
Rendering: Spatial Acceleration Structures

Bernhard Kerbl

Research Division of Computer Graphics

Institute of Visual Computing & Human-Centered Technology

TU Wien, Austria
With slides based on material by Jaakko Lehtinen, used with permission



How to produce an image?

A good image needs realistic intensity and visibility

Intensity creates stimulus of optic nerve (black, white, color)

Visibility makes sure that objects adhere to depth
How would you process the scene on the right to make sure
the rendered output image is correct?

(Naïve) Ray-Casting Render Loop

Shoot a ray through each pixel into the scene

Iterate over all objects and test for intersection

Record the closest intersection (visibility)

Compute color and write to pixel (intensity)
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Source: Wojciech Mula, Wikipedia “Painter's algorithm”



Render Loop
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void render(Camera cam)
{

for(Pixel& pix : pixels)
{

pix.Color = background;

Intersection closest;
closest.Distance = INFINITY;

Ray ray = rayThroughPixel(cam, pix);

for (Triangle& tri : triangles)
{

Intersection sect = findClosestIntersection(ray, tri);
if(sect.Distance < closest.Distance) { closest = sect; }

}

if(closest.Distance != INFINITY) { pix.Color = computeColor(closest); }
}

}



void render(Camera cam)
{

for(Pixel& pix : pixels)
{

pix.Color = background;

Intersection closest;
closest.Distance = INFINITY;

Ray ray = rayThroughPixel(cam, pix);

for (Triangle& tri : triangles)
{

Intersection sect = findClosestIntersection(ray, tri);
if(sect.Distance < closest.Distance) { closest = sect; }

}

if(closest.Distance != INFINITY) { pix.Color = computeColor(closest); }
}

}

Spatial Aliasing
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Those are your dad’s pixels!

Source: renderstuff.com/

http://renderstuff.com/


Supersampling

Instead of a single ray through each pixel, use multiple „samples“
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Source: Parcly Taxel, Wikipedia “Supersampling”



Supersampling

Rendering – Spatial Acceleration Structures 6

void render(Camera cam)
{

for(Pixel& pix : pixels)
{

pix.Color = background;

Intersection closest;
closest.Distance = INFINITY;

Ray ray = rayThroughPixel(cam, pix);

for (Triangle& tri : triangles)
{

Intersection sect = findClosestIntersection(ray, tri);
if(sect.Distance < closest.Distance) { closest = sect; }

}

if(closest.Distance != INFINITY) { pix.Color = computeColor(closest); }
}

}

Antialiased

Source: renderstuff.com/

http://renderstuff.com/


Updated Render Loop
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pix.Color = background;

Intersection closest;
closest.Distance = INFINITY;

for(int s = 0; s < NUM_SAMPLES; s++)
{

SampleInfo sInfo = drawSample();
Ray ray = rayThroughSample(cam, sInfo.Location);
for (Triangle& tri : triangles)
{

Intersection sect = findClosestIntersection(ray, tri);
if(sect.Distance < closest.Distance) { closest = sect; }

}

if(closest.Distance != INFINITY) 
{ 

RGBColor sample = computeColor(closest);
pix.Color += filter(sInfo.Filter, RGBWColor(sample, 1));

}
}
pix.Color /= pixColor.w;
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pix.Color = background;

Intersection closest;
closest.Distance = INFINITY;

for(int s = 0; s < NUM_SAMPLES; s++)
{

SampleInfo sInfo = drawSample();
Ray ray = rayThroughSample(cam, sInfo.Location);
for (Triangle& tri : triangles)
{

Intersection sect = findClosestIntersection(ray, tri);
if(sect.Distance < closest.Distance) { closest = sect; }

}

if(closest.Distance != INFINITY) 
{

RGBColor sample = computeColor(closest);
pix.Color += filter(sInfo.Filter, RGBWColor(sample, 1));

}
}
pix.Color /= pixColor.w;

Updated Render Loop
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Color and Light

Sample Integration

Rendering Equation

Filtering

Sampling
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Let‘s look at the basic runtime (single sample per pixel)

Render Loop Run Time
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void render(Camera cam)
{

for(Pixel& pix : pixels)
{

…

for (Triangle& tri : triangles)
{

…
}

…
}

}



Let‘s look at the basic runtime (single sample per pixel)

This is 𝒪(𝑁 ⋅ 𝑀), but even worse, it’s Ω 𝑁 ⋅ 𝑀 !

Render Loop Run Time

10Rendering – Spatial Acceleration Structures

void render(Camera cam)
{

for(Pixel& pix : pixels)  𝑁
{

…

for (Triangle& tri : triangles) 𝑀
{

…
}

…
}

}



Is That Actually a Problem?

Run time complexity quickly
becomes a limiting factor

High-quality scenes can have several
million triangles per object

Current screens and displays
are moving towards 
4k resolution
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Amazon Lumberyard “Bistro”

3,780,244 triangles

1200x675 pixels

3 trillion ray/triangle 

intersection tests?

At 10M per second, one shot 

will take ~4 days.

Good luck with your movie!

Picture provide through Creative Commons CC-BY.4.0



What can we do about it?

For rendering, we will want to learn to run before we can walk

Find ways to speed up the basic loop for visibility resolution

Enter “spatial acceleration structures”

Essentially, pre-process the scene geometry into a structure that 
reduces expected traversal time to something more reasonable 

Rendering – Spatial Acceleration Structures 13



Spatial Acceleration Structures

Rendering – Spatial Acceleration Structures 14

Structure Additional Memory Building Time Traversal Time

none none none abysmal



Consider a group of triangles

Which ones should we test?

Speeding Up Intersection Tests
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Overlay scene with regular grid

Sort triangles into cells

Traverse cells and test
against their contents

Regular Grids

Rendering – Spatial Acceleration Structures 16



Overlay scene with regular grid

Sort triangles into cells

Traverse cells and test
against their contents

Regular Grids
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Overlay scene with regular grid

Sort triangles into cells

Traverse cells and test
against their contents

Regular Grids
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Geometry is usually not uniform

Comes in clusters (buildings,
characters, vegetation…)

Regular Grids
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Geometry is usually not uniform

Comes in clusters (buildings,
characters, vegetation…)

Almost all triangles in one cell!
Hitting this cell will be costly!

Regular Grids
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Regular Grids
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Geometry is usually not uniform

Comes in clusters (buildings,
characters, vegetation…)

Almost all triangles in one cell!
Hitting this cell will be costly!

Using a finer grid works



Regular Grids
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Geometry is usually not uniform

Comes in clusters (buildings,
characters, vegetation…)

Almost all triangles in one cell!
Hitting this cell will be costly!

Using a finer grid works, but 
most of its cells are unused!



Spatial Acceleration Structures
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Structure Memory 

Consumption

Building Time (Expected)

Traversal Time

none none none abysmal

Regular Grid low – high

(resolution) 

low uniform scene: ok

otherwise: bad



Quadtrees and Octrees
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Start with scene bounds, do 
finer subdivisions only if needed

Define parameters S𝑚𝑎𝑥, 𝑁𝑙𝑒𝑎𝑓

Recursively split bounds into
quadrants (2D) or octants (3D)

Stop after S𝑚𝑎𝑥 subdivisions or 
if no cell has > 𝑁𝑙𝑒𝑎𝑓 triangles



Quad and Octrees: 𝑁𝑙𝑒𝑎𝑓 = 4

Start with scene bounds, do 
finer subdivisions only if needed

Define parameters S𝑚𝑎𝑥, 𝑁𝑙𝑒𝑎𝑓

Recursively split bounds into
quadrants (2D) or octants (3D)

Stop after S𝑚𝑎𝑥 subdivisions or 
if no cell has > 𝑁𝑙𝑒𝑎𝑓 triangles
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Quad and Octrees: 𝑁𝑙𝑒𝑎𝑓 = 4

Start with scene bounds, do 
finer subdivisions only if needed

Define parameters S𝑚𝑎𝑥, 𝑁𝑙𝑒𝑎𝑓

Recursively split bounds into
quadrants (2D) or octants (3D)

Stop after S𝑚𝑎𝑥 subdivisions or 
if no cell has > 𝑁𝑙𝑒𝑎𝑓 triangles
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Quad and Octrees: 𝑁𝑙𝑒𝑎𝑓 = 4
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Quad and Octrees: 𝑁𝑙𝑒𝑎𝑓 = 4
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Quad and Octrees: 𝑁𝑙𝑒𝑎𝑓 = 4
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Quad and Octrees: 𝑁𝑙𝑒𝑎𝑓 = 4
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Quad and Octrees: 𝑁𝑙𝑒𝑎𝑓 = 4
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Quad and Octrees

Triangles may not be contained
within a quadrant or octant

Triangles must be referenced in 
all overlapping cells or split at 
the border into smaller ones
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Quad and Octrees

Triangles may not be contained
within a quadrant or octant

Triangles must be referenced in 
all overlapping cells or split at 
the border into smaller ones

Can drastically increase 
memory consumption!
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Spatial Acceleration Structures

Structure Memory 

Consumption

Building Time (Expected)

Traversal Time

none none none abysmal

Regular Grid low – high

(resolution) 

low uniform scene: ok

otherwise: bad

Quadtree/Octree low – high

(overlap/uniformity)

low good

Rendering – Spatial Acceleration Structures 34



BSP Trees & K-d Trees

Binary Space Partition Tree

Recursive split via hyperplanes

Left/right child nodes treat
objects in each half-space

Splits can be arbitrary!
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BSP Trees & K-d Trees, 𝑁𝑙𝑒𝑎𝑓 = 4

Binary Space Partition Tree

Recursive split via hyperplanes

Left/right child nodes treat
objects in each half-space

Splits can be arbitrary!
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BSP Trees & K-d Trees, 𝑁𝑙𝑒𝑎𝑓 = 4

Binary Space Partition Tree

Recursive split via hyperplanes

Left/right child nodes treat
objects in each half-space

Splits can be arbitrary!
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BSP Trees & K-d Trees, 𝑁𝑙𝑒𝑎𝑓 = 4

Binary Space Partition Tree

Recursive split via hyperplanes

Left/right child nodes treat
objects in each half-space

Splits can be arbitrary!
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BSP Trees & K-d Trees

Binary Space Partition Tree

Recursive split via hyperplanes

Left/right child nodes treat
objects in each half-space

Splits can be arbitrary!

K-dimensional (K-d) Tree

Every hyperplane must be
perpendicular to a base axis

Limits search space for splits
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BSP Trees & K-d Trees, 𝑁𝑙𝑒𝑎𝑓 = 4

Binary Space Partition Tree

Recursive split via hyperplanes

Left/right child nodes treat
objects in each half-space

Splits can be arbitrary!

K-dimensional (K-d) Tree

Every hyperplane must be
perpendicular to a base axis

Limits search space for splits
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BSP Trees & K-d Trees, 𝑁𝑙𝑒𝑎𝑓 = 4

Binary Space Partition Tree

Recursive split via hyperplanes

Left/right child nodes treat
objects in each half-space

Splits can be arbitrary!

K-dimensional (K-d) Tree

Every hyperplane must be
perpendicular to a base axis

Limits search space for splits
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BSP Trees & K-d Trees, 𝑁𝑙𝑒𝑎𝑓 = 4

Binary Space Partition Tree

Recursive split via hyperplanes

Left/right child nodes treat
objects in each half-space

Splits can be arbitrary!

K-dimensional (K-d) Tree

Every hyperplane must be
perpendicular to a base axis

Limits search space for splits
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Spatial Acceleration Structures

Structure Memory 

Consumption

Building Time (Expected)

Traversal Time

none none none abysmal

Regular Grid low – high

(resolution) 

low uniform scene: ok

otherwise: bad

Quadtree/Octree low – high

(overlap/uniformity)

low good

K-d Tree low – high

(overlap)

low – high good – excellent 
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Find enclosing (“conservative”) volumes that are easier to test

Ideally: tight, but easy to check for intersection with ray

Common choices:

Bounding Spheres

Bounding Boxes
Axis-aligned (AABB)

Oriented (OBB)

Saves on computational effort if reject

Bounding Volumes
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Axis-Aligned Bounding Boxes (AABBs)

AABBs are defined by their two extrema (min/max)

Linear run time to compute

Iterate over all vertices

Keep min/max values for
each dimension

Done!
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Find the AABB that encloses multiple, smaller AABBs

Operates only on
extrema of each
smaller AABB

Merging process
is commutative

Merging AABBs
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Bounding Spheres

Bounding spheres need a center Ԧ𝑐 and a radius 𝑟

For Ԧ𝑐, can pick the mean vertex 
position or center of AABB

Once center is chosen, find vertex 
position Ԧ𝑣𝑚𝑎𝑥 farthest from it

𝑟 = | Ԧ𝑐 − Ԧ𝑣𝑚𝑎𝑥|
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How to Use Bounding Volumes

Can also be applied to entire objects

Reject entire object if volume is not hit

Good start, but what if…

…scene is not partitioned into objects?

…objects are extremely large (terrain)?

…objects are extremely detailed (characters)?

…there are millions of objects with ∼ 2 triangles each (leaves)?
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Bounding Volume Hierarchy (BVH)

Each node of the hierarchy has its own bounding volume

Every node can be

An inner node: references child nodes

A leaf node: references triangles

Each node’s bounding volume is a
subset of its parent’s bounding volume 
(i.e., child nodes are spatially contained by their parents)
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Bounding Volume Hierarchy (BVH)

The final hierarchy is (again) a tree structure with 𝑁 leaf nodes

Leaf nodes can be

Individual triangles

Clusters (e.g., ≤ 10Δ)

Total number of nodes for a binary tree: 2𝑁 − 1

If balanced, it takes ∼ log𝑁 steps to reach a leaf from the root

If trees have more than 2 branches, they require fewer nodes

51

Source: Schreiberx, Wikipedia “Bounding Volume Hierarchy”
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What makes BVHs special?

Important feature: bounding volumes can overlap!

No duplicate references or 
split triangles necessary!

Implicitly limits the amount 
of memory required
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BVH Building

Generating BVH and tree
for input triangle geometry

CPU: usually top-down
GPU: usually bottom-up

From here on out, we will 
consider box BVHs only
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BVH Building, Top-Down
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Define 𝑁𝑙𝑒𝑎𝑓 for leaves

For each node, do the following:

Compute bounding box that
fully encloses triangles & store

Holds ≤ 𝑁𝑙𝑒𝑎𝑓 triangles? Stop.

Else, split into child groups

Make one new node per group

Set them as children of current

Repeat with child nodes



BVH Building, Top-Down, 𝑁𝑙𝑒𝑎𝑓 = 4
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Define 𝑁𝑙𝑒𝑎𝑓 for leaves

For each node, do the following:

Compute bounding box that
fully encloses triangles & store

Holds ≤ 𝑁𝑙𝑒𝑎𝑓 triangles? Stop.

Else, split into child groups

Make one new node per group

Set them as children of current

Repeat with child nodes



BVH Building, Top-Down, 𝑁𝑙𝑒𝑎𝑓 = 4
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A

B

Define 𝑁𝑙𝑒𝑎𝑓 for leaves

For each node, do the following:

Compute bounding box that
fully encloses triangles & store

Holds ≤ 𝑁𝑙𝑒𝑎𝑓 triangles? Stop.

Else, split into child groups

Make one new node per group

Set them as children of current

Repeat with child nodes



BVH Building, Top-Down, 𝑁𝑙𝑒𝑎𝑓 = 4
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BVH Building, Top-Down, 𝑁𝑙𝑒𝑎𝑓 = 4
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BVH Building, Top-Down, 𝑁𝑙𝑒𝑎𝑓 = 4
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How to split a node?

Which axes to consider for building bounding boxes/splitting?

Basis vectors 1,0,0 , 0,1,0 , (0,0,1) only

Oriented basis vectors only

Arbitrary

Where to split?

Spatial median

Object median

Something more elaborate...
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How to split a node?

Which axes to consider for building bounding boxes/splitting?

Basis vectors 1,0,0 , 0,1,0 , (0,0,1) only

Oriented basis vectors only

Arbitrary

Where to split?

Spatial median

Object median

Something more elaborate...
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Algorithms exist (e.g. “separating axis theorem”), 

but usually very slow!



Splitting at spatial median

Pick the longest axis (X/Y/Z)
of current node bounds

Find the midpoint on that axis

Assign triangles to A/B based
on which side of the midpoint
each triangle’s centroid lies on

Continue recursion with A/B
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Splitting at spatial median

Careful: can result in infinite recursion!

All triangles are assigned again to
one node, none in the other

Can guard against it in several ways

Limit max. number of split attempts

Try other axes if one node is empty

Compute box over triangle centroids
and split that on longest axis instead
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Pick an axis. Can try them all,
don’t pick the same every time

Sort triangles according to their
centroid’s position on that axis

Assign first half of the sorted 
triangles to A, the second to B

Continue recursion with A/B

Splitting at object median
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BVH Traversal

0. Set 𝑡𝑚𝑖𝑛 = ∞. Start at root node, return if it doesn’t intersect ray.

1. Process node if its closest intersection with ray is closer than 𝑡𝑚𝑖𝑛

2. If it’s an inner node, run from 1. for child nodes that intersect ray 

Process the closest node first

Keep others on stack to process further ones later (recursion works)

3. If it’s a leaf, check triangles and update 𝑡𝑚𝑖𝑛 in case of closer hit
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BVH Traversal Example

1.  Process node if its closest intersection with ray is closer than 𝑡𝑚𝑖𝑛
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BVH Traversal Example

1.  Process node if its closest intersection with ray is closer than 𝑡𝑚𝑖𝑛
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BVH Traversal Example

2.  If it’s an inner node, run from 1. for child nodes that intersect ray 

Process the closest node first

Keep others on stack to process further ones later
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BVH Traversal Example

1.  Process node if its closest intersection with ray is closer than 𝑡𝑚𝑖𝑛
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BVH Traversal Example

1.  Process node if its closest intersection with ray is closer than 𝑡𝑚𝑖𝑛
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BVH Traversal Example

3.  If it’s a leaf, check triangles and update 𝑡𝑚𝑖𝑛 in case of closer hit 
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BVH Traversal Example

3.  If it’s a leaf, check triangles and update 𝑡𝑚𝑖𝑛 in case of closer hit 
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BVH Traversal Example

2.  If it’s an inner node, run from 1. for child nodes that intersect ray 

Process the closest node first

Keep others on stack to process further ones later
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BVH Traversal Example

1.  Process node if its closest intersection with ray is closer than 𝑡𝑚𝑖𝑛

Rendering – Spatial Acceleration Structures 74



BVH Traversal Example

1.  Process node if its closest intersection with ray is closer than 𝑡𝑚𝑖𝑛
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BVH Traversal Example

3.  If it’s a leaf, check triangles and update 𝑡𝑚𝑖𝑛 in case of closer hit (  ) 
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BVH Traversal Example

3.  If it’s a leaf, check triangles and update 𝑡𝑚𝑖𝑛 in case of closer hit (  ) 
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BVH Traversal Example

3.  If it’s a leaf, check triangles and update 𝑡𝑚𝑖𝑛 in case of closer hit (  ) 
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BVH Traversal Example

3.  If it’s a leaf, check triangles and update 𝑡𝑚𝑖𝑛 in case of closer hit (  ) 
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BVH Traversal Example

3.  If it’s a leaf, check triangles and update 𝑡𝑚𝑖𝑛 in case of closer hit (  ) 
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The Surface Area Heuristic [1]

Simple, but powerful heuristic for choosing splits

Created with traversal in mind, based on the following ideas:

Assume rays are uniformly distributed in space

Probability of a ray hitting a node is proportional to its surface area

Cost of traversing it depends on the number of triangles in its leaves

Hence, avoid large nodes with many triangles, because:

They have a tendency to get checked often

Getting a definite result (reject or closest hit) is likely to be expensive
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Applying the Surface Area Heuristic

Goal: To split a node, find the hyperplane 𝑏 that minimizes

𝑓 𝑏 = 𝐿𝑆𝐴 𝑏 ⋅ 𝐿(𝑏) + 𝑅𝑆𝐴(𝑏) ⋅ (𝑁 − 𝐿 𝑏 ), where

• 𝐿𝑆𝐴 𝑏 /𝑅𝑆𝐴(𝑏) are the surface area of the nodes that enclose the 
triangles whose centroid is on the “left”/“right” of the split plane 𝑏

• 𝐿(𝑏) is the number of primitives on the “left” of 𝑏

• N is the total number of primitives in the node
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The Sweep SAH BVH

We want to constrain the search space for a good split

Pick a set of axes to test (e.g., 3D basis vectors X/Y/Z)

When splitting a node with 𝑁 triangles, for each axis

Sort all triangles by their centroid’s position on that axis

Find the index 𝑖 that minimizes

𝑓 𝑖 = 𝐿𝑆𝐴 𝑖 ⋅ 𝑖 + 𝑅𝑆𝐴(𝑖) ⋅ (𝑁 − 𝑖), where 

• 𝐿𝑆𝐴(𝑖) is the surface area of the AABB over sorted triangles [0, 𝑖) 

• 𝑅𝑆𝐴(𝑖) is the surface area of the AABB over sorted triangles [𝑖, 𝑁)

Select the axis and index 𝑖 with the best 𝑓 𝑖 for the split overall!
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Importance of Optimizing Splits

Important trade-off: building time vs. traversal time

Given the same tracing/traversal code, the quality of a BVH tree 
may have a big impact on performance!

Can be as high as 2x compared to naïve splitting

Benefits depend on the parameters of your rendering scenario

How big is your scene and how are triangles distributed?

How long will your BVH be valid?

What are the quality requirements for your images?
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Evaluation of Combined Building + Traversal [2]
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Check out the paper this comparison came from https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf

https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf


Evaluation of Combined Building + Traversal [2]
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Spatial Acceleration Structures

Structure Memory 

Consumption

Building Time (Expected)

Traversal Time

none none none abysmal

Regular Grid low – high

(resolution) 

low uniform scene: ok

otherwise: bad

Quadtree/Octree low – high

(overlap/uniformity)

low good

K-d Tree low – high

(overlap)

low – high good – excellent 

BVH low low – high good – excellent 
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BVH Building Hints

Rendering – Spatial Acceleration Structures

For each split, sort the node’s portion of the triangle list L in-place

When constructing child nodes, pass them L and start/end indices
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SAH Coding Hints

Rendering – Spatial Acceleration Structures

Don’t loop over triangles at each 𝑖 to get 𝐿𝑆𝐴 𝑖 and 𝑅𝑆𝐴(𝑖)!

Precompute them once per node and axis instead

Create two 0-volume bounding boxes 𝐵𝐵𝐿, 𝐵𝐵𝑅
Allocate N+1 entries for 𝐿𝑆𝐴/𝑅𝑆𝐴, set 𝐿𝑆𝐴 0 = 𝑅𝑆𝐴 𝑁 = 0

Iterate 𝑖 over range [1, 𝑁], for each 𝑖:

Merge 𝐵𝐵𝐿 with the AABB of sorted triangle with index (𝑖 − 1)

Store surface area of 𝐵𝐵𝐿 as value for 𝐿𝑆𝐴(𝑖)

Merge 𝐵𝐵𝑅 with the AABB of sorted triangle with index (𝑁 − 𝑖)

Store surface area of 𝐵𝐵𝑅 as value for 𝑅𝑆𝐴(𝑁 − 𝑖)
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BVH Building Hints (C++)

Consider using stdlib container (e.g., vector)

Try to avoid dynamic memory allocation

2𝑁 − 1 is an upper bound for the total number of nodes you need

std::sort(<first>, <last>, <predicate>)

std::nth_element(<first>, <nth>, <last>, <predicate>)

Can be used for splitting if you don‘t need exact sorting

Reorders the 𝑁-sized vector such that:

𝑛 smallest elements are on the left

𝑁 − 𝑛 biggest are on the right

Faster than sorting! 
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BVH vs K-d Tree vs Others

Each have their specializations, strengths and weaknesses

E.g., K-d Trees with ropes do not require a stack for traversal [5]

Which acceleration structure is the best is contentious

Currently, BVHs are extremely widespread and well-understood
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State-of-the-Art Variants and Trends

Higher child counts (>2) per node, mixed nodes (children + triangles)

Actually DO split triangles sometimes to get maximal performance

Build BVHs bottom-up in parallel on the GPU [3]

In animated scenes, reuse BVHs, update those parts that change

Actually use built-in traversal logic of GPU hardware (NVIDIA RTX!)
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