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Figure 1: Focus of attention applied to visual inspection oforgans within the human torso.

Abstract

This paper introduces a concept for automatic focusing
on features within a volumetric data set. The user selects
a focus, i.e., object of interest, from a set of pre-defined
features. Our system automatically determines the most
expressive view on this feature. An optimal viewpoint
is estimated by a novel information-theoretic framework
which is based on mutual information measure. View-
points change smoothly by switching the focus from one
feature to another one. This mechanism is controlled by
changes in the importance distribution among features
in the volume. The highest importance is assigned to
the feature in focus. Apart from viewpoint selection, the
focusing mechanism also steers visual emphasis by as-
signing a visually more prominent representation. To al-
low a clear view on features that are normally occluded
by other parts of the volume, the focusing also incorpo-
rates cut-away views.

CR Categories: I.3.3 [Computer Graphics]:
Picture/Image Generation—Display algorithms; I.3.3
[Computer Graphics]: Picture/Image Generation—
Viewing algorithms;

Keywords: illustrative visualization, volume visualiza-
tion, interacting with volumetric datasets, optimal view-
point estimation, focus+context techniques

∗{viola | meister}@cg.tuwien.ac.at
†{feixas| mateu}@ima.udg.es

1 Introduction

Visualization is an application-oriented research area
combining knowledge from various fields of science
or daily life and representing it by means of graph-
ical elements. There can be many reasons for visu-
alization [15]: visual analysis and visual presentation
of underlying data are the most important ones. The
firstly mentioned reason for visualization helps scien-
tists to find relations and correspondence in various nat-
ural phenomena. The visual stimulus is the strongest
perception cue and visual analysis helps people tothink
visually. The second goal serves as a communication
medium and can be motivated by several reasons such as
education, infographics, or commercial purposes. The
approach of this paper helps in improving visual pre-
sentation rather than visual analysis.

Recent developments of 3D scanning modalities such as
computed tomography (CT) allows to unveil insights of
different species, material, or bodies. One of the most
important application areas is medical diagnostic imag-
ing. Besides medical visualization there are other sci-
ence directions exploiting 3D scanning technology. For
example high-resolution CT scanning has been applied
to provide Visible Man datasets or recently the mummy
data set of Egypt’s boy pharaoh Tut. Industrial scanners
are used for material quality validation, but can be used
for scanning of small species, e.g., insects as well [24].
An interesting example of exploiting 3D scanning tech-
nology is theDigital Morphology library [5], a large dy-
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2 2 RELATED WORK

namic archive of information on digital morphology of
biological specimens.

As medical imaging is an important application area,
medical workstations in general feature the broadest
spectrum of functionality for handling volumetric data
sets. This includes visualization, image processing,
measurements, or (semi-)automatic diagnosis estima-
tion. Medical workstations, however, are designed
mostly for visual analysis in diagnostic scenarios, rather
than for presentation purposes. Medical workstations
currently do not include much functionality that is nec-
essary for presentation purposes.

Other areas of science on the other hand are in gen-
eral not targeted specifically to visual analysis and vi-
sual presentation is often more required. One of these
examples is the collection of different specimens in the
Digital Morphology library. The aspect of visual pre-
sentation is also becoming important in communication
among medical experts from different domains or be-
tween the medical staff and the patient. Therefore func-
tionality for presentation purposes, also strongly related
to visual storytelling, will become more important for
medical workstations as well. Functionality that is han-
dling volumetric data sets for presentation purposes has
been recently discussed in a tutorial onillustrative visu-
alization [21]. Some systems incorporating illustrative
presentation techniques are shortly discussed in the re-
lated work (Section 2).

Current visualization systems for handling volumetric
data sets require a lot of expertise from the user. For ex-
ample many widgets to design a suitable transfer func-
tion (mapping tissue density to color and opacity val-
ues) are rather unintuitive for the unexperienced user.
Our work is motivated by the fact that currently none
of the commercially or publicly available visualization
systems allows the user high-level interactions such as
”Show me this interesting part of the volumetric data set
and then show me the next interesting part.” Our frame-
work allows an automatic focus of attention on interest-
ing objects. The user’s only required (but not limited
to) interaction is to select an object of interest from a
set of pre-segmented objects. The framework smoothly
navigates the view to optimally see the characteristics of
the focus object. Additionally, the focus object is visu-
ally emphasized for easy discrimination from the con-
text. Example images that illustrate focus of attention
for insights of a human torso and human hand dataset
are shown in Figures 1 and 2.

One contribution of this paper is the introduction of an
information theoretic framework for optimal viewpoint
estimation in volumetric data sets with pre-segmented

objects. This framework easily integrates the impor-
tance of objects within the volumetric data set. Another
contribution is a concept of focus of attention for inter-
active volume visualization. Here an expressive view-
point is selected in combination with a visually pleasing
discrimination of focus from context information. By
changing the object of interest, both viewpoint settings
and visual parameters are smoothly changing to put em-
phasis on the newly selected object of interest.

The paper is organized as follows: Section 2 describes
previous work related to importance-driven focus of at-
tention. The following Section 3 describes the concept
of focusing. Technical details of optimal viewpoint es-
timation are discussed in Section 4. Interaction aspects
of focusing are presented in Section 5. Implementation
issues and performance are discussed in Section 6. Fi-
nally we draw conclusions and summarize the paper in
Section 7.

2 Related Work

Focus of attention has been often used in visualization to
catch the user’s attention. It has many different occur-
rences. We will first review relevant previous work in
the area of focus+context visualization. The second part
of this section reviews recent work on optimal viewpoint
estimation as good viewpoint selection is crucial for an
effective focus of attention.

The depth of field effect is a focus of attention tech-
nique from photography that inspired Kosara et al. [8]
to propose a semantic depth of field (SDOF). In their
work they have shown that the degree of sharpness de-
termines the speed of drawing human attention in oth-
erwise blurry environments. They have applied their
technique in various fields of information visualization.
Later on, the authors have designed a user study for
a quantitative evaluation of sematic depth of field ef-
ficiency [9]. They show that the semantic depth of
field is an effective way to draw attention to specific
parts. SDOF, however, should be used in combination
with other visualization techniques. Additionally the
users sometimes felt uncomfortable observing unnatu-
rally blurred parts (e.g., blurred text).

Another focus+context method for displaying volu-
metric data has been proposed in previous work on
importance-driven volume visualization [22, 23]. The
importance classification has been introduced for spec-
ifying view-dependent visual representations to reveal
occluded structures. This is in spirit of cut-away views
and ghosted views known from traditional illustrations.
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Figure 2: Further examples of visual inspection of or-
gans within the human torso.

Several focus+context techniques have been included
into VolumeShop, a publicly available volume visual-
ization system from our group [4]. Besides applying
cut-aways and ghosted views, the user can manipulate
features of interest in several ways, e.g., displace them
from their original spatial location to a part of image
space, where otherwise no data is shown. Addition-
ally to focus+context techniques, the user can enrich the
visualization by adding textual information to objects
which appears as automatically placed labels. The func-
tionality of VolumeShop is intended to provide a tool
for presenting and communicating the data being visu-
alized.

Another publicly available visualization system featur-
ing functionality for visual presentation and communi-
cation has been proposed by Svahkine et al. [13]. An
interesting consideration incorporated in their system is
the level of expertise of the user. This has two implica-
tions for the design of the system. First, the user inter-
face and widgets are customized according to the user-
expertise level. A non-expert user has a very simple user
interface allowing limited flexibility, whereas an expert
has much higher flexibility with advanced tools such as
a transfer function editor. Second, the level of user ex-
pertise implies also different visualization results. An
easy to understand visualization is targeted to a non-

expert user and moredirect visualization is targeted to
the expert.
Viewpoint selection has been applied to several do-
mains in computer graphics, such as scene understand-
ing and virtual exploration [1], molecular visualiza-
tion [20], image-based modeling [19], volume visual-
ization [3, 14], and mesh saliency [10]. Different mea-
sures for viewpoint evaluation have been used in these
fields.
Vázquez et al. [18] have defined theviewpoint entropy
(Equation 13), as a measure for viewpoint quality eval-
uation. This measure has been designed primarily for
polygonal data, where the best viewpoint is defined as
the one that has maximum entropy. Taking into account
the background information, this technique may be used
for indoor and outdoor scenes as well.
Viewpoint entropy for polygonal data has been recently
extended to volumetric scalar data [3], by substituting
the area visibility distribution by the voxel visibility dis-
tribution divided by the voxel importance (noteworthi-
ness factor). This work has also suggested information-
theoretic measures for clustering views according to
similarity using the Jensen-Shannon divergence from in-
formation theory (Equation 12). They also suggested an
optimal viewpoint estimation scheme for time-varying
data.
It has been shown recently by Sbert et al. [12] that
viewpoint entropy is very sensitive to triangulation.
The maximum entropy is achieved in areas of very
fine triangulation. Therefore they propose a new
viewpoint-quality measure for polygonal data based on
the Kullback-Leibler distance (KL) (Equation 11) de-
noted as viewpoint KL distance (Equation 14). The
viewpoint KL distance is interpreted as the distance be-
tween the normalized distribution of projected areas and
the ideal projection, given by the normalized distribu-
tion of the actual areas. In this case, the background
is not taken into account. The minimum value 0 is ob-
tained when the normalized distribution of the projected
areas is equal to the normalized distribution of the actual
areas. Thus, views of high quality correspond to views
with minimal KL distance. One drawback of this mea-
sure is that many non-visible or poorly visible polygons
in a model can distort the quality of the measure.

3 Focusing Considerations

Before going into technical details of our work we
would like tofocus the reader’sattention on several con-
siderations we have made during designing our frame-
work. To get a clear high-level overview on the frame-
work functionality, we briefly present the processing
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pipeline. Technical details will follow in Sections 4
and 5.

Focus discrimination: Focus of attention is a visual
discrimination of interesting objects from other ele-
ments in an image. It is realized through visual empha-
sis of the object of interest while other objects presented
as context are suppressed. In general a discrimination of
the focus from the context can be achieved by different
levels of sparseness in their visual representation [22].
The focus is represented verydensely while the con-
text gets a moresparse visual representation. Levels of
sparseness can be designed in many ways. In photog-
raphy for example, a very effective technique for object
discrimination is the sharpness of the object of interest.
Very sharp objects are automatically perceived as being
in focus, more blurry objects are contextual information.
Levels of sparseness are in this case different sharpness
levels. Recent studies [9] have shown that for visualiza-
tion tasks the modulation of sharpness is not very much
preferred by users. In volume visualization tasks the
depth-of-field from photography may additionally con-
flict with visual artifacts such as partial volume effects.
In this case opacity, color brightness, and saturation can
be used to discriminate the most interesting objects from
the rest in a much clearer way.

Characteristic view: In addition to visual discrimina-
tion, objects in focus have to be shown from a char-
acteristic view where most of the focus structures are
perceivable. The most interesting object must not be
occluded by less relevant parts. If possible the focus
should be in front of other features. In case that the fea-
ture of interest is always occluded by other features, cut-
away views or other concepts from illustration can be in-
cluded into the visualization. In this case it is important
that the cut-away region does not entirely remove other
interesting objects. If possible, only the least relevant
objects are cut away. Furthermore a proper orientation
of the up-vector of the viewpoint and a proper position-
ing of the focus to fulfill aesthetical criteria of composi-
tion (e.g., rule of thirds [6]) are important to consider in
the viewpoint specification. All mentioned aspects indi-
cate that a proper viewpoint setting is important for the
focus of attention.

Focusing Pipeline: Some previous work [22, 23] used
an explicit importance classification for focus+context
visualization inspired by techniques known from tradi-
tional illustration. In the following we give an overview
on the pipeline of importance-driven focus of attention
(for the part on optimal viewpoint estimation see also
Figure 3). The pipeline is presented for the visualization
of volumetric datasets. The concept is, however, univer-
sal and can be applied to various visualization tasks irre-

spective from the type of the underlying data. The def-
inition of levels of sparseness for visual representations
is highly application dependent. They can be defined ex-
plicitely by the user, estimated (semi-)automatically [7],
or selected from design galleries [11]. A discussion on
levels of sparseness is outside the scope of this paper.
We concentrate on the estimation of proper viewpoints
and on aspects of focusing during user interaction.

Finding a viewpoint where the characteristics of a spe-
cific feature are clearly visible is crucial for focus of at-
tention. This naturally requires the estimation of visi-
bility of the feature under specific viewing settings. In
our case, i.e., for objects within the volumetric data set,
this process is rather time-consuming as it requires ray
casting of the whole data set from various viewpoints.
Computing the visibility of features on-the-fly during
interaction will strongly limit interaction possibilities.
The visibility of features depends on their visual repre-
sentation. For applications where a frequent change of
visual representations is not relevant, the visibility es-
timation can be easily treated as a pre-processing step,
which is executed once prior to the user interaction.

In our importance-driven optimal-viewpoint estimation
framework we compute the visibility of an object as its
contribution on the finally rendered image. This com-
putation is based on the opacity contribution of each
voxel belonging to the object. Object visibility is then
mapped to aconditional probability of the object for a
given viewpoint. These values are used for computation
of good viewpoints for a given object. We use for this a
novel information-theoretic framework combined with
object importance information as described in detail in
Section 4.

With selecting visual representations of tagged objects
and by identifying representative viewpoints, the cru-
cial information to perform on-the-fly focus of atten-
tion is available. We use focus of attention as a tool
for visually-pleasingbrowsing among a number of in-
teresting structures within the data. Browsing can be in
general used for visual presentations of the volumetric
data. In our importance-driven focusing framework we
also consider additional information about the data. For
example we include information about theup-vector of
the volume (e.g., in the case of the human anatomy, the
head is on top and the legs are at the bottom), in order to
preserve natural orientations of viewpoints. The object
in focus is located in the center of the viewpoint in order
to draw the maximal attention of the user. We blend-in
textual information as labels to increase the semantic in-
formation content. In general, the more information is
available the larger the spectrum of possibilities how to
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realize a pleasing focus of attention. Browsing is real-
ized as a continuous change of the focus of attention.
Visual representations and viewpoint settings continu-
ously change to visually emphasize the newly selected
object of interest. These changes are driven by changes
in the importance distribution among objects. A detailed
discussion on browsing through the structures is given in
Section 5.

4 Characteristic Viewpoint

In this section, we describe our approach for selecting a
characteristic viewpoint for a particular object. First, we
determine the visibility of structures within the volumet-
ric data considering their visual representations. Then
we use the visibility as input to the new information-
theoretic framework. This framework integrates per-
object importance classification, which allows to esti-
mate optimal viewpoints for an object within the vol-
ume.

4.1 Visibility Estimation

The first step for a viewpoint evaluation is the estima-
tion of per-object visibility. We use a simple scheme for
visibility evaluation, taking into account opacity contri-
bution of voxels on the rendered image. The evalua-
tion of the visibility is done in a ray-casting step. For
each samplei along a rayr we evaluate its visibility
v(r, i) = v(r, i−1)α(r, i), whereα(r, i) is the resampled
opacity value at the given sample positioni. We imple-
ment nearest neighbor and linear interpolation resam-
pling schemes. The visibility of a voxel is given as the
sum of visibilities of all resampled points the voxel is
contributing to in the resampling step. In case of near-
est neighbor interpolation we simply sum the ray sample
visibilities belonging to this voxel. In case of linear in-
terpolation, we perform a lineardistribution of the ray
sample visibility among all eight surrounding voxels.

Each voxel belongs either to a particular feature or it be-
longs to thebackground volume. The sum of voxel con-
tributions belonging to a particular feature, estimates the
visibility of the feature. We are using non-binary object
classifications and a particular voxel may contribute to a
number of different features simultaneously. The voxel
visibility is simply multiplied by a factor that defines
how much the voxel contributes to a particular object.

In our focus of attention framework, we also change
the visual representation of the object of interest. This

means that the visual representation is not constant dur-
ing the time of interaction. This has to be taken into ac-
count while computing visibilities. Therefore we com-
pute the visibility for eachactive object, i.e., object in
focus. This means, for each viewpoint we get(n + 1)
different visibility values forn objects. Each object is
set once as active object and once the visibility is com-
puted with no selected active object. When we search
for the optimal viewpoint of a particular object, we use
those visibilities where this object has been the active
object. In this case the object has a different visual rep-
resentation from the rest of the volume.

One problem that arises when computing the visibility
of objects, is that some features may be completely oc-
cluded by other features. This is caused by very dense
visual settings. This will mean that there is no opti-
mal viewpoint from which the feature is clearly visible,
or all viewpoints are equally good or bad. In order to
deal with this problem, we have optionally included cut-
away views in the visibility estimation. Here the active
object is visible from all viewpoints as the volume re-
gion in front of this object is not visible at all.

The above described visibility evaluation does not con-
sider the location of features in image space. To draw
attention to a feature, it is important that it is located
close to the center of the image. To bring the feature
into the focus, we give more prominence to rays in the
center of the image. We weight each ray’s contribution
to the visibility of objects and background volume by an
image space weight. This weight is largest in the center
of the image and is decreasing with the distance from
the center.

The overall concept of optimal viewpoint estimation
driven by an importance distribution is illustrated in Fig-
ure 3. The importance distribution and the visibility of
each object for the given visual representations are in-
put parameters of the information-theoretic framework.
This framework will be described in detail in the next
section.

4.2 Information-Theoretic Framework for
Viewpoint Estimation

After the visibility of each object under different visual
settings and viewpoints has been computed, the optimal
viewpoint estimation can be performed. In this section
we describe our approach for finding good viewpoints.
Our viewpoint selection approach is using the mutual in-
formation of the channel defined between a set of view-
points and the objects of a volumetric data set. This new
measure shows a better behavior and robustness than the
previous viewpoint entropy [18]. For more information
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Figure 3: Concept of importance-driven optimal view-
point estimation.

on information-theoretic measures and previous view-
point quality measures, please refer to the Appendix
section.

Our framework works well for volumetric objects as
tagged volume regions. Taking a voxel as a basic ob-
ject element would lead to very high memory consump-
tion, this will be also the case using previously sug-
gested viewpoint quality measures. The framework
naturally integrates per-object importance classification.
By changing the importance distribution among objects,
the results of viewpoint evaluation also change to have a
characteristic view on the feature of highest importance.
Setting the importance to be constant for all objects and
background volume, characteristic views for the entire
volume are achieved.

We formalize the viewpoint selection using a commu-
nication channel between two random variables (input
and output). The communication channel is character-
ized by a probability transition matrix which determines
the output distribution given the input. After defining a
channel, entropy and mutual information can be calcu-
lated. The entropy is a measure of the average uncer-
tainty in a random variable and the mutual information
is a measure of the dependence between two random
variables, i.e., the amount of information one random
variable contains about another. While entropy is the
self-information of a random variable, mutual informa-
tion is a special case of a more general quantity called
relative entropy, which is a measure of the distance be-
tween two probability distributions.

We first define a channelV → O between a set of view-
points and the objects of a volumetric data set, repre-
sented respectively by the random variablesV (input)
andO (output). Viewpoints will be indexed byv and
objects byo. The marginal probability distribution of

V is given by p(v) = 1
Nv

, whereNv is the number of
viewpoints, i.e., we assign the same probability to each
viewpoint. The conditional (or transition) probabilities
p(o|v) are given by the normalized visibility of each ob-
ject from each viewpoint, i.e.,∑o∈O p(o|v) = 1. Finally,
the marginal probability distribution ofO is given by

p(o) = ∑
v∈V

p(v)p(o|v) =
1

Nv
∑

v∈V

p(o|v), (1)

that expresses the average visibility of each object from
the set of viewpoints.

From channelV → O, theconditional entropy is given
by

H(O|V )=− ∑
v∈V

p(v) ∑
o∈O

p(o|v) logp(o|v)=
1

Nv
∑

v∈V

Hv,

(2)
whereHv = −∑o∈O p(o|v) logp(o|v) is the entropy of
viewpoint v (for polygonal data see Equation 13, for
volumetric data refer to Bordoloi et al. [3]). Thus, the
conditional entropy is the average of all viewpoint en-
tropies.

We now focus our attention on mutual information, that
expresses the degree ofdependence or correlation be-
tween a set of viewpoints and the data set. Themutual
information betweenV andO is given by

I(V,O)= ∑
v∈V

p(v) ∑
o∈O

p(o|v) log
p(o|v)
p(o)

=
1

Nv
∑

v∈V

I(v,O),

(3)
where

I(v,O) = ∑
o∈O

p(o|v) log
p(o|v)
p(o)

(4)

is calledviewpoint mutual information and represents
the degree of correlation between the viewpointv and
the set of objects. The quality of a viewpoint is given by
the mutual informationI(v,O) and the best viewpoint
is defined as the one that has minimum mutual infor-
mation. High values of the measure mean a high de-
pendence between viewpointv and the set of objects,
indicating a highlycoupled view. On the other hand,
low values correspond to a low dependence, allowing
for morerepresentative views of the data set.
Viewpoint mutual information has the following advan-
tages versus viewpoint entropy. First, the entropy value
increases to infinity with the number of voxels and it
is highly dependent on the voxel distribution. Thus, an
extremely refined mesh attracts the attention of the mea-
sure, penalizing big objects in front of small ones. This
is not such a problem for volumetric data sets stored
on a regular grid, when the basic object element is a
voxel. Viewpoint selection evaluation for volumetric
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data stored on unstructured grid will suffer from this
property much more significantly. On the other hand
the viewpoint mutual information converges to a finite
value when the mesh is infinitely refined and is insensi-
tive to changes in the voxel resolution.

Second, while viewpoint entropy only uses the condi-
tional distributionp(o|v), that is, what is visible from a
given point of view, viewpoint mutual information mea-
sures how much the distributionp(o|v) differs from the
distributionp(o) in the sense of statistical distinctness.
Note thatp(o) gives us the average visibility of all ob-
jects captured from all viewpoints and represents the
ideal target, so that the viewpoint mutual information is
zero whenp(o|v) = p(o). In other words, the viewpoint
mutual information considers all the information of the
channel. The only objective of viewpoint-entropy max-
imization is to approach the uniform distribution, with-
out taking into account the degree of visibility of the
objects. This behavior of the entropy is independent of
weighting the visibility distribution by the importance,
as done by Bordoloi and Shen [3].

4.3 Incorporating Importance

We observe that viewpoint mutual information can be
rewritten as

I(v,O) = KL(p(O|v)|p(O)), (5)

where capital letters indicate thatp(O|v) is the condi-
tional probability distribution betweenv and the data set,
and p(O) is the marginal probability distribution ofO.
Thus,I(v,O) can be interpreted as the relative entropy
or Kullback-Leibler distance between the visibility dis-
tribution of objects from viewpointv and their average
visibility. The less the measure the better the viewpoint,
as we approach the ideal target of viewing every object
proportional to the average visibilityp(o). In this case,
I(v,O) would be zero.

Adding importance to our scheme means simply mod-
ifying the target function. The ideal viewpoint would
be now the one viewing every object proportional to the
average visibility times importance. After incorporating
importance, the viewpoint mutual information is given
by

I′(v,O) = ∑
o∈O

p(o|v) log
p(o|v)
p′(o)

, (6)

where

p′(o) =
p(o)i(o)

∑o∈O p(o)i(o)
(7)

andi(o) is the importance of objecto.

4.4 Obtaining Characteristic Viewpoints

Equation 6 defines the viewpoint mutual information
with importance classification. This is computed for
each viewpoint and for each active object separately (as
they have different visual representations, which implies
different visibilities). To obtain a set of characteristic
views for a given objecto, we compute the conditional
probabilities of all objects for a given viewpoint. The
conditional probabilityp(o|v) is equal to the normalized
visibility, i.e., the visibility of all objects per viewpoint
are equal to 1 as described in Section 4.2.

Furthermore we have to compute the marginal proba-
bility p(o) from Equation 1. To computep′(o) we first
compute a dot product between the marginal probabil-
ity vector (p(o0), p(o1), p(o2), ..., p(om−1), p(om))
and the importance distribution vector
(i(o0), i(o1), i(o2), ..., i(om−1), i(om)) where m is
the number of objects ando0 is the background volume.
After the sum in the denominator of Equation 7 is com-
puted, all information is available and we can compute
the viewpoint mutual information for viewpointv.

The viewpoint mutual information is computed for ev-
ery viewpoint and the set of viewpoints with the smallest
mutual informations are selected. These computations
give us good viewpoints for a particular active object. To
compute good viewpoints for another object, we have to
take another set of visibilities where the visual emphasis
is on the respective object. All values necessary for the
viewpoint mutual information can be stored in a set of
2D schemes as shown in Figure 3.

5 Importance-Driven Focusing

The focus of attention requires to display the object of
interest from a characteristic view. How to obtain char-
acteristic viewpoints has been described in the previous
section. Let’s assume we have identified a set of most
characteristic viewpoints per object under the given vi-
sual representations. Now we will describe in detail how
the focus of attention can be used for the visual inspec-
tion of tagged volumetric data.

The general idea is to use the importance distribution as
a controlling parameter for the focus of attention. We
specify a high importance value for the active object
(e.g., 100.0). The other objects and the background are
assigned a low importance value (e.g., 1.0). By selecting
another object to become the active object, the impor-
tance of the previously selected active object is contin-
uously decreasing to the value of inactive objects (1.0)
and the importance of the newly selected active object
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is increasing to the maximal value (100.0). The change
in the importance distribution is reflected on the view-
point location and visual representations. This causes
a smooth and visually pleasing change of focus of at-
tention to the newly selected active object. We describe
these changes in more detail for viewpoints and visual
representations separately.

5.1 Viewpoint Transformation

Initially we set the viewpoint to optimally see the entire
volume without selecting any active object. All impor-
tance values are set to a constant low importance value.
For each object we calculate several good characteristic
viewpoints, as well as several good viewpoints on the
entire volume with no active object selected. All these
viewpoints are located on a bounding sphere around the
volumetric data set. After selecting an active object, its
importance raises and the viewpoint changes to the opti-
mal viewpoint of the active object. As there are several
characteristic per-object viewpoints, we have to define
which one will be selected. To minimize the viewpoint
path, we compute the angle between the current view-
point’s normal vector and the normal vectors of the ob-
ject’s good viewpoints. The viewpoint with the smallest
angle is selected. The position of the viewpoint is al-
ways on the bounding sphere. The change of position
between viewpoints is calculated as a linear transforma-
tion from one position to another. Every position of an
intermediate viewpoint is then normalized to be located
on the bounding sphere surrounding the volume. This
has one favorable implication. The viewpoint change
starts slowly, has the biggest angle difference in the mid-
dle of the viewpoint transformation and slows down be-
fore achieving the new optimal viewpoint. This is de-
picted in Figure 4. The change of viewpoints is param-
eterized by the importance value of the object in focus.
The initial value for this object is low and equal to the
importance value of the other objects. After selecting
the object as active, the importance increases and de-
fines the position of intermediate viewpoints. When an
object’s importance value is equal to the maximal value,
the viewpoint location is at the desired position.

After achieving the object’s characteristic viewpoint, the
user can locally change the viewpoint in order to inspect
the interesting object from several directions. When this
inspection is finished (e.g., mouse button is released),
the importance value of the active object is set to a low
value again. Increasing the importance brings the view-
point back to one of the characteristic views.

We use a slightly different concept for changing view-
points from one active object to another. Instead of a

v1 v2

o1 o2

o3

Figure 4: The viewpoint path is calculated as a differ-
ence between two viewpoint positions. The path is then
normalized onto the bounding sphere, which smooth ac-
celeration and deacceleration in viewpoint change.

direct viewpoint interpolation from the actual viewpoint
to theclosest new active object’s good viewpoint (deter-
mined by the angle difference of viewpoint normal vec-
tors), we consider that the viewpoint path visits a view-
point that gives a general overview on the entire volume.
This provides the context information of all structures so
the user does not lose its orientation within the volume.
From thiscontext view, the viewpoint smoothly changes
to the optimal viewpoint of the newly selected active ob-
ject. This way of presenting objects is in the spirit of the
navigation on large 2D maps proposed by van Wijk and
Nuij [16, 17].
In case of switching the viewpoint from one active ob-
ject to another, the viewpoint change considers three
pre-selected viewpoints: the optimal viewpoint of the
previous active object, the contextual overview, and
the view on the new active object. Instead of the lin-
ear transformation discussed above, the position of the
viewpoint is changing on a Beziér curve defined by
viewpoint positions as three control points [2]. This
means that the contextual view on the whole volume is
not visited exactly, it is approximated by similar views
that also satisfy the goal of providing context. The view-
point position is again normalized to the unit sphere
enclosing the volume. The Beziér curve among three
viewpoints is depicted in Figure 5.
In this case we have to select from the two closest op-
timal viewpoints, i.e., one for the context view and one
for the characteristic view on the new active object. We
select the viewpoint pair with the smallest sum of an-
gles between the viewpoint normals, which means that
the overall path is shortest.
An important consideration in the viewpoint setting with
respect to a visually pleasing focusing, is the orienta-
tion of the viewpointup-vector. In our implementation
we set the viewpoint up-vector to point towards the up-
vector of the volume. The up-vector of the volume is
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o1 o2

o3

vc

v1 v2

Figure 5: Change between two optimal viewpoint of dif-
ferent objects (v1 for o1 andv2 for o2). The contextual
viewpoint vc is nearly visited and is approximated by
the Beziér curve.

defined before the visual inspection for each dataset, to-
gether with all other preprocessing steps: defining ob-
jects by segmentation, visual representations and good
viewpoint estimation. If the viewpoint is located at the
poles, i.e., the viewpoint normal vector is parallel to the
volume top vector, we select another vector to be the
viewpoint up-vector. In our implementation we use the
volume front vector with inverse orientation so we look
at the volume from top-front.

5.2 Visual Representation

A characteristic view is an important part of focus of at-
tention. However without emphasis through visual rep-
resentation, the focus is still not discriminated from the
context objects. Therefore in our framework changes
in importance distribution also change the visual ap-
pearance of objects. A visual representation basically
changes in a similar way as the viewpoint. In this case
we do not need to calculate a path. We select the appro-
priate level of sparseness in the visual representation. In
our implementation we define the visual representation
of inactive and active objects before the visibility calcu-
lation. These visual representations can be linearly in-
terpolated for example. In our focusing pipeline we use
a discontinuous change in the visual representation as
this abrupt change attracts an observer’s attention much
stronger. While the viewpoint moves from the previ-
ous active selection towards thecontext view (the im-
portance of the previous active object is decreasing), the
previous active object is still visually emphasized. After
reaching the context viewpoint, the visual representation
of the previously active object is suppressed and the new
active object is visually emphasized (the importance of
the newly selected active object is increasing).

In addition to changes in the visual representation, we
incorporate cut-away views. The level ofghosting in
front of the interesting feature is also driven by impor-
tance changes. In this case we do not employ abrupt
changes, but the level of ghosting changes smoothly.
This means the ghosting level is increasing with de-
creasing importance of the previously active object and
is decreasing with increasing importance of the new
active object. When the optimal view is reached, the
ghosting level is maximal, i.e., features in front of the
active object are completely transparent. We include ad-
ditional information into this static view by blending-in
additional annotations.

6 Results

We have integrated the focus of attention functionality
as a plugin into VolumeShop [4]. This system allows
easy prototyping with the possibility of using a lot of
existing functionality. We have extended the informa-
tion about the dataset, which is stored in an XML file,
by information on the volume up-vector and on the vol-
ume front-vector. After the viewpoint estimation, for
each object a set of characteristic viewpoints is saved
into the XML structure as well as theglobally charac-
teristic views when no specific object is in focus. Vis-
ibility computation for each object is the most time-
consuming part of the pipeline and takes about few min-
utes, because the ray-casting has to be performed for a
large number of viewpoints. As this is a pre-processing
step that is considerably shorter than object specifica-
tion by segmentation or setting-up proper visual repre-
sentations, this is not a real issue. Interaction is done
on-the-fly and additional viewpoint location computa-
tions as well as importance-driven modifications of vi-
sual representations do not take any noticeable time and
the performance is equal to standard multi-volume ren-
dering implemented in VolumeShop [4].

Focus of attention has been applied on three different
data sets. The human hand and torso (Figures 1 and 2)
show objects that are inside the data set. In this case
the visibility computation used cut-away views to iden-
tify the best visibility. In case of the stag beetle data
set (Figure 6), only outer parts have been selected so the
option for cut-away visibility calculation was not neces-
sary. In this figure sample images have been taken from
re-focusing from thorax object to the legs. Between the
fourth and fifth image the contextual viewpoint has been
reached and the focus switched to legs.

The concept of importance-driven focusing
is best demonstrated by the accompanying
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Figure 6: Stag beetle data set: re-focusing from thorax object to the legs).

video. Further information is available at
http://www.cg.tuwien.ac.at/research/vis/exvisation/idf/.

7 Summary and Conclusions

In this paper we have proposed the concept for
importance-driven focus of attention. We have dis-
cussed the necessary pre-processing steps before a vi-
sual inspection puts the focus of attention on interest-
ing objects. One of these steps is localization of view-
points that show characteristics of an object in the best
way. We use a new method for viewpoint selection for
volume data using viewpoint mutual information that
works very good for segmented volumetric data classi-
fied by importance.

We have shown possibilities how to realize focus of at-
tention for a visual inspection of volumetric data with
added information such as varying visual representa-
tions, optimal viewpoints for objects and the entire vol-
ume, up-vector of the volume, and auxillary textual in-
formation.

We have discussed aspects of a visually pleasing re-
focusing from one object of interest to another. This
includes the selection of viewpoints, design of a path for
the viewpoint and also changes in the visual representa-
tion. Browsing through pre-selected structures gives a
good overview on the information content of the under-
lying data.
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Importance-driven feature enhancement in volume
visualization.IEEE Transactions on Visualization
and Computer Graphics, 11(4):408–418, 2005.

[24] Volume data set repository, Vi-
enna University of Technology,
http://www.cg.tuwien.ac.at/research/vis/datasets/,
2006.

Appendix

Information-Theoretic Measures:
Let X be a finite set, letX be a random variable tak-
ing valuesx in X with distribution p(x) = Pr[X = x].
Likewise, letY be a random variable taking valuesy in
Y . TheShannon entropy H(X) of a random variableX
is defined by

H(X) = − ∑
x∈X

p(x) logp(x). (8)

The Shannon entropyH(X), also denoted byH(p),
measures the average uncertainty of random variableX .
All logarithms are base 2 and entropy is expressed in
bits. The convention that 0 log0= 0 is used. Thecondi-
tional entropy is defined by

H(Y |X) = − ∑
x∈X

p(x) ∑
y∈Y

p(y|x) logp(y|x), (9)

wherep(y|x) = Pr[Y = y|X = x] is the conditional prob-
ability. The conditional entropyH(Y |X) measures the
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average uncertainty associated withY if we know the
outcome ofX . In general,H(Y |X) 6= H(X |Y ), and
H(X) ≥ H(X |Y ) ≥ 0.
Themutual information betweenX andY is defined by

I(X ,Y ) = H(X)−H(X |Y) = H(Y )−H(Y |X)

= ∑
x∈X

p(x) ∑
y∈Y

p(y|x) log
p(y|x)
p(y)

. (10)

The mutual informationI(X ,Y ) is a measure of the
shared information betweenX andY . It can be seen
thatI(X ,Y ) = I(Y,X) ≥ 0.
The relative entropy or Kullback-Leibler distance be-
tween two probability distributionsp andq is defined
as

KL(p|q) = ∑
x∈X

p(x) log
p(x)
q(x)

, (11)

where, from continuity, we use the convention that
0 log0= 0, p(x) log p(x)

0 = ∞ if p(x) > 0 and 0log0
0 = 0.

The relative entropyKL(p|q) is a measure of the inef-
ficiency of assuming that the distribution isq when the
true distribution isp.
The Jensen-Shannon divergence betweenn probabil-
ity distributionsp1, p2, . . . , pn, with their corresponding
weightsπ1,π2, . . . ,πn fulfilling ∑n

i=1πi = 1, is defined
by

JS(p1, p2, . . . , pn) = H(
n

∑
i=1

πipi)−
n

∑
i=1

πiH(pi). (12)

The Jensen-Shannon divergence measures howfar are
the probabilitiespi from their mixture∑n

i=1 πi pi. It
equals zero if and only if all thepi are equal.

Information-Theoretic Viewpoint Quality Mea-
sures for Polygonal Data:
Viewpoint entropy measure based on Shannon entropy
(Equation 8) is defined as

Hv = −

N f

∑
i=0

ai

at
log

ai

at
, (13)

whereN f is the number of polygons of the scene,ai is
the projected area of polygoni over the sphere of direc-
tions centered at viewpointv, a0 represents the projected

area of background in open scenes, andat = ∑
N f
i=0ai is

the total area of the sphere. The maximum entropy is
obtained when a certain viewpoint can see all the poly-
gons with the same projected areaai.
Viewpoint measure based on Kullback-Leibler distance
(Equation 11) is defined by

KLv =

N f

∑
i=1

ai

at
log

ai
at
Ai
AT

, (14)

whereai is the projected area of polygoni, at = ∑
N f
i=1 ai,

Ai is the actual area of polygoni andAT = ∑
N f
i=1 Ai is the

total area of the scene or object.
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