Insomnia

Markus Lipp (0125260/932)
Stefan Reinalter (0225790/932)
Students of Computer Science
Vienna University of Technology
markus-lipp@gmx.at
tivoloQcg.tuwien.ac.at

1 Introduction

Insomnia is a graphics demo programmed for
the lecture Real-Time Rendering in winter term
2005/2006. This document describes various as-
pects of Insomnia. It is structured the follow-
ing way: Section 2 will deal with known techni-
cal problems and solutions. Section 3 describes
user controls available during the demo. Section
4 provides system requirements. Section 5 de-
scribes how to configure Insomnia for your needs.
Section 6 provides a detailed description of all ef-
fects. Finally, Section 7 provides a list off the
effects used in the different demo parts, followed
by references.

2 Known Problems

If your monitor does not support 85hz (for exam-
ple a TFT monitor) the refresh rate of the demo
has to be lowered. Look at section 5 for instruc-
tions.

3 Controls

The following keys are available in all scenes ex-
cept intro:

f: Freefly mode, directly control camera
p: Pause animations of camera and objects

When in freefly mode, the following controls are
available

w,a,s,d: Movement

left mousebutton + drag: Look around

All asteroid scenes feature exposure adjustments:
up, down: Change exposure

left, right: Change gain

Asteroid scenes 2-6 additionally have the follow-
ing really nice feature:

right mousebutton + drag: Change daytime

You can jump between demo scenes intro,
cathedral and statue using F1 to F3. When you
press F4 the first asteroid scene is loaded. Now
it is possible to jump from asteroid scene 1 to 7
using F1-F7. Due to internal reloading it is not
possible to jump from asteroid scenes backward
to scenes 1-3. There is also a known bug: When
you jump from asteroid scene 1 or 7 to scene 5
(raytraced fun) the water appears too dark.

If you are really curious on how a realtime-
raytraced caustic texture looks like, you can press
F12 in the raytraced water scene (F5) to see this
texture.

4 System Requirements

Graphics Card: Geforce6600 or later. Note that
this demo does not work on current (January
2006) ATTI cards, as they are not shader model 3.0
compatible. Vertex texture fetch is required for
the raytraced water. Any CPU above 1600MHz

should do. At least 512MB of RAM are rec-
ommended. The demo was only tested on Win-
dowsXP.

5 Configuration

You can change file config.cfg to suit your
needs. However you should be very careful, as
there is no sanity check on those settings. Ridicu-
lous settings may even damage your computer.
When the file is not present, or is not well formed,
standard settings (1024x768,85Hz fullscreen) are
used.

line 1: Horizontal resolution
line 2: Vertical resolution
line 3: Refresh rate

line 4: 1=fullscreen, 0=windowed

6 Effects

6.1 Ambient Occlusion

By precomputing the amount of incident light
coming from the hemisphere when looking in the
direction of a vertex’s normal, shading appears
to be much more realistic. The ambient occlu-
sion preprocessor uses the GPU to calculate the
integral of several rays shot from the hemisphere
towards the model. By using occlusion queries we
can quickly determine if a ray is blocked or not.

6.2 Precomputed Radiance Trans-
fer

As Precomputed Radiance Transfer is a rather
large subject on its own, we can’t go into details
about the implementation. However, the PRT
implementation in this demo is based on Stefan
Reinalter’s Bachelor’s Thesis about PRT. Math-
ematical explanations as well as implementation
details can be found in his thesis.

6.3 Penumbra-Based Soft Shadows

Basically, the soft-shadows are implemented by
using a Percentage Closer Filter with a variable
filter kernel. In addition, the occluder for ev-
ery pixel is searched and an approximation of
the penumbra size is computed. Using this algo-
rithm, area lights can be simulated because their
varying penumbra will make the shadows appear
softer the bigger the light source is. Taking into
account the penumbra size, the soft-shadows al-
gorithm blurs the shadows by averaging several
shadow map lookups based on the current penum-
bra.

6.4 True
Blur

Our motion blur is based on the actual objects’
velocity. Every frame, the velocity of every
pixel in post-perspective space gets written into
a floating-point render target. Because we need
the velocity of the current frame and the velocity
of the last frame, two render targets are ping-
ponged before rendering. In the fragment shader
for the motion blur, the image gets blurred ac-
cording to the velocity by taking multiple taps in
the according direction. Additionally, objects are
stretched based on their velocity by interpolating
between the last frame’s position and the current
position in the vertex shader. This is an addition
to the original algorithm and is taken from GDC
2003.

Object-Based Motion

6.5 Normal Mapping

We implemented Tangent Space Normal Map-
ping. The normals used for lighting are perturbed
by looking up normals from a texture.

6.6 Parallax Mapping

This effect is used in addition to Normal Map-
ping and makes surfaces appear to have height -
it’s a kind of faked displacement mapping. Our
implementation is based on the original paper by
Terry Welsh.

6.7 GPU-Fire

This effect is actually a GPU-implementation of
an old, popular DOS-demo effect. The font gets
rendered into a frame buffer where every pixel of
the font gets a random alpha value between 200
and 255. The fragment shader then averages four
pixels each, and subtracts a predefined value for
every pixel so that the flames are getting ”colder”.
The averaging is slightly offset to make the flames
rise to the top of the screen. The last instruction
in the pixel shader looks up a RGB-value for the
current color index stored in the alpha channel
of the render target. By using a predefined fire-
palette the impression of flames can be faked.

6.8 Bump-Reflection Mapping

This effect allows perturbed reflections using a
cubemap, and is described in the Cg Manual [2].
Therefore a transformation from tangent space to
world space, as well as a eye to vertex vector in
world space are supplied by the vertex shader to
the fragment shader. In the fragment shader a
tangent space normalmap is fetched. The fetched
normal is transformed to world space using the

Figure 1: Precomputed Radiance Transfer in combination with High-Dynamic Range Rendering.

supplied transformation. This normal and the
eye-vector are then used to calculate a reflection
vector and fetch the cubemap.

Some extensions to the method described in
the Cg Manual [2] where implemented: At first,
the effect is explicitly programmed using standard
library functions instead of reflect_eye_dp3x3.
This allows the following flexibility: There are
two cubemaps fetched instead of one, a ” chrome”
cubemap providing an ambient term, and a high
dynamic range cubemap. The first cubemap is
necessary to provide the metallic look. Another
extension is to calculate the luminance of the high
dynamic range cubemap, this luminance is then
multiplied with the metal color. This allows to
account for the property of metal to only reflect
in its own color.

Figure 7 shows all these effects in action.

6.9 Water

Some effects need to be combined in order to cre-
ate a realistic looking water. This section de-
scribes the effects that are implemented in In-
somnia.

6.9.1 Water Normal Vectors

The first and most basic concept is to calcu-
late normal vectors for every pixel on the water-
surface that create visually convincing perturba-
tions. We have chosen the method proposed in

[3]. Therefore one normal map is fetched multi-
ple times with different texture coordinates. The
used texture-coordinates are moved by a small
amount in every frame. All fetched normals are
then combined. This simple method creates nor-
mals for water-surfaces without visible repeti-
tions.

6.9.2 Fresnel Terms

Fresnel terms describe the percentage of light re-
fracted and reflected on material borders depend-
ing on the refractive indices and the incident an-
gle of the light. Refer to [9] for a definition of the
terms. To make those terms applicable to real-
time graphics, a lookup texture is precalculated.
This texture allows to determine the coefficients
with a simple texture fetch, using the incident
angle of the light as texture coordinate. Another
optimization implemented in our demo is to pull
out the calculation of the incident angle into the
texture, as described in [9]: Now the texture is
fetched with the dot-product of the incident vec-
tor and the normal as texture coordinate. The
texture contains the arcus cosinus function to cal-
culate the incident angle from the dot-product.

6.9.3 Planar Reflections, Fake Perturba-
tions

Planar Reflections are achieved by rendering the
scene mirrored around the water plane [4] into a

Figure 2: Note the indirect lighting achieved with Precomputed Radiance Transfer.

texture. This texture is now fetched when render-
ing the water surface using projective texturing.
Fake perturbation of the reflection is obtained by
offsetting the calculated texture coordinates with
an arbitrary scaled version of the water surface
normal Vector.

As mentioned in [3] one important step dur-
ing perturbation is masking to prevent artifacts.
Therefore heuristics have to be used to decide
whether an perturbed texture coordinate is valid.
The following heuristic is implemented in our
demo: During rendering of the mirrored reflec-
tion map, all areas that are under the water plane
are marked with negative alpha values. Those ar-
eas must not be used for reflections, and are thus
masked out.

6.9.4 Fake Refractions

This effect works very similar to fake perturbed
reflections. However this time the original, non-
mirrored, scene is used as refraction map. There-
fore the scene is rendered normally at first. Then
the offscreenbuffer is copied to the refraction tex-
ture. This texture is then used during water-
rendering. To get fake refractions, the texture
coordinates are perturbed similar to fake reflec-
tions.

Again, masking is important. This time we
have to mask out objects that are in front of the
water plane, as seen from the camera. This is
achieved by comparing the distance to the wa-

ter plane with the distance stored in the alpha-
channel of the refraction-texture. If the first dis-
tance is larger, no perturbation is used. Addi-
tionally the texture coordinates are clamped to
the border.

Figure 8 shows all effects described thus far
in action.

6.9.5 Raytraced Refractions

For even more convincing refractions
realtime raytracing is used. Please
refer to the accompaining paper

"Phys_Refractions_shader_documentation.pdf"

by Markus Lipp for a description. Note that
this paper was not specifically written for this
demo, it was written in summer-term 2005 for
the lecture ” Virtual Reality”.

Additionally to the method described in the
mentioned paper, one iteration of sphere tracing
[6] was added to the shader: This allows for a
much faster convergence.

6.9.6 Raytraced Caustics

The main idea is the same as for raytraced refrac-
tions. The idea was extended by Markus Lipp in
the following way: The water plane is rendered in
an orthogonal view from above. For every pixel of
the water plane, the pixel shader now calculates
the refracted ray direction from the lightsource.
This ray is now traced to the ground. When the

Figure 3: Soft Shadows, Normal Mapping and Parallax Mapping on the floor.

ground is hit, the position of the hit is returned
by the fragment shader, thus generating a texture
containing hits of light rays.

The position texture is now used in an ad-
ditional pass. Therefore a displaylist containing
as many quads as there are pixels in the position
texture is rendered. Every quad contains texture
coordinates pointing to distinct coordinates in the
positions texture. A vertex shader now fetches
the corresponding position for every quad using
vertex texture fetches. Now the shader moves the
quad to the position of the ray hit. Thus the quad
is rendered at the position of the hit. Now a tex-
ture containing a gauss-bell is laid on every quad.
When we now use blending during rendering we
get an approximation to photon mapping, and
thus get raytraced caustics in real time.

This caustic texture is now also fetched dur-
ing the rendering of the water surface using ray-
traced refractions.

Figure 9 shows both raytraced caustics and
refractions in action.

6.9.7 Raytraced Underwater Shadows

This is not really a effect on its own. It is a side-
product of raytraced caustics: As we trace the
rays we automatically get shadows under water
for regions not visible for refracted light rays.

6.10 High Dynamic Range Render-
ing

6.10.1 Float Precision Everywhere: Tex-
tures, Effects, Buffers

When talking about High Dynamic Range Ren-
dering (HDR) it is important to realize that this
effect is not restricted on postprocessing-effects
like bloom and tonemapping. In fact, those ef-
fects only make sense, when the image presented
in them actually contains a high dynamic range
scene. To achieve this high dynamic range in
the rendered scene, multiple measurements where
taken in Insomnia for the Asteroid scenes: At
first, a high dynamic range cubemap containing
stars was designed. Spherical harmonics coeffi-
cients where extracted from this cubemap. This
allows a high dynamic range rendering of ob-
jects, when additionally PRT is employed. Fur-
ther some objects, like lava, have a high dynamic
range texture applied to them.

However, this is still not sufficient: Ev-
ery material-effect and postprocessing effect (for
the asteroid-scenes) creates high precision output
from high precision input. This requires floating
point offscreen buffers to be used thorough the
pipeline. Only by providing high precision thor-
ough the pipeline, bloom and tonemapping make
sense. Let us now look at those two effects.

Figure 4: Per-Pixel Lighting with colored lightsources.

6.10.2 Bloom

The bloom effect itself is straightforward to im-
plement. At first the current offscreen-buffer
is downsampled by rendering it on a full-screen
quad into a low resolution buffer. Then we im-
plemented a two-pass bloom: In the first pass,
the picture is convoluted with a vertical gaussian
blur kernel, in the second pass the output from
the first pass is convoluted with a horizontal blur
kernel. The blur kernel itself is a fragment shader
with coefficients and texel offsets compiled as lit-
eral constants. It consists of a simple loop fetch-
ing the current position with texel offsets and
then multiplying them with the coefficients.

After the blurring, the blurred low-resolution
texture is added to the high-resolution offscreen
buffer. It is important to note that neither the
values of the low-resolution nor the values of the
high-resolution textures are clamped in any way:
The blurred texture is not clamped to contain
only bright parts. This is not necessary, as real
high dynamic input images are used, therefore the
blurring automatically gets more pronounced for
bright areas near to dark areas.

6.10.3 Exponential Tonemapping

Tonemapping is the process of creating a low-
dynamic range image for display-devices from a
high dynamic image. Refer to [1] for a good
overview. We have chosen exponential tonemap-
ping for its simplicity. Therefore, after the

combination of the high-resolution scene with
the blurred low-resolution scene, the luminance
ls is calculated. According to the exponential
tonemapping formula a tonemapped luminance ;
is calculated. By multiplying the high dynamic
range color with I/l we get our tonemapped
color. We did not implement time-dependency
or automatic exposure adjustment.

6.11 Depth of Field

Our implementation follows an proposal by ATI
[5]. We have chosen this method, as it allows full
flexibility for specifying a depth-;blurriness func-
tion via a texture map, without additional over-
head for the unsharp/sharp/unsharp scenario.
Further no leaking artifacts occur, as every fil-
ter tap is checked whether it would contribute to
leaking.

6.12 Polygonal Volumetric Fog

This effect is described in [8]. Our implementa-
tion uses the path for shader model 2.0 cards, as
proposed in [8]. To gain more control on the look
of the fog, a small addition was implemented: The
lookup texture also contains opacity values in the
alpha channel. This value is used to linearly inter-
polate between the fog color and the scene color.
Thus we can not only control the color of the fog,
but also the opacity using one lookup texture.
To generate the waves of the fog seen in the

Figure 5: Object-Based Motion Blur. Note that every object gets a different amount of blurring.

demo, multiple sinus waves are overlaid in the
vertex-shader to offset the vertices along their
normal vectors.

Figure 12 shows our implementation of
polygonal volumetric fog in action.

6.13 Heat Haze

This effect is described in [7]. However one ma-
jor difference was implemented by Markus Lipp
into our implementation: The amount of pertur-
bation depends on the way-length a ray travels
through a special heat haze mesh. The main idea
for this empirical perturbation calculation is that
the amount of perturbation is proportional to the
way-length a ray travels through medium with
another refraction index. The way-length is cal-
culated using the same method as in polygonal
volumetric fog.

This perturbation estimation method has
major advantages compared to the approach for
determining perturbations in the original presen-
tation: At first, it is possible to enter and leave
heat-haze zones with smooth transitions. Fur-
ther it is possible to define arbitrary heat-haze
meshes without worrying about intersections with
the scene geometry, as these intersections are au-
tomatically dealt with using the polygonal volu-
metric fog algorithm. This creates a high flexibil-
ity for artists when defining heat-haze zones.

7 Effects Index

This section provides a mapping from scenes to
used effects.

e Intro

— True Object-Based Motion Blur
— Faked Fire

e Cathedral

— Precomputed Radiance Transfer
— Normal Mapping
— Parallax Mapping

High Dynamic Range Rendering:
Bloom, Exponential Tonemapping

e Statue

— Penumbra-Based Soft Shadows
— Normal Mapping
— Parallax Mapping

e Asteroid Scene 1 High Hopes

— Precomputed Radiance Transfer (As-
teroid)

— Bump-Reflection Mapping (Satellite)

— High Dynamic Range Rendering:
Bloom, Exponential Tonemapping

e Asteroid Scene 2 Cold Welcome

Figure 6: Fire simulated on the GPU.

Polygonal Volumetric Fog

Precomputed Radiance Transfer (As-
teroid)

Normal Mapping (Asteroid)
Parallax Mapping (Asteroid)
Bump-Reflection Mapping (Satellite)

High Dynamic Range Rendering: Ex-
ponential Tonemapping

e Asteroid Scene 3 Isolated

Depth Of Field

Precomputed Radiance Transfer (As-
teroid)

Normal Mapping (Asteroid)
Parallax Mapping (Asteroid)
Bump-Reflection Mapping (Satellite)

High Dynamic Range Rendering: Ex-
ponential Tonemapping

e Asteroid Scene 4 Pure Joy

Water

Fresnel Terms
Planar Reflections
Fake Refractions

Precomputed Radiance Transfer (As-
teroid)

Normal Mapping (Asteroid)

Parallax Mapping (Asteroid)
Bump-Reflection Mapping (Satellite)

High Dynamic Range Rendering: Ex-
ponential Tonemapping

e Asteroid Scene 5 Raytraced Fun

Water

Fresnel Terms

Planar Reflections

Raytraced Refractions
Raytraced Caustics

Raytraced Underwater Shadows

Precomputed Radiance Transfer (As-
teroid)

Normal Mapping (Asteroid)
Parallax Mapping (Asteroid)

High Dynamic Range Rendering: Ex-
ponential Tonemapping

e Asteroid Scene 6 Hot Parting

Heat Haze

Precomputed Radiance Transfer (As-
teroid)

Normal Mapping (Asteroid)
Parallax Mapping (Asteroid)
Bump-Reflection Mapping (Satellite)

Figure 7: Bump-Reflection Mapping on the satellite. Note that the sun is reflected on the metal body,
while the solar collectors reflect the blue nebula behind the camera. Additionally the metal only reflects
in its own color, while the plastic solar collectors retain some of the color information from the cubemap.

— High Dynamic Range Rendering:
Bloom, Exponential Tonemapping

o Credits

— Precomputed Radiance Transfer (As-
teroid)

— High Dynamic Range Rendering:
Bloom, Exponential Tonemapping

8 External Assets

Some of the art asset was taken from free sources.
However, it may be possible that some parts of
the art asset are from a non-free sources by acci-
dent. If you find such material belonging to you,
please let us know and we will remove it from the
demo.

Here is an index of external materials:

Satelite: The base mesh
is from baumgarten enterprises,
http://www.baument.com/archives.html,
modified and textured by Markus Lipp.

Lave textures: From Thorsten Willert,
http://www.the3dstudio.com/, it was modified
and normal-mapped by Markus Lipp.

The Heat-Haze perturbation texture is taken
out of a presentation from ATI technologies.

Sand: From a free source from the web, we
do not remeber where it originated.

The HDR textures in cathedeal demo are
from Paul Debevec, debevec.org.

References

[1] Alessandro Artusi. Real Time Tone Mapping.
PhD thesis, TU Vienna University of Tech-
nology, April 2004.

[2] NVidia Corporation. Cg Toolkit - Users Man-
ual, chapter Bump Reflection Mapping, pages
196-199. September 2005.

[3] Tiago Sousa (Crytek). GPU Gems 2, chapter
Generic Refraction Simulatio. March 2005.

[4] M. Pauline Baker Donald Hearn. Computer
graphics (2nd ed.): C version. Prentice-Hall,
Inc., 1996.

[5] John Isidoro Guennadi Riguer, Na-
talya Tatarchuk. Shaderz2: Shader Pro-
gramming Tips & Tricks, chapter Real-Time
Depth of Field Simulation. Wordware
Publishing, 2003.

[6] J. C. Hart. Sphere tracing: A geomet-
ric method for the antialiased ray tracing
of implicit surfaces. The Visual Computer,
12(10):527-545, 1996.

Figure 8: Water scene showing fresnel terms, perturbed planar reflections and fake refractions. Note that
due to the fresnel terms the reflections far away are more pronounced as the incident angle is smaller.

[7] Chris Oat. Real-time 3d scene post-
processing, heat and haze effects. Technical
report, ATT Research, 2004.

[8] NVidia SDK. Fog polygon volumes. Technical
report, NVIDIA, Santa Clara, CA, 2004.

[9] Matthias Wloka. Fresnel reflection. Technical
report, NVIDIA, Santa Clara, CA, 2004.

Figure 9: Water scene showing fresnel terms, perturbed planar reflections, raytraced refractions and
raytraced caustics.

Figure 10: Scene showing bloom and exponential tonemapping. Note that the high dynamic range of the
scene is achieved using a floating-point cubemap, high precision reflections on the satellite and PRT on
the asteroid.

Figure 11: Scene showing Depth of Field. Note that both near and far away objects get blurred, only
a small depth area is in focus. Additionally there is no leaking from the sharp satellite into the blurred
background.

Figure 12: Scene showing Volumetric Fog.

Figure 13: Scene showing Heat Haze. Note that our algorithm allows very fine control of the heat
haze: Areas over lava have high perturbations, while the rock in the lower right corner has almost no
perturbation.

