusions and summarize the paper in

sentation is also becoming important in communication

among medical experts from different domains or be-

tween the medical staff and the patient. Therefore fung-

tionality for presentation purposes, also strongly rtdaté Related Work

to visual storytelling, will become more important for

medical workstations as well. Functionality that is haFocus of attention has been often used in visualization to
dling volumetric data sets for presentation purposes hggch the user’s attention. It has many different occur-
been recently discussed in a tutorialiostrative visu- - rences. We will first review relevant previous work in
alization [21]. Some systems incorporating illustrativgnhe area of focus+context visualization. The second part
presentation techniques are shortly discussed in the gthis section reviews recent work on optimal viewpoint
lated work (Sectiofl2). estimation as good viewpoint selection is crucial for an

Current visualization systems for handling volumetrfffective focus of attention.

data sets require a lot of expertise from the user. For &he depth of field effect is a focus of attention tech-
ample many widgets to design a suitable transfer funtigue from photography that inspired Kosara etfal. [8]
tion (mapping tissue density to color and opacity vale propose a semantic depth of field (SDOF). In their
ues) are rather unintuitive for the unexperienced userk they have shown that the degree of sharpness de-
Our work is motivated by the fact that currently nongermines the speed of drawing human attention in oth-
of the commercially or publicly available visualizatiorerwise blurry environments. They have applied their
systems allows the user high-level interactions suchtaghnique in various fields of information visualization.
"Show me this interesting part of the volumetric data sehter on, the authors have designed a user study for
and then show me the next interesting part.” Our framg-quantitative evaluation of sematic depth of field ef-
work allows an automatic focus of attention on interedfieiency [9]. They show that the semantic depth of
ing objects. The user’s only required (but not limitefleld is an effective way to draw attention to specific
to) interaction is to select an object of interest from garts. SDOF, however, should be used in combination
set of pre-segmented objects. The framework smoothljth other visualization techniques. Additionally the
navigates the view to optimally see the characteristicsuders sometimes felt uncomfortable observing unnatu-
the focus object. Additionally, the focus object is visurally blurred parts (e.qg., blurred text).

ally emphasaepl for easy dl_scr|m|nat|0n from the “OKnother focus+context method for displaying volu-
text. Example images that illustrate focus of attention

for insights of a human torso and human hand datas%?mc data hgs been prop_oseq m_pre\ilous work on
L importance-driven volume visualization |22,123]. The
are shown in Figurdd 1 afdi 2.

importance classification has been introduced for spec-
One contribution of this paper is the introduction of aifying view-dependent visual representations to reveal
information theoretic framework for optimal viewpoinbccluded structures. This is in spirit of cut-away views
estimation in volumetric data sets with pre-segmentadd ghosted views known from traditional illustrations.



expert user and mordirect visualization is targeted to
the expert.
Viewpoint selection has been applied to several do-
mains in computer graphics, such as scene understand-
ing and virtual exploration[]1], molecular visualiza-
tion [20], image-based modelinf_[19], volume visual-
ization [3,[14], and mesh saliendy ]10]. Different mea-
sures for viewpoint evaluation have been used in these
fields.
Vazquez et al[T18] have defined tkiewpoint entropy
(EquatiorIB), as a measure for viewpoint quality eval-
uation. This measure has been designed primarily for
polygonal data, where the best viewpoint is defined as
the one that has maximum entropy. Taking into account
the background information, this technique may be used
for indoor and outdoor scenes as well.
Viewpoint entropy for polygonal data has been recently
extended to volumetric scalar dafd [3], by substituting
the area visibility distribution by the voxel visibility sh
tribution divided by the voxel importancedteworthi-
ness factor). This work has also suggested information-
theoretic measures for clustering views according to
) ) ) , similarity using the Jensen-Shannon divergence fromin-
Figure 2 _Further examples of visual inspection of OF5rmation theory (Equatidil2). They also suggested an
gans within the human torso. optimal viewpoint estimation scheme for time-varying
data.

Several focus+context techniques have been included!@s been shown recently by Sbert et ali[12] that

into VolumeShop, a publicly available volume visualliewpoint entropy is very sensitive to triangulation.

ization system from our groufil[4]. Besides applyingh€® maximum entropy is achieved in areas of very
Therefore they propose a new

cut-aways and ghosted views, the user can manipulli§é triangulation.

features of interest in several ways, e.g., displace th¥fgWpPoint-quality measure for polygonal data based on
from their original spatial location to a part of imagd® Kullback-Leibler distance (KL) (Equation[1l) de-

space, where otherwise no data is shown. AdditioRoted as viewpoint KL distance (Equatifnl 14). The

ally to focus+context techniques, the user can enrich i§WPoINt KL distance is interpreted as the distance be-

visualization by adding textual information to object&V€€n the normalized distribution of projected areas and
which appears as automatically placed labels. The fuffa€ ideal projection, given by the normalized distribu-

tionality of VolumeShop is intended to provide a too_tl'on of the actual areas. In this case, the background

for presenting and communicating the data being vidg-n0t taken into account. The minimum value 0O is ob-
alized. tained when the normalized distribution of the projected

areas is equal to the normalized distribution of the actual
Another publicly available visualization system featufyreas. Thus, views of high quality correspond to views
ing functionality for visual presentation and communigith minimal KL distance. One drawback of this mea-
cation has been proposed by Svahkine etial. [13]. Afyre is that many non-visible or poorly visible polygons

interesting consideration incorporated in their systemjjisg model can distort the quality of the measure.
the level of expertise of the user. This has two implica-

tions for the design of the system. First, the user inter-

face and widgets are customized according to the usgr- Focusing Consider ations

expertise level. A non-expertuser has a very simple user

interface allowing limited flexibility, whereas an experBefore going into technical details of our work we
has much higher flexibility with advanced tools such agould like tofocusthe reader'sittention on several con-

a transfer function editor. Second, the level of user esiderations we have made during designing our frame-
pertise implies also different visualization results. Awork. To get a clear high-level overview on the frame-
easy to understand visualization is targeted to a nawerk functionality, we briefly present the processing




4 3 FOCUSING CONSIDERATIONS

pipeline. Technical details will follow in Sectiorfd 4spective from the type of the underlying data. The def-
and®. inition of levels of sparseness for visual representations

Focus discrimination: Focus of attention is a visualS highly application dependent. They can be defined ex-

discrimination of interesting objects from other eld?liCitely by the user, estimated (semi-)automatically [7]

ments in an image. It is realized through visual emph@- Selected from design galleries[11]. A discussion on

sis of the object of interest while other objects presenti&y€!S Of sparseness is outside the scope of this paper.
as context are suppressed. In general a discrimination i concentrate on the estimation of proper viewpoints
the focus from the context can be achieved by differeftd 0N @spects of focusing during user interaction.

levels of sparseness in their visual representation|22].ringing a viewpoint where the characteristics of a spe-
The focus is represented vedgnsely while the con- ific feature are clearly visible is crucial for focus of at-
text gets a moreparse visual representation. Levels Otgniion  This naturally requires the estimation of visi-

sparseness can be designed in many ways. In phoig@s, of the feature under specific viewing settings. In
raphy for example, a very effective technique for objeg, case i.e., for objects within the volumetric data set,

discrimination is the sharpness of the object of interegt;¢ process is rather time-consuming as it requires ray
Very sharp objects are automatically perceived as beigsting of the whole data set from various viewpoints.
in focus, more blurry objec_ts are context_ual informaﬂo'@)omputing the visibility of features on-the-fly during
Levels of sparseness are in this case different sharbnggsaction will strongly limit interaction possibilitie
levels. Recent studies [9] have shown that for visualizgpe yisibility of features depends on their visual repre-
tion tasks the modulation of sharpness is not very mughntation. For applications where a frequent change of
preferred by users. In volume visualization tasks g 5 representations is not relevant, the visibility es-
depth-of-field from photography may additionally congmation can be easily treated as a pre-processing step,

flict with visual artifacts such as partial volume effect§yhich is executed once prior to the user interaction.
In this case opacity, color brightness, and saturation can

be used to discriminate the most interesting objects frdmour importance-driven optimal-viewpoint estimation
the rest in a much clearer way. framework we compute the visibility of an object as its
Characterigtic view: In addition to visual discrimina- Contribution on the finally rendered image. This com-
tion, objects in focus have to be shown from a chgputation is based on the opacity contribution of each
acteristic view where most of the focus structures af@x€l belonging to the object. Object visibility is then

perceivable. The most interesting object must not FéPPed to @onditional probability of the object for a

occluded by less relevant parts. If possible the focBY€n viewpoint. These values are used for computation

should be in front of other features. In case that the feé-900d viewpoints for a given object. We use for this a
ture of interest is always occluded by other features, cfRVe! information-theoretic framework combined with
away views or other concepts from illustration can be ifPi€Ct importance information as described in detail in

cluded into the visualization. In this case it is importar€CtiorE#.

that the cut-away region does not entirely remove othgfi, selecting visual representations of tagged objects
mtgrestlng objects. If possible, only the least _releva_gﬁd by identifying representative viewpoints, the cru-
objects are cut away. Furthermore a proper orientatighy| jnformation to perform on-the-fly focus of atten-
of the up-vector of the viewpoint and a proper positio,, s available. We use focus of attention as a tool
ing of the focus to fulfill aesthetical criteria of composiz, visually-pleasingorowsing among a number of in-
tion (€.g., rule of third<[]6]) are important to consider ifyesting structures within the data. Browsing can be in
the viewpoint specification. All mentioned aspects indfjgnera| used for visual presentations of the volumetric

cate that a proper viewpoint setting is important for thg, 5 | our importance-driven focusing framework we

focus of attention. also consider additional information about the data. For
Focusing Pipeline: Some previous work [22, 23] usedexample we include information about thp-vector of

an explicit importance classification for focus+contexthe volume (e.g., in the case of the human anatomy, the
visualization inspired by techniques known from tradhead is on top and the legs are at the bottom), in order to
tional illustration. In the following we give an overviewpreserve natural orientations of viewpoints. The object
on the pipeline of importance-driven focus of attentian focus is located in the center of the viewpointin order
(for the part on optimal viewpoint estimation see aldo draw the maximal attention of the user. We blend-in
Figurel3). The pipeline is presented for the visualizatiaextual information as labels to increase the semantic in-
of volumetric datasets. The conceptis, however, univéormation content. In general, the more information is
sal and can be applied to various visualization tasks irgilable the larger the spectrum of possibilities how to
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realize a pleasing focus of attention. Browsing is reaheans that the visual representation is not constant dur-
ized as a continuous change of the focus of attentiang the time of interaction. This has to be taken into ac-
Visual representations and viewpoint settings continceunt while computing visibilities. Therefore we com-
ously change to visually emphasize the newly selectedte the visibility for eaclactive object, i.e., object in
object of interest. These changes are driven by chanfmsis. This means, for each viewpoint we get- 1)
in the importance distribution among objects. A detailadifferent visibility values fom objects. Each object is
discussion on browsing through the structures is givendgat once as active object and once the visibility is com-
Sectiorb. puted with no selected active object. When we search
for the optimal viewpoint of a particular object, we use
those visibilities where this object has been the active

4 Characteristic Vi ewpoi nt object. In this case the object has a different visual rep-
resentation from the rest of the volume.

_ ] _ ~ One problem that arises when computing the visibility
In this section, we describe our approach for SeleCt'”%%bjects, is that some features may be completely oc-

characteristic viewpoint for a particular object. Firsg Wejyded by other features. This is caused by very dense
determine the visibility of structures within the volumetyiga| settings. This will mean that there is no opti-
ric data considering their visual representations. Thgpy| viewpoint from which the feature is clearly visible,
we use the visibility as input to the new informationg; 5| viewpoints are equally good or bad. In order to
theoretic framework. This framework integrates pefjeq with this problem, we have optionally included cut-
object importance classification, which allows to estiyyay views in the visibility estimation. Here the active
mate optimal viewpoints for an object within the volypiect is visible from all viewpoints as the volume re-
ume. gion in front of this object is not visible at all.

The above described visibility evaluation does not con-
sider the location of features in image space. To draw
attention to a feature, it is important that it is located

] ] ] o . close to the center of the image. To bring the feature
The first step for a viewpoint evaluation is the estimasiq the focus, we give more prominence to rays in the

tion of per-object visibility. We use a simple scheme fQfaner of the image. We weight each ray’s contribution
V|S|_b|I|ty evaluation, taking into accpunt opacity CoRtri, the visibility of objects and background volume by an
bution of voxels on the rendered image. The evalugsage space weight. This weight is largest in the center

tion of the visibility is done in a ray-casting step. Fog¢ the image and is decreasing with the distance from
each sample along a rayr we evaluate its visibility ine center.

v(r,i) = v(r,i —1)a(r,i), wherea(r,i) is the resampled . . . Lo
opacity value at the given sample positiotWe imple- The overall concept of thl_mal_ viewpoint estimation
driven by an importance distribution is illustrated in Fig-

ment nearest nelghbqr_a_n_d linear mterpolz_atlon resameB_ The importance distribution and the visibility of
pling schemes. The visibility of a voxel is given as the ; : . . :

s X .each object for the given visual representations are in-
sum of visibilities of all resampled points the voxel iS

o ) : ut parameters of the information-theoretic framework.

contributing to in the resampling step. In case of neat; . . i . e
: : : . his framework will be described in detail in the next

est neighbor interpolation we simply sum the ray sample .

A . : . . _'section.

visibilities belonging to this voxel. In case of linear in-

terpolation, we perform a linealistribution of the ray

sample visibility among all eight surrounding voxels. 4.2 | nformation-Theoretic Framework for

Each voxel belongs either to a particular feature oritbe- ~ Yiewpoint Estimation

longs to thebackground volume. The sum of voxel con-

L2 . . . fter the visibility of each object under different visual
tributions belonging to a particular feature, estimatesth . . . . .

N : : -_settings and viewpoints has been computed, the optimal
visibility of the feature. We are using non-binary object.

A . . Viewpoint estimation can be performed. In this section
classifications and a particular voxel may contribute tq a . - : .
: . we describe our approach for finding good viewpoints.

number of different features simultaneously. The vox ; ; . 2 .
s - ' ur viewpoint selection approach is using the mutual in-
visibility is simply multiplied by a factor that defines : : .
: . . “formation of the channel defined between a set of view-

how much the voxel contributes to a particular object.

points and the objects of a volumetric data set. This new
In our focus of attention framework, we also changeeasure shows a better behavior and robustness than the
the visual representation of the object of interest. Thisevious viewpoint entropy [18]. For more information

4.1 Visbility Estimation
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visibility estimation
V2

image-space weight

object selection by user Y, X\ V is given by p(v) = % whereNy is the number of

@ o ‘ viewpoints, i.e., we assign the same probability to each
) ‘ & viewpoint. The conditional (or transition) probabilities
p(o|v) are given by the normalized visibility of each ob-
ject from each viewpoint, i.e§ o<, p(0|v) = 1. Finally,
_ _ _ the marginal probability distribution d@ is given by
information-theoretic framework
for optimal viewpoint estimation

importance distribution pvi)|  plorvi) -

— 1
p(o) z p(v)p(olv) = _NV § p(olv), 1)

= v V AV
1(v.0) = Z p(oilvi) log pé?(‘)lj‘;') ve ve

. that expresses the average visibility of each object from

01 02 03

p(v1) - plrithe set of viewpoints.
[ pon PefErom channeV — O, the conditional entropy is given
by
Figure 3: Concept of importance-driven optimal view-
point estimation. HOV)=—S p(v) S p(ov)logp(o|v) = 1 Hy
VEZV oezﬁ Ny v;// (2)
on information-theoretic measures and previous VieynereH, — — S oc P(0]V) logp(o]v) is the entropy of
pom_t guality measures, please refer to the Appe”‘i‘)?&Npoint v (for polygonal data see Equatifil13, for
section. volumetric data refer to Bordoloi et al1[3]). Thus, the

Our framework works well for volumetric objects agonditional entropy is the average of all viewpoint en-
tagged volume regions. Taking a voxel as a basic dbapies.

ject element would lead to very high memory consumpye now focus our attention on mutual information, that
tion, this will be also the case using previously sugxpresses the degree a@dpendence or correlation be-
gested viewpoint quality measures. The framewofleen a set of viewpoints and the data set. Tiuual

naturally integrates per-object importance classificatiqnformation betweer andO is given by
By changing the importance distribution among objects,

i i i oV 1
the results of viewpoint evaluation also change to hav?év 0)= 5 p(v) T p(o)log p( |)) =% S 1(%.0)
: vey

characteristic view on the feature of highestimportanc & Ev p(o

Setting the importance to be constant for all objects and 3)
background volume, characteristic views for the entivghere

volume are achieved. (4O)= 3 plolv)log p(olv) @
We formalize the viewpoint selection using a commu- oo p(o)

nication channel between two random variables (inpigt called viewpoint mutual information and represents
and output). The communication channel is charactétie degree of correlation between the viewpairgnd
ized by a probability transition matrix which determineghe set of objects. The quality of a viewpoint is given by
the output distribution given the input. After defining ghe mutual informatiori (v,O) and the best viewpoint
channel, entropy and mutual information can be caldig-defined as the one that has minimum mutual infor-
lated. The entropy is a measure of the average una@ation. High values of the measure mean a high de-
tainty in a random variable and the mutual informatiogendence between viewpomtand the set of objects,

is a measure of the dependence between two rand@dicating a highlycoupled view. On the other hand,
variables, i.e., the amount of information one randogw values correspond to a low dependence, allowing
variable contains about another. While entropy is thér morerepresentative views of the data set.

self-information of a random variable, mutual informagiepoint mutual information has the following advan-
tion is a special case of a more general quantity callggyes versus viewpoint entropy. First, the entropy value
relative entropy, which is a measure of the distance Qgereases to infinity with the number of voxels and it
tween two probability distributions. is highly dependent on the voxel distribution. Thus, an
We first define a chann®! — O between a set of view- extremely refined mesh attracts the attention of the mea-
points and the objects of a volumetric data set, repmire, penalizing big objects in front of small ones. This
sented respectively by the random variableginput) is not such a problem for volumetric data sets stored
and O (output). Viewpoints will be indexed by and on a regular grid, when the basic object element is a
objects byo. The marginal probability distribution ofvoxel. Viewpoint selection evaluation for volumetric
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data stored on unstructured grid will suffer from thid.4 Obtaining Characteristic Viewpoints
property much more significantly. On the other hand . . . . . .
the viewpoint mutual information converges to a finitEquation[6 defines the viewpoint mutual information

value when the mesh is infinitely refined and is insengiith importance classification. This is computed for

tive to changes in the voxel resolution. each viewpoint and for each active object separately (as

Second, while viewpoint entropy only uses the Conat_ey have different visual representations, which implies
! ifferent visibilities). To obtain a set of characteristic

tional distributionp(o|v), that is, what is visible from a " ¢ X biec e th ditional
given point of view, viewpoint mutual information meay cWs 10T @ glven objech, we compulte the conditiona

sures how much the distributigs{o|v) differs from the probabilities of all objects for a given viewpoint. The

distribution p(0) in the sense of statistical distinctnesé:.pr.]d.monal probab_lll_tw_)(o|v) IS eq“"?" tothe nor malized
visibility, i.e., the visibility of all objects per viewpat

Note thatp(o) gives us the average visibility of all ob- ; _
jects captured from all viewpoints and represents tRE® equal to 1 as described in Secliol 4.2.

ideal target, so that the viewpoint mutual information fsurthermore we have to compute the marginal proba-
zero whenp(o|v) = p(0). In other words, the viewpointbility p(o) from EquatiorL. To computg/(0) we first
mutual information considers all the information of theompute a dot product between the marginal probabil-
channel. The only objective of viewpoint-entropy maxty ~ vector (p(0o), p(01), P(02), .-, P(Om-1), P(Om))
imization is to approach the uniform distribution, withand ~ the  importance  distribution  vector
out taking into account the degree of visibility of théi(00),1(01),i(02),....i(0Om-1),i(0m)) where m is
objects. This behavior of the entropy is independent b number of objects ara is the background volume.

weighting the visibility distribution by the importanceAfter the sum in the denominator of Equatldn 7 is com-
as done by Bordoloi and She [3]. puted, all information is available and we can compute
the viewpoint mutual information for viewpoint

The viewpoint mutual information is computed for ev-
ery viewpoint and the set of viewpoints with the smallest
. . . . mutual informations are selected. These computations
We observe that viewpoint mutual information can be . . . . :
X give us good viewpoints for a particular active object. To
rewritten as . . X
compute good viewpoints for another object, we have to
take another set of visibilities where the visual emphasis
1(v,0) = KL(p(O}v)|p(0)), (5) P

is on the respective object. All values necessary for the

where capital letters indicate thatO|v) is the condi- viewpoint mutual inforrr_1ati9n can be stored in a set of
tional probability distribution betweenand the data set, 2D schemes as shown in Figlde 3.

and p(O) is the marginal probability distribution a.

Thus,I(v,0) can be interpreted as the relative entrop ) .

or Kullback-Leibler distance between the visibility disg I mportance-Driven Focusing

tribution of objects from viewpoint and their average

visibility. The less the measure the better the viewpoirithe focus of attention requires to display the object of
as we approach the ideal target of viewing every objénterest from a characteristic view. How to obtain char-
proportional to the average visibiliy(0). In this case, acteristic viewpoints has been described in the previous
[ (v,O) would be zero. section. Let's assume we have identified a set of most

Adding importance to our scheme means simply mogharacteristic viewpoints per object under the given vi-

ifying the target function. The ideal viewpoint woulc®ual representations. Now we will describe in detail how

be now the one viewing every object proportional to tiiBe focus of attention can be used for the visual inspec-
average visibility times importance. After incorporatinon of tagged volumetric data.

importance, the viewpoint mutual information is givehe general idea is to use the importance distribution as
by a controlling parameter for the focus of attention. We

4.3 Incorporating mportance

/ _ p(olv) specify a high importance value for the active object
(o) = Oezﬁ plolv)log p'(o)’ ©) (e.g., 1000). The other objects and the background are
assigned a low importance value (e.g0)1 By selecting
where (0)i(0) another object to become the active object, the impor-
p'(0) = pi (7) tance of the previously selected active object is contin-
Yoco P(0)i(0) uously decreasing to the value of inactive object§)1

andi(o) is the importance of object and the importance of the newly selected active object
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is increasing to the maximal value (10). The change

in the importance distribution is reflected on the view-
point location and visual representations. This causes
a smooth and visually pleasing change of focus of at-
tention to the newly selected active object. We describe -
these changes in more detail for viewpoints and visual o
representations separately.

02

5.1 Viewpoint Transformation

Initially we set the viewpoint to optimally see the entir&igure 4: The viewpoint path is calculated as a differ-
volume without selecting any active object. All imporence between two viewpoint positions. The path is then
tance values are set to a constant low importance val@rmalized onto the bounding sphere, which smooth ac-
For each object we calculate several good characteri§@eration and deacceleration in viewpoint change.
viewpoints, as well as several good viewpoints on the

entire volume with no active object selected. All thesgrect viewpoint interpolation from the actual viewpoint
viewpoints are located on a bounding sphere around {88heclosest new active object’s good viewpoint (deter-
volumetric data set. After selecting an active object, itsined by the angle difference of viewpoint normal vec-
importance raises and the viewpoint changes to the opgirs) we consider that the viewpoint path visits a view-
mal viewpoint of the active object. As there are severghint that gives a general overview on the entire volume.
characteristic per-object viewpoints, we have to defifgis provides the context information of all structures so
which one will be selected. To minimize the viewpoinge yser does not lose its orientation within the volume.
path, we compute the angle between the current vieim thiscontext view, the viewpoint smoothly changes
point's normal vector and the normal vectors of the o the optimal viewpoint of the newly selected active ob-
ject's good viewpoints. The viewpoint with the smallesgct. This way of presenting objects is in the spirit of the
angle is selected. The position of the viewpoint is %‘avigation on large 2D maps proposed by van Wijk and
ways on the bounding sphere. The change of positigﬁij [16, [17].

between viewpoints is calculated as a linear transformg-c5qe of switching the viewpoint from one active ob-
tion from one position to another. Every position of aflct to another, the viewpoint change considers three
intermediate viewpoint is then normalized to be Iocat‘?ﬁe-selected viewpoints: the optimal viewpoint of the
on the bounding sphere surrounding the volume. Thig ious active object, the contextual overview, and

has one favorable implication. The viewpoint chanqﬁe view on the new active object. Instead of the lin-

starts slowly, has the biggest angle difference in the mighy; ansformation discussed above, the position of the

dle of the viewpoint transformation and slows down b?/'lewpoint is changing on a Beziér curve defined by
fore achieving the new optimal viewpoint. This is d&jie\point positions as three control point [2]. This
picted in Figuré}. The change of viewpoints is parafieans that the contextual view on the whole volume is
eterized by the importance value of the object in focUgq yisited exactly, it is approximated by similar views
The initial value for this object is low and equal to the, ¢ 5150 satisfy the goal of providing context. The view-
importance value of the other objects. After selecting,in: hosition is again normalized to the unit sphere
the object as active, the importance increases and dfz|osing the volume. The Beziér curve among three
fines the position of intermediate viewpoints. When 3Rewpoints is depicted in Figuf@ 5.

objegt’s importancg va!ue is equal t_o the mr-;n.(imal Valuﬁ‘r this case we have to select from the two closest op-
the V|ewp0|r-1t Iocatlon. is at the deswgd POS.I'[IOH. . timal viewpoints, i.e., one for the context view and one
After achieving the object’s characteristic viewpoing thor the characteristic view on the new active object. We
user can locally change the viewpoint in order to inspegélect the viewpoint pair with the smallest sum of an-
the interesting object from several directions. When thiges between the viewpoint normals, which means that
inspection is finished (e.g., mouse button is releaseghe overall path is shortest.

the importance value of the active object is set to a Iy important consideration in the viewpoint setting with
value again. Increasing the importance brings the vieygspect to a visually pleasing focusing, is the orienta-
point back to one of the characteristic views. tion of the viewpointup-vector. In our implementation
We use a slightly different concept for changing viewwe set the viewpoint up-vector to point towards the up-
points from one active object to another. Instead ofvactor of the volume. The up-vector of the volume is



ve In addition to changes in the visual representation, we
incorporate cut-away views. The level giiosting in
front of the interesting feature is also driven by impor-
tance changes. In this case we do not employ abrupt
changes, but the level of ghosting changes smoothly.
g This means the ghosting level is increasing with de-
o Vo creasing importance of the previously active object and
is decreasing with increasing importance of the new
active object. When the optimal view is reached, the
ghosting level is maximal, i.e., features in front of the
active object are completely transparent. We include ad-
Figure 5: Change between two optimal viewpoint of dijitional information into this static view by blending-in
ferent objects\{; for o; andv, for 0p). The contextual gdditional annotations.
viewpoint v is nearly visited and is approximated by
the Beziér curve.

o1 02

6 Results

defined before the visual inspection for each dataset, to-

gether with all other preprocessing steps: defining o&e have integrated the focus of attention functionality
jects by segmentation, visual representations and g@sda plugin into VolumeShopl[4]. This system allows
viewpoint estimation. If the viewpoint is located at theasy prototyping with the possibility of using a lot of
poles, i.e., the viewpoint normal vector is parallel to thexisting functionality. We have extended the informa-
volume top vector, we select another vector to be tkien about the dataset, which is stored in an XML file,
viewpoint up-vector. In our implementation we use thigy information on the volume up-vector and on the vol-
volume front vector with inverse orientation so we lookme front-vector. After the viewpoint estimation, for
at the volume from top-front. each object a set of characteristic viewpoints is saved
into the XML structure as well as thgtobally charac-
teristic views when no specific object is in focus. Vis-
ibility computation for each object is the most time-
consuming part of the pipeline and takes about few min-

. ) utes, because the ray-casting has to be performed for a
A characteristic view is an important part of focus of a‘érge number of viewpoints. As this is a pre-processing

tention. However without emphasis through visual regfep that is considerably shorter than object specifica-

resentation, the focus is still not discriminated from the, | by segmentation or setting-up proper visual repre-
context objects. Therefore in our framework Changgmg.‘ntations, this is not a real issue. Interaction is done

in importance distribution also change the visual aB’n-the-fIy and additional viewpoint location computa-

pﬁarance- of ok.)Je_<|:ts. A wsuzﬂ representat|(l)n Efis'caﬂilgns as well as importance-driven modifications of vi-
changes in a similar way as the viewpoint. In this caggy representations do not take any noticeable time and

we do not need to calculate a path. We select the appgas e formance is equal to standard multi-volume ren-
priate level of sparseness in the visual representatlondg}ing implemented in VolumeShdg [4]
our implementation we define the visual representation T

of inactive and active objects before the visibility calcz0cus of attention has been applied on three different
lation. These visual representations can be linearly fiata sets. The human hand and torso (Figires Lland 2)
terpolated for example. In our focusing pipeline we us&OW objects that are inside the data set. In this case
a discontinuous change in the visual representation3g Visibility computation used cut-away views to iden-

this abrupt change attracts an observer's attention mdity the best visibility. In case of the stag beetle data
stronger. While the viewpoint moves from the previfet (Figurél), only outer parts have been selected so the

ous active selection towards tieentext view (the im- option for cut-away visibility calculation was not neces-
portance of the previous active object is decreasing), §fY- In this figure sample images have been taken from
previous active object is still visually emphasized. Aftdf-focusing from thorax object to the legs. Between the
reaching the context viewpoint, the visual representatistiirth and fifth image the contextual viewpoint has been
of the previously active object is suppressed and the nE@ched and the focus switched to legs.

active object is visually emphasized (the importance ®he concept of importance-driven focusing
the newly selected active object is increasing). is best demonstrated by the accompanying

5.2 Visual Representation
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Figure 6: Stag beetle data set: re-focusing from thoraxablgethe legs).

video. Further information is available afThe stag beetle from Georg Glaeser, Vienna University

http://www.cg.tuwien.ac.at/research/vis/exvisatidit/ of Applied Arts, Austria, was scanned with an industrial
CT by Johannes Kastner, Wels College of Engineering,
Austria, and Meister Eduard Grdller, Vienna University

7 Summary and Conclusions of Technology, Austria. Thlonster Sudy human torso
and the human hand data sets are courtesy of Tiani Med-

In this paper we have proposed the concept fgraph.

importance-driven focus of attention. We have dighe authors would like to thank Stefan Bruckner and

cussed the necessary pre-processing steps before @wter Rautek for fruitful discussions.

sual inspection puts the focus of attention on interest-

ing objects. One of these steps is localization of view-

points that show characteristics of an object in the bdefer ences

way. We use a new method for viewpoint selection for

volume data using viewpoint mutual information that[1] C. And(jar, P. P. Vazquez, and M. Fairén. Way-

works very good for segmented volumetric data classi- finder: guided tours through complex walkthrough

fied by importance. models. Proceedings of Eurographics’04, pages

We have shown possibilities how to realize focus of at-  499-508, 2004.
tention for a visual inspection of volumetric data with 2]

added information such as varying visual representi—
tions, optimal viewpoints for objects and the entire vol-
ume, up-vector of the volume, and auxillary textual in-
formation.

We have discussed aspects of a visually pleasing re-

focusing from one object of interest to another. Thid3] U. Bordoloi and H.-W. Shen. View selection for
includes the selection of viewpoints, design of a path for ~ volume rendering. IfProceedings of |EEE Visual-
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P. Beziér. Emploi des machines a commande
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8 Acknowledgments
[5] Digital morphology web site,

The work presented in this publication is car-  http://www.digimorph.org/, 2006.

ried out as part of the exvisation project . .

(www.cg.tuwien.ac.at/research/vis/exvisation) [6] B. Gooch, E. Reinhard, C. Moulding, and

supported by the Austrian Science Fund (FWF) under P‘_ Shi:leg. ﬁ;i_stic CfngSitioﬂ. for imag_e cre-
grant no. P18322. ation. InProceedings of Eurographics Symposium

. . . ) on Rendering’ 01, pages 83-88, 2001.
This project has been funded in part with grant numbers

TIN2004-07451-C03-01, FIT-350101-2004-15 of the[7] G. Kindlmann and J. Durkin. Semi-automatic gen-
Spanish Government and I1ST-2-004363 (GameTools: eration of transfer functions for direct volume ren-
Advanced Tools for Developing Highly Realistic Com- dering. InProceedings of IEEE VolVis'98, pages
puter Games) from the VIth European Framework. 79-86, 1998.


www.cg.tuwien.ac.at/research/vis/exvisation

REFERENCES

11

[8] R. Kosara, S. Miksch, and H. Hauser. Semantjz9] P. P. Vazquez, M. Feixas, M. Sbert, and W. Hei-

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

depth of field. InProceedings of IEEE InfoVis’ 01,
pages 97-104, 2001.

R. Kosara, S. Miksch, H. Hauser, J. Schrammel,
V. Giller, and M. Tscheligi. Useful properties of
semantic depth of field for better F+C visualiza?0]
tion. In Proceedings of VisSym '02, pages 205—
210, 2002.

C. H. Lee, Amitabh Varshney, and David W. Jal—21]
cobs. Mesh saliency. IRroceedings of ACM SIG-
GRAPH ' 05, pages 659-666, 2005.

J. Marks, B. Andalman, P. A. Beardsley, W. Free-
man, S. Gibson, J. Hodgins, T. Kang, B. Mir-
tich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and
S. Shieber. Design Galleries: a general approact2]
setting parameters for computer graphics and ani-
mation. InProceedings of ACM S GGRAPH ' 97,
pages 389-400, 1997.

M. Sbert, D. Plemenos, M. Feixas, ant23]
F. Gonzalez. Viewpoint quality: Measures and
applications. InProceedings of Computational

Aesthetics’ 05, pages 185-192, 2005.

N. Svakhine, D. Ebert, and D. Stredney. IIIustra[—24]
tion motifs for effective medical volume illustra-
tion. |EEE Computer Graphics and Applications,
25(3):31-39, 2005.

S. Takahashi, I|. Fujishiro, Y. Takeshima, an
T. Nishita. A feature-driven approach to locating
optimal viewpoints for volume. IfProceedings of
|EEE Visualization’ 05, pages 495-502, 2005.

drich. Automatic view selection using viewpoint
entropy and its application to image-based model-
ing. Computer Graphics Forum, 22(5):689-700,
2003.

P. P. Vazquez, M. Feixas, M. Sbert, and A. Llo-
bet. A new tool for obtaining good views for
molecules. InProceedings of VisSym’'02, pages
183-188, 2002.

I. Viola, M. E. Groller, K. Buhler, M. Had-
wiger, B. Preim, D. Ebert, M.C. Sousa,
and D. Stredney. Illustrative visualiza-
tion. Visualization 2005 Tutorial, 2005.
http://www.cg.tuwien.ac.at/research/vis/exvisatsy/
tutoriall.

I. Viola, A. Kanitsar, and M. E. Groller.
Importance-driven volume rendering. Rnoceed-
ings of IEEE Visualization'04, pages 139-145,
2004.

I. Viola, A. Kanitsar, and M. E. Groller.
Importance-driven feature enhancementin volume
visualization.|EEE Transactions on Visualization

and Computer Graphics, 11(4):408-418, 2005.

Volume data set repository, Vi-
enna University of Technology,
http://www.cg.tuwien.ac.at/research/vis/datasets/,

2006.

Appendix

Infor mation-Theor etic M easur es;
Let 2 be a finite set, leK be a random variable tak-

ing valuesx in 2" with distribution p(x) = Pr[X = x].
Likewise, letY be a random variable taking valug#
% . The Shannon entropy H(X) of a random variabl&
is defined by

J. van Wijk. The value of visualization. IBro-
ceedings of IEEE Visualization’05, pages 567—
574, 2005.

J. van Wijk and W. Nuij. Smooth and efficient
zooming and panning. IRroceedings of |IEEE In-
foVis’ 03, pages 1522, 2003.

H(X)

— ) P(X)logp(x). (®)
x;

The Shannon entropid (X), also denoted byH(p),
J. van Wijk and W. Nuij. A model for smoothmeasures the average uncertainty of random varkble
viewing and navigation of large 2d informatiorf\ll logarithms are base 2 and entropy is expressed in
spaces. |EEE Transactions on Visualization and bits. The convention that Ologie 0 is used. Theondi-
Computer Graphics, 10(4):447-458, 2004. tional entropy is defined by
P. P. Vazquez, M. Feixas, M. Sbert, and W. Hei- HYIX) = _XG;_ P(X) £ p(yx)logp(ylx).  (9)
drich. Viewpoint selection using viewpoint en- - e
tropy. InProceedingsof VMV ' 01, pages 273—-280,wherep(y|x) = Pr[Y = y|X = ] is the conditional prob-
2001. ability. The conditional entrop¥d (Y|X) measures the
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average uncertainty associated withif we know the whereg; is the projected area of polygore; = Zi’\zlai’
outcome ofX. In general,H(Y|X) # H(X[Y), and a/js the actual area of polygomndAr = 51, A, is the

H(X)>H ()_(|Y) = O ) . total area of the scene or object.
Themutual information betweenX andy is defined by

I(X,Y) = H(X)—H(X|Y)=H(Y)-H(Y|X)
_ p(y|x)
= XE%_ p(X)yeg p(y[x) log o) (10)

The mutual informationl (X,Y) is a measure of the
shared information betweexX andY. It can be seen
thatl (X,Y) =1(Y,X) > 0.

The relative entropy or Kullback-Leibler distance be-
tween two probability distributionp andq is defined
as

KL(pla) = ; P(X) Iog%, (11)

where, from continuity, we use the convention that
0log0= 0, p(x) Iog@ = if p(x) >0 and Olog = 0.
The relative entropKL(p|q) is a measure of the inef-
ficiency of assuming that the distributiondsvhen the
true distribution isp.

The Jensen-Shannon divergence betweenn probabil-

ity distributionsp, p2, . .., pn, With their corresponding
weights s, 1, ..., T, fulfilling S, = 1, is defined
by

JS(pl,pz,---,pn)=H(_;npi)—;nH(pi)- (12)

The Jensen-Shannon divergence measuresfaioare
the probabilitiesp; from their mixture 3, p;i. It
equals zero if and only if all thg; are equal.

Information-Theoretic Viewpoint Quality Mea-
suresfor Polygonal Data:

Viewpoint entropy measure based on Shannon entropy
(EquatiorB) is defined as

Nt
q a
Ho=-Y =2 log—, 13
v i;at 9% (13)

whereN; is the number of polygons of the scetagjs
the projected area of polygamver the sphere of direc-
tions centered at viewpoimt ag represents the projected

area of background in open scenes, anet z:\ioai is
the total area of the sphere. The maximum entropy is
obtained when a certain viewpoint can see all the poly-
gons with the same projected aiga
Viewpoint measure based on Kullback-Leibler distance
(EquatiorIll) is defined by

Nt a a
KLy = Z—Iog%, (14)
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