
Documentation - Submission Final Game - Globby Warrior

Benedikt Weber - 01627753

Maria Mußner - 51870828

Repository: https://github.com/mmaria495/cgue21-GlobbyWarrior.git

Project description

The idea of our game is that the treasure hunter Globby needs to survive a dangerous chamber without getting

hit by bouncing spheres. To avoid getting hit, the player is able to move around and jump in the scene (W, A, S,

D, SPACE). Additionally the camera view can be changed by clicking and holding the left mouse. To quit the

game press ESC or close the window. Win and lose conditions are integrated as follows: to win the game the

player has to avoid the spheres until the time has run out. The countdown can be found at the upper left

corner of the window. If the player gets hit by a sphere, the game is lost.

Our scene models (*.obj files) are loaded via the object loader assimp, this includes the textures of the models.

Hierarchical structure of classes

The Game class handles all states of the Game including “menu, started, lost, won”. Depending on the current

status the scene is rendered or not. Further, the text output of the window is generated (e.g. “You win!” or

“59” for the timer - using the TextRenderer class). The Game object receives the models to be drawn from the

Level object. In the Level class, the scene objects (collision objects, player and map) are set.

Additionally, we generate a PhysicsWorld object in the Level class, which is passed to every object of the scene

in particular CollisionObjects, Player and Map. These scene objects generate rigidbodies for collision detection.

The collision of Globby with one of the Spheres is checked in the PhysicsWorld class and passed to the

https://github.com/mmaria495/cgue21-GlobbyWarrior.git

BulletObject struct of Level.cpp. Moreover, onUpdate() in Level.cpp manages all object actions (movement,

spawning, drawing, movement…) of the scene. The actual rendering-call is implemented in the Mesh class.

For the physical properties of the game, the library Bullet was imported into the project. The different

parameters and attributes (position, gravity, restitution, velocity,...) of the scene objects are stored in the

according classes. To provide unpredicted conditions for our game, we are using a self implemented

randomizer in the RandomGenerator class for spawning spheres.

For the scene lighting a directional light and a point light source are implemented. The lights are set in the

Game class.

References and libraries:

Modelloader:

● assimp: https://www.assimp.org/

● assimp tutorial: https://learnopengl.com/Model-Loading/Assimp

Text Rendering:

● freetype: https://sourceforge.net/projects/freetype/files/

● freetype tutorial: https://learnopengl.com/In-Practice/Text-Rendering

Bullet:

● imported as described in “Physx & Bullet Tutorials”

● bullet tutorials: https://tuwel.tuwien.ac.at/mod/book/view.php?id=1085446&chapterid=3850

several youtube videos

● collision detection: https://andysomogyi.github.io/mechanica/bullet.html

Effects:

Standard output (Procedural Texture: on, Shadow Map: active, Simple Normal Map: off)

● Procedural Texture (8 Points)

○ http://learnwebgl.brown37.net/10_surface_properties/texture_mapping_procedural.html

In the above tutorial procedural textures for WebGL are described. We modified these for our shaders

in OpenGL. Additionally we adjusted the colors and the noise, so that the texture fits our scene. We

https://www.assimp.org/
https://learnopengl.com/Model-Loading/Assimp
https://sourceforge.net/projects/freetype/files/
https://learnopengl.com/In-Practice/Text-Rendering
https://tuwel.tuwien.ac.at/mod/book/view.php?id=1085446&chapterid=3850
https://andysomogyi.github.io/mechanica/bullet.html
http://learnwebgl.brown37.net/10_surface_properties/texture_mapping_procedural.html

use a procedural texture for our ground plane (see screenshot above). The implementation can be

found in assets/shader/ground.vert and assets/shader/ground.frag.

● Shadow Map with PCF (16 Points)

○ https://www.youtube.com/watch?v=9g-4aJhCnyY

○ https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping

○ https://github.com/VictorGordan/opengl-tutorials/tree/main/YoutubeOpenGL%2025%20-%2

0Shadow%20Maps%20(Directional%20Lights)

To add shadows to our scene we first generate the shadow map from the directional light perspective.

Therefore we implemented a ShadowMap (ShadowMap.h and ShadowMap.cpp) class which is

responsible for the respective render calls as well as for setting up the texture properties. To generate

a shadow map we also had to create 2 additional shaders called assets/shader/shadow.frag and

assets/shader/shadow.vert.

Secondly we can render the scene and add the computed shadow texture to the shadow calculations

of the other shaders: texture.frag, texture.vert, ground.frag and ground.vert. There the shadows are

added to the according fragment position. To avoid shadow acne a pcf function was applied.

● Blobby Object using Marching Cubes (16 Points)

The idea was to generate a voxel grid describing the whole scene and calculating the density values of

Meta Balls based on this field functions:

𝐹(𝑥) =
1

𝑛

∑ 𝑓
𝑖
(||𝑥 − 𝑐

𝑖
||) 𝑓

𝑖
(𝑟

𝑖
) = 𝑎(1 − 4𝑟6

9𝑏6 + 17𝑟4

9𝑏4 − 22𝑟2

9𝑏2)

(x = grid point, c = centroid/center, r = distance, a = amplitude/max influence, b = blobbiness/range of influence)

References of the functions can be found here:

https://people.cs.clemson.edu/~dhouse/courses/881/notes/metaballs/index.html

http://paulbourke.net/geometry/implicitsurf/

Instead of the Meta Ball calculation of Paul Bourke’s article, we are using the Soft Object function to

get a slight advantage considering computational costs. In the following, we are using Metaball as a

more generic term for Blobby/Soft Objects.

Implementation description (unfortunately we were not able to finish our Marching Cube

implementation - further explanation in last paragraph):

With regard to our map size the grid boundaries are set to min(-20,0,20) - max(20,20,20). We also set

a granularity variable to 8 which causes step size of 0.125 and gives us an overall cube number of

.(40 * 8 − 1)2 * (20 * 8 − 1) ~ 16 180 000

To decrease the amount of cubes we have to march through per render call we integrated bounding

boxes. We set a maxRadius to 2 (Metaball radius was meant to be 0.5 resulting in approximately 512

cubes per blobby object) which ends up in max 512*4 cubes per object. This maxRadius was set static

just for testing computational cost. The actual bounding boxes would have been dynamic: 1) calculate

the distance of 2 Metaballs where merging starts to take place (since all Metaballs have the same size

this could be done in the constructor of the grid) 2) recursively calculate the distance of the centroids

of the Metaballs and 3) for those with distance < mergeDistance add mergeDistance/2 to maxRadius

and ignore the second Metaball during render call 4) else set maxRadius to mergeDistance/2…
In combination with some additional efficiency improvements (OpenMP calls, memory management

before calling render loop, only marching through neighbors of intersected cubes,...) we were hoping

for an efficient (60fps) implementation on the CPU. Current tests of the density calculation of the

scalar field within the generated bounding boxes of 8 Metaballs prove us wrong resulting in 20fps

(scalar field calculation only → without rendering of meshes).

https://www.youtube.com/watch?v=9g-4aJhCnyY
https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping
https://github.com/VictorGordan/opengl-tutorials/tree/main/YoutubeOpenGL%2025%20-%20Shadow%20Maps%20(Directional%20Lights)
https://github.com/VictorGordan/opengl-tutorials/tree/main/YoutubeOpenGL%2025%20-%20Shadow%20Maps%20(Directional%20Lights)
https://people.cs.clemson.edu/~dhouse/courses/881/notes/metaballs/index.html
http://paulbourke.net/geometry/implicitsurf/

Further readings regarding Marching Cubes algorithm:

http://paulbourke.net/geometry/polygonise/

http://users.polytech.unice.fr/~lingrand/MarchingCubes/accueil.html

http://docplayer.org/49306118-Marching-cubes-erstellung-von-polygonmodellen-aus-voxelgittern.ht

ml

https://mshgrid.com/2020/02/03/implementing-your-own-metaballs-and-meta-objects/

Code examples:

https://github.com/dgr582/article-marching-cubes

http://www.paulsprojects.net/metaballs2/metaballs2.html

(The current implementation can be found on the MarchingCubes branch. Note that we are currently also facing

some issues initializing the grid. The grid might even be too big for the heap we set up - or we did something

wrong declaring the heap memory.)

So, we started investigating GPU implementations, but due to time limitations and also a lack of code

examples had to pick Simple Normal Mapping instead. Readings for GPU implementation:

https://journal-bcs.springeropen.com/articles/10.1007/s13173-012-0097-z#:~:text=Marching%20cub

es%20is%20one%20of,of%20auxiliary%20spatial%20data%20structures

http://s3.amazonaws.com/arena-attachments/2340738/f399ec0b3980a790f3752a8897dba9a8.pdf?1

529596185

https://core.ac.uk/download/pdf/48548176.pdf

https://learnopengl.com/Advanced-OpenGL/Geometry-Shader

● Simple Normal Mapping (4 Points)

Scene with activated normal mapping (activated via right mouse)

○ https://learnopengl.com/Advanced-Lighting/Normal-Mapping

○ https://learnopengl.com/Lighting/Multiple-lights

For simple normal mapping we integrated one additional point light to the scene. This point light is

placed to the opposite wall of Globby. The x coordinates of the character and the point light are

matching, so the light moves according to Globby. Simple normal mapping can be turned on/off with a

right mouse click. Per default it is turned off but you can also check the current state on the upper

right corner. To add simple normal mapping to our game we had to adjust our assimp Model loader

and duplicated texture.vert/frag. In the new shaders normal.vert/frage we added a sampler for the

normal map and ignored all per mesh normals previously loaded with assimp.

http://paulbourke.net/geometry/polygonise/
http://users.polytech.unice.fr/~lingrand/MarchingCubes/accueil.html
http://docplayer.org/49306118-Marching-cubes-erstellung-von-polygonmodellen-aus-voxelgittern.html
http://docplayer.org/49306118-Marching-cubes-erstellung-von-polygonmodellen-aus-voxelgittern.html
https://mshgrid.com/2020/02/03/implementing-your-own-metaballs-and-meta-objects/
https://github.com/dgr582/article-marching-cubes
http://www.paulsprojects.net/metaballs2/metaballs2.html
https://journal-bcs.springeropen.com/articles/10.1007/s13173-012-0097-z#:~:text=Marching%20cubes%20is%20one%20of,of%20auxiliary%20spatial%20data%20structures
https://journal-bcs.springeropen.com/articles/10.1007/s13173-012-0097-z#:~:text=Marching%20cubes%20is%20one%20of,of%20auxiliary%20spatial%20data%20structures
http://s3.amazonaws.com/arena-attachments/2340738/f399ec0b3980a790f3752a8897dba9a8.pdf?1529596185
http://s3.amazonaws.com/arena-attachments/2340738/f399ec0b3980a790f3752a8897dba9a8.pdf?1529596185
https://core.ac.uk/download/pdf/48548176.pdf
https://learnopengl.com/Advanced-OpenGL/Geometry-Shader
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://learnopengl.com/Lighting/Multiple-lights

