0

Rendering: Spatial Acceleration Structures

Bernhard Kerbl

Research Division of Computer Graphics
Institute of Visual Computing \& Human-Centered Technology
TU Wien, Austria

With slides based on material by Jaakko Lehtinen, used with permission

WIEN

- A good image needs realistic intensity and visibility

■ Intensity creates stimulus of optic nerve (black, white, color)

- Visibility makes sure that objects adhere to depth

How would you process the scene on the right to make sure the rendered output image is correct?

■ (Naïve) Ray-Casting Render Loop

- Shoot a ray through each pixel into the scene

Source: Wojciech Mula, Wikipedia "Painter's algorithm"

- Iterate over all objects and test for intersection
- Record the closest intersection (visibility)
- Compute color and write to pixel (intensity)

```
void render(Camera cam)
{
    for(Pixel& pix : pixels)
    {
        pix.Color = background;
        Intersection closest;
        closest.Distance = INFINITY;
            Ray ray = rayThroughPixel(cam, pix);
            for (Triangle& tri : triangles)
            {
            Intersection sect = findClosestIntersection(ray, tri);
            if(sect.Distance < closest.Distance) { closest = sect; }
        }
        if(closest.Distance != INFINITY) { pix.Color = computeColor(closest); }
    }
}

WIEN


Those are your dad's pixels!

\section*{Supersampling}

■ Instead of a single ray through each pixel, use multiple „samples"




Antialiased

\section*{Updated Render Loop}
pix.Color = background;
Intersection closest;
closest.Distance = INFINITY;
for (int s = 0; s < NUM_SAMPLES; s++)
\{
SampleInfo sInfo = drawSample();
Ray ray = rayThroughSample(cam, sInfo.Location);
for (Triangle\& tri : triangles) \{

Intersection sect = findClosestIntersection(ray, tri); if(sect.Distance < closest.Distance) \{ closest = sect; \} \}
if(closest.Distance != INFINITY)
\{
RGBColor sample = computeColor(closest);
pix.Color += filter(sInfo.Filter, RGBWColor(sample, 1));
\}
\}
pix.Color /= pixColor.w;

\section*{Updated Render Loop}
```

pix.Color = background;
Intersection closest;
closest.Distance = INFINITY;
for(int s = 0; s < NUM_SAMPLES; s++)
{
SampleInfo sInfo = drawSample();
Ray ray = rayThroughSample(cam, sInfo.Location);
for (Triangle\& tri : triangles)
{
Intersection sect = findClosestIntersection(ray, tri);
}
if(sect.Distance < closest.Distance) { closest = sect; } Color and Light
if(closest.Distance != INFINITY)
{
RGBColor sample = computeColor(closest);
RGBColor sample = computeColor(closest);

```

```

Sampling
Color and Light
Rendering Equation
Filtering
}
}
pix.Color /= pixColor.w;

```

\section*{Render Loop Run Time}

\section*{- Let's look at the basic runtime (single sample per pixel)}
```

void render(Camera cam)
{
for(Pixel\& pix : pixels)
{
for (Triangle\& tri : triangles)
{
}
}
}

```

\section*{Render Loop Run Time}
- Let's look at the basic runtime (single sample per pixel)
```

void render(Camera cam)
{
for(Pixel\& pix : pixels) <N
{
for (Triangle\& tri : triangles) }\leftarrow
{
}
}
}

```
- This is \(\mathcal{O}(N \cdot M)\), but even worse, it's \(\Omega(N \cdot M)\) !
- Run time complexity quickly becomes a limiting factor

What if this thing had 1B triangles and your ray tracer just walked through all of them?

■ High-quality scenes can have several million triangles per object

■ Current screens and displays are moving towards 4k resolution


\section*{Amazon Lumberyard "Bistro" \(3,780,244\) triangles} \(1200 \times 675\) pixels 3 trillion ray/triangle intersection tests?

At 10 M per second, one shot will take \(\sim 4\) days.

Good luck with your movie!

\(\qquad\)

\[
1
\]


\section*{What can we do about it?}
- For rendering, we will want to learn to run before we can walk

■ Find ways to speed up the basic loop for visibility resolution

■ Enter "spatial acceleration structures"

■ Essentially, pre-process the scene geometry into a structure that reduces expected traversal time to something more reasonable

\section*{Spatial Acceleration Structures}
\begin{tabular}{|l|l|l|l|}
\hline Structure & Additional Memory & Building Time & Traversal Time \\
\hline none & none & none & abysmal \\
\hline
\end{tabular}

\section*{Speeding Up Intersection Tests}

WIEN
- Consider a group of triangles

■ Which ones should we test?


\section*{Regular Grids}

TU
WIEN
■ Overlay scene with regular grid

■ Sort triangles into cells
- Traverse cells and test against their contents



\section*{Regular Grids}

TU
WIEN
■ Overlay scene with regular grid
- Sort triangles into cells

■ Traverse cells and test against their contents

\section*{Regular Grids}

TU
WIEN
■ Overlay scene with regular grid

■ Sort triangles into cells

■ Traverse cells and test against their contents

\section*{Regular Grids}

TU
- Geometry is usually not uniform
- Comes in clusters (buildings, characters, vegetation...)


\section*{Regular Grids}

TU
WIEN
- Geometry is usually not uniform
- Comes in clusters (buildings, characters, vegetation...)

■ Almost all triangles in one cell! Hitting this cell will be costly!


\section*{Regular Grids}

WIEN
- Geometry is usually not uniform
- Comes in clusters (buildings, characters, vegetation...)
-Almost all triangles in one cell! Hitting this cell will be costly!

■ Using a finer grid works


\section*{Regular Grids}

WIEN
- Geometry is usually not uniform
- Comes in clusters (buildings, characters, vegetation...)
- Almost all triangles in one cell! Hitting this cell will be costly!

■ Using a finer grid works, but most of its cells are unused!


\section*{Spatial Acceleration Structures}

WIEN
\begin{tabular}{|l|l|l|l|}
\hline Structure & \begin{tabular}{l} 
Memory \\
Consumption
\end{tabular} & Building Time & \begin{tabular}{l} 
(Expected) \\
Traversal Time
\end{tabular} \\
\hline none & none & none & abysmal \\
\hline Regular Grid & \begin{tabular}{l} 
low - high \\
(resolution)
\end{tabular} & low & \begin{tabular}{l} 
uniform scene: ok \\
otherwise: bad
\end{tabular} \\
\hline
\end{tabular}

\section*{Quadtrees and Octrees}
- Start with scene bounds, do finer subdivisions only if needed
- Define parameters \(\mathrm{S}_{\text {max }}, N_{\text {leaf }}\)

■ Recursively split bounds into quadrants (2D) or octants (3D)
- Stop after \(\mathrm{S}_{\text {max }}\) subdivisions or if no cell has \(>N_{\text {leaf }}\) triangles

\section*{Quad and Octrees: \(N_{\text {leaf }}=4\)}
- Start with scene bounds, do finer subdivisions only if needed
- Define parameters \(\mathrm{S}_{\text {max }}, N_{\text {leaf }}\)
- Recursively split bounds into quadrants (2D) or octants (3D)
- Stop after \(\mathrm{S}_{\text {max }}\) subdivisions or if no cell has \(>N_{\text {leaf }}\) triangles

\section*{Quad and Octrees: \(N_{\text {leaf }}=4\)}
- Start with scene bounds, do finer subdivisions only if needed
- Define parameters \(\mathrm{S}_{\text {max }}, N_{\text {leaf }}\)
- Recursively split bounds into quadrants (2D) or octants (3D)
- Stop after \(\mathrm{S}_{\text {max }}\) subdivisions or if no cell has \(>N_{\text {leaf }}\) triangles


\section*{Quad and Octrees: \(N_{\text {leaf }}=4\)}

TU
WIEN


\section*{Quad and Octrees: \(N_{\text {leaf }}=4\)}

TU


\section*{Quad and Octrees: \(N_{\text {leaf }}=4\)}

TU


\section*{Quad and Octrees: \(N_{\text {leaf }}=4\)}

TU
WIEN


Quad and Octrees: \(N_{\text {leaf }}=4\)
TU
WIEN


\section*{Quad and Octrees}
- Triangles may not be contained within a quadrant or octant
- Triangles must be referenced in all overlapping cells or split at the border into smaller ones


\section*{Quad and Octrees}

WIEN
- Triangles may not be contained within a quadrant or octant
- Triangles must be referenced in all overlapping cells or split at the border into smaller ones
- Can drastically increase memory consumption!


\section*{Spatial Acceleration Structures}

WIEN
\begin{tabular}{|l|l|l|l|}
\hline Structure & \begin{tabular}{l} 
Memory \\
Consumption
\end{tabular} & Building Time & \begin{tabular}{l} 
(Expected) \\
Traversal Time
\end{tabular} \\
\hline none & none & none & abysmal \\
\hline Regular Grid & \begin{tabular}{l} 
low - high \\
(resolution)
\end{tabular} & Iow & \begin{tabular}{l} 
uniform scene: ok \\
otherwise: bad
\end{tabular} \\
\hline Quadtree/Octree & \begin{tabular}{l} 
low - high \\
(overlap/uniformity)
\end{tabular} & low & good \\
\hline
\end{tabular}

\section*{BSP Trees \& K-d Trees}
- Binary Space Partition Tree

■ Recursive split via hyperplanes
- Left/right child nodes treat objects in each half-space
- Splits can be arbitrary!

\section*{BSP Trees \& K-d Trees, \(N_{l e a f}=4\)}

TU
- Binary Space Partition Tree
- Recursive split via hyperplanes
- Left/right child nodes treat objects in each half-space
- Splits can be arbitrary!


\section*{BSP Trees \& K-d Trees, \(N_{\text {leaf }}=4\)}

WIEN
- Binary Space Partition Tree

■ Recursive split via hyperplanes
- Left/right child nodes treat objects in each half-space
- Splits can be arbitrary!


\section*{BSP Trees \& K-d Trees, \(N_{l e a f}=4\)}

TU WIEN

■ Binary Space Partition Tree
- Recursive split via hyperplanes
- Left/right child nodes treat objects in each half-space
- Splits can be arbitrary!

- Binary Space Partition Tree

■ Recursive split via hyperplanes
- Left/right child nodes treat objects in each half-space
- Splits can be arbitrary!

■ K-dimensional (K-d) Tree
■ Every hyperplane must be perpendicular to a base axis
- Limits search space for splits

\section*{BSP Trees \& K-d Trees, \(N_{l e a f}=4\)}
- Binary Space Partition Tree

■ Recursive split via hyperplanes
- Left/right child nodes treat objects in each half-space
- Splits can be arbitrary!
- K-dimensional (K-d) Tree
- Every hyperplane must be perpendicular to a base axis
- Limits search space for splits

\section*{BSP Trees \& K-d Trees, \(N_{l e a f}=4\)}
- Binary Space Partition Tree
- Recursive split via hyperplanes
- Left/right child nodes treat objects in each half-space
- Splits can be arbitrary!

■ K-dimensional (K-d) Tree
■ Every hyperplane must be perpendicular to a base axis
- Limits search space for splits

\section*{BSP Trees \& K-d Trees, \(N_{l e a f}=4\)}
- Binary Space Partition Tree

■ Recursive split via hyperplanes
- Left/right child nodes treat objects in each half-space
- Splits can be arbitrary!
- K-dimensional (K-d) Tree
- Every hyperplane must be perpendicular to a base axis
- Limits search space for splits


\section*{Spatial Acceleration Structures}

WIEN
\begin{tabular}{|l|l|l|l|}
\hline Structure & \begin{tabular}{l} 
Memory \\
Consumption
\end{tabular} & Building Time & \begin{tabular}{l} 
(Expected) \\
Traversal Time
\end{tabular} \\
\hline none & none & none & abysmal \\
\hline Regular Grid & \begin{tabular}{l} 
low - high \\
(resolution)
\end{tabular} & low & \begin{tabular}{l} 
uniform scene: ok \\
otherwise: bad
\end{tabular} \\
\hline Quadtree/Octree & \begin{tabular}{l} 
low - high \\
(overlap/uniformity)
\end{tabular} & low & good \\
\hline K-d Tree & \begin{tabular}{l} 
low - high \\
(overlap)
\end{tabular} & low - high & good - excellent \\
\hline Rendering- -spatial Acceleraion Structures & 43 & & \\
\hline
\end{tabular}

\section*{Bounding Volumes}

■ Find enclosing ("conservative") volumes that are easier to test

■ Ideally: tight, but easy to check for intersection with ray

■ Common choices:
■ Bounding Spheres
- Bounding Boxes
- Axis-aligned (AABB)
- Oriented (OBB)

■ Saves on computational effort if reject

\section*{Axis-Aligned Bounding Boxes (AABBs)}

WIEN
- AABBs are defined by their two extrema (min/max)

■ Linear run time to compute
■ Iterate over all vertices
- Keep min/max values for each dimension

■ Done!


Find the \(A A B B\) that encloses multiple, smaller AABBs
- Operates only on extrema of each smaller AABB
- Merging process is commutative

\[
\begin{aligned}
& \left(x_{\text {min }}, y_{\text {min }}, z_{\text {min }}\right)=\left(\min \left(x_{\text {min_a }}, x_{\text {min_b }}\right),\right. \\
& \min \left(y_{\min \_a}, y_{\min -b}\right) \text {, } \\
& \left.\min \left(z_{\text {min_ }_{-}}, z_{\min _{-} b}\right)\right)
\end{aligned}
\]

\section*{Bounding Spheres}

■ Bounding spheres need a center \(\vec{c}\) and a radius \(r\)
- For \(\vec{c}\), can pick the mean vertex position or center of AABB
- Once center is chosen, find vertex position \(\vec{v}_{\text {max }}\) farthest from it

- \(r=\left|\vec{c}-\vec{v}_{\text {max }}\right|\)

■ Can also be applied to entire objects
- Reject entire object if volume is not hit

■ Good start, but what if...
- ...scene is not partitioned into objects?

■ ...objects are extremely large (terrain)?


■ ...objects are extremely detailed (characters)?
■ ...there are millions of objects with \(\sim 2\) triangles each (leaves)?

\section*{Bounding Volume Hierarchy (BVH)}

■ Each node of the hierarchy has its own bounding volume

■ Every node can be
- An inner node: references child nodes
- A leaf node: references triangles
- Each node's bounding volume is a
 subset of its parent's bounding volume
(i.e., child nodes are spatially contained by their parents)

\section*{Bounding Volume Hierarchy (BVH)}
- The final hierarchy is (again) a tree structure with \(N\) leaf nodes
- Leaf nodes can be
- Individual triangles
- Clusters (e.g., \(\leq 10 \Delta\) )


Source: Schreiberx, Wikipedia "Bounding Volume Hierarchy"

■ Total number of nodes for a binary tree: \(2 N-1\)
■ If balanced, it takes \(\sim \log N\) steps to reach a leaf from the root
- If trees have more than 2 branches, they require fewer nodes

\section*{What makes BVHs special?}
- Important feature: bounding volumes can overlap!
- No duplicate references or split triangles necessary!
- Implicitly limits the amount of memory required

- Generating BVH and tree for input triangle geometry

■ CPU: usually top-down GPU: usually bottom-up

- From here on out, we will consider box BVHs only
- Define \(N_{\text {leaf }}\) for leaves

■ For each node, do the following:
- Compute bounding box that fully encloses triangles \& store
- Holds \(\leq N_{\text {leaf }}\) triangles? Stop.
- Else, split into child groups
- Make one new node per group
- Set them as children of current
- Repeat with child nodes

\section*{BVH Building, Top-Down, \(N_{\text {leaf }}=4\)}
- Define \(N_{\text {leaf }}\) for leaves
- For each node, do the following:

- Compute bounding box that fully encloses triangles \& store
- Holds \(\leq N_{\text {leaf }}\) triangles? Stop.
- Else, split into child groups
- Make one new node per group
- Set them as children of current
- Repeat with child nodes

\section*{BVH Building, Top-Down, \(N_{\text {leaf }}=4\)}
- Define \(N_{\text {leaf }}\) for leaves
- For each node, do the following:
- Compute bounding box that fully encloses triangles \& store
- Holds \(\leq N_{\text {leaf }}\) triangles? Stop.

■ Else, split into child groups
- Make one new node per group

■ Set them as children of current
- Repeat with child nodes


\section*{BVH Building, Top-Down, \(N_{\text {leaf }}=4\)}

TU WIEN


A

\section*{BVH Building, Top-Down, \(N_{\text {leaf }}=4\)}

TU
WIEN


BVH Building, Top-Down, \(N_{\text {leaf }}=4\)



\section*{How to split a node?}
- Which axes to consider for building bounding boxes/splitting?

■ Basis vectors (1,0,0), ( \(0,1,0\) ), ( \(0,0,1\) ) only
- Oriented basis vectors only
- Arbitrary

■ Where to split?
- Spatial median
- Object median
- Something more elaborate...
- Which axes to consider for building bounding boxes/splitting?
- Basis vectors \((1,0,0),(0,1,0),(0,0,1)\) only
- Oriented basis vectors only
- Arbitrary


Algorithms exist (e.g. "separating axis theorem"), but usually very slow!
- Where to split?
- Spatial median
- Object median
- Something more elaborate...

\section*{Splitting at spatial median}
- Pick the longest axis (X/Y/Z) of current node bounds
- Find the midpoint on that axis
- Assign triangles to \(A / B\) based on which side of the midpoint each triangle's centroid lies on
- Continue recursion with \(A / B\)


\section*{Splitting at spatial median}

■ Careful: can result in infinite recursion!
- All triangles are assigned again to
 one node, none in the other
- Can guard against it in several ways

- Limit max. number of split attempts
- Try other axes if one node is empty
- Compute box over triangle centroids and split that on longest axis instead


\section*{Splitting at object median}
- Pick an axis. Can try them all, don't pick the same every time

- Sort triangles according to their centroid's position on that axis
- Assign first half of the sorted triangles to \(A\), the second to \(B\)
- Continue recursion with \(A / B\)

0 . Set \(t_{\text {min }}=\infty\). Start at root node, return if it doesn't intersect ray.
1. Process node if its closest intersection with ray is closer than \(t_{\min }\)
2. If it's an inner node, run from 1. for child nodes that intersect ray
- Process the closest node first

■ Keep others on stack to process further ones later (recursion works)
3. If it's a leaf, check triangles and update \(t_{\text {min }}\) in case of closer hit

\section*{BVH Traversal Example}
1. Process node if its closest intersection with ray is closer than \(t_{\min }\)

\section*{BVH Traversal Example}
1. Process node if its closest intersection with ray is closer than \(t_{\min }\)
2. If it's an inner node, run from 1. for child nodes that intersect ray

■ Process the closest node first
- Keep others on stack to process further ones later


\section*{BVH Traversal Example}
1. Process node if its closest intersection with ray is closer than \(t_{\min }\)

\section*{BVH Traversal Example}
1. Process node if its closest intersection with ray is closer than \(t_{\min }\)

\section*{BVH Traversal Example}

WIEN
3. If it's a leaf, check triangles and update \(t_{\min }\) in case of closer hit

\section*{BVH Traversal Example}

WIEN
3. If it's a leaf, check triangles and update \(t_{\min }\) in case of closer hit

\section*{BVH Traversal Example}
2. If it's an inner node, run from 1. for child nodes that intersect ray

■ Process the closest node first
■ Keep others on stack to process further ones later


\section*{BVH Traversal Example}
1. Process node if its closest intersection with ray is closer than \(t_{\min }\)

\section*{BVH Traversal Example}
1. Process node if its closest intersection with ray is closer than \(t_{\min }\)

\section*{BVH Traversal Example}
3. If it's a leaf, check triangles and update \(t_{\text {min }}\) in case of closer hit (०)

\section*{BVH Traversal Example}
3. If it's a leaf, check triangles and update \(t_{\text {min }}\) in case of closer hit (०)

\section*{BVH Traversal Example}
3. If it's a leaf, check triangles and update \(t_{\text {min }}\) in case of closer hit (०)

\section*{BVH Traversal Example}
3. If it's a leaf, check triangles and update \(t_{\text {min }}\) in case of closer hit (०)

\section*{BVH Traversal Example}

WIEN
3. If it's a leaf, check triangles and update \(t_{\text {min }}\) in case of closer hit (०)
- Simple, but powerful heuristic for choosing splits
- Created with traversal in mind, based on the following ideas:
- Assume rays are uniformly distributed in space
- Probability of a ray hitting a node is proportional to its surface area
- Cost of traversing it depends on the number of triangles in its leaves
- Hence, avoid large nodes with many triangles, because:
- They have a tendency to get checked often
- Getting a definite result (reject or closest hit) is likely to be expensive

Goal: To split a node, find the hyperplane \(b\) that minimizes
\(f(b)=L S A(b) \cdot L(b)+R S A(b) \cdot(N-L(b))\), where
- \(L S A(b) / R S A(b)\) are the surface area of the nodes that enclose the triangles whose centroid is on the "left"/"right" of the split plane \(b\)
- \(L(b)\) is the number of primitives on the "left" of \(b\)
- \(N\) is the total number of primitives in the node
- We want to constrain the search space for a good split

■ Pick a set of axes to test (e.g., 3D basis vectors \(X / Y / Z\) )
■ When splitting a node with \(N\) triangles, for each axis
- Sort all triangles by their centroid's position on that axis
- Find the index \(i\) that minimizes
\(f(i)=L S A(i) \cdot i+R S A(i) \cdot(N-i)\), where
- \(\operatorname{LSA}(i)\) is the surface area of the AABB over sorted triangles \([0, i)\)
- \(R S A(i)\) is the surface area of the AABB over sorted triangles \([i, N)\)
\(\square\) Select the axis and index \(i\) with the best \(f(i)\) for the split overall!

\section*{Importance of Optimizing Splits}

■ Important trade-off: building time vs. traversal time
■ Given the same tracing/traversal code, the quality of a BVH tree may have a big impact on performance!
- Can be as high as \(2 x\) compared to naïve splitting
- Benefits depend on the parameters of your rendering scenario

■ How big is your scene and how are triangles distributed?
■ How long will your BVH be valid?
- What are the quality requirements for your images?

\section*{Evaluation of Combined Building + Traversal [2]}

Efficiency measured as a function of TOTAL WALLCLOCK TIME PER RAY, taking into account both BVH construction and actual tracing.
MRays/s relative to maximum achievable ray tracing performance of SweepSAH


Check out the paper this comparison came from https://users.aalto.fi/~ailat1/publications/karras2013hpg paper.pdf


Check out the paper this comparison came from https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf

\section*{Evaluation of Combined Building + Traversal [2]}

Efficiency measured as a function of TOTAL WALLCLOCK TIME PER RAY, taking into account both BVH construction and actual tracing.


Check out the paper this comparison came from https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf

\section*{Spatial Acceleration Structures}
wien
\begin{tabular}{l|l|l|l}
\hline Structure & \begin{tabular}{l} 
Memory \\
Consumption
\end{tabular} & Building Time & \begin{tabular}{l} 
(Expected) \\
Traversal Time
\end{tabular} \\
\hline none & none & none & abysmal \\
\hline Regular Grid & \begin{tabular}{l} 
low - high \\
(resolution)
\end{tabular} & low & \begin{tabular}{l} 
uniform scene: ok \\
otherwise: bad
\end{tabular} \\
\hline Quadtree/Octree & \begin{tabular}{l} 
low - high \\
(overlap/uniformity)
\end{tabular} & low & good \\
\hline K-d Tree & \begin{tabular}{l} 
low - high \\
(overlap)
\end{tabular} & low - high & good - excellent \\
\hline BVH & low & low - high & good - excellent \\
\hline Rendering S Spatala Acceleation Structures & 88 & \\
\hline
\end{tabular}

\section*{BVH Building Hints}
- For each split, sort the node's portion of the triangle list \(L\) in-place

■ When constructing child nodes, pass them \(L\) and start/end indices

List L


Primitive that lands in left child
\(\square\) Primitive that lands in right child

\section*{BVH Building Hints}
- For each split, sort the node's portion of the triangle list \(L\) in-place

■ When constructing child nodes, pass them \(L\) and start/end indices

- For each split, sort the node's portion of the triangle list \(L\) in-place

■ When constructing child nodes, pass them \(L\) and start/end indices

- Don't loop over triangles at each \(i\) to get \(L S A(i)\) and \(R S A(i)\) !
- Precompute them once per node and axis instead
- Create two 0-volume bounding boxes \(B B_{L}, B B_{R}\)
- Allocate \(\mathrm{N}+1\) entries for \(L S A / R S A\), set \(L S A(0)=R S A(N)=0\)
- Iterate \(i\) over range [1, \(N\) ], for each \(i\) :
- Merge \(B B_{L}\) with the AABB of sorted triangle with index \((i-1)\)
- Store surface area of \(B B_{L}\) as value for \(L S A(i)\)
- Merge \(B B_{R}\) with the AABB of sorted triangle with index ( \(N-i\) )
- Store surface area of \(B B_{R}\) as value for \(R S A(N-i)\)
- Consider using stdlib container (e.g., vector)
- Try to avoid dynamic memory allocation

■ \(2 N-1\) is an upper bound for the total number of nodes you need
■ std::sort(<first>, <last>, <predicate>)
■ std::nth_element(<first>, <nth>, <last>, <predicate>)
■ Can be used for splitting if you don't need exact sorting
- Reorders the \(N\)-sized vector such that:
- \(n\) smallest elements are on the left
- \(N-n\) biggest are on the right

■ Faster than sorting!
- Each have their specializations, strengths and weaknesses

■ E.g., K-d Trees with ropes do not require a stack for traversal [5]
- Which acceleration structure is the best is contentious

■ Currently, BVHs are extremely widespread and well-understood

\section*{State-of-the-Art Variants and Trends}
- Higher child counts (>2) per node, mixed nodes (children + triangles)

■ Actually DO split triangles sometimes to get maximal performance
- Build BVHs bottom-up in parallel on the GPU [3]

■ In animated scenes, reuse BVHs, update those parts that change

■ Actually use built-in traversal logic of GPU hardware (NVIDIA RTX!)

\section*{References and Further Reading}

■ Interesting topics: BVHs for animation, LBVH, SIMD/packet/stackless traversal, Turing RTX architecture
- [1] Heuristics for Ray Tracing Using Space Subdivision, J. David MacDonald and Kellogg S. Booth, 1990
- [2] On Quality Metrics of Bounding Volume Hierarchies, Timo Aila, Tero Karras, and Samuli Laine, 2013

■ [3] Parallel BVH generation on the GPU, Tero Karras and Timo Aila, 2012
- [4] Fast Parallel Construction of High-Quality Bounding Volume Hierarchies, Tero Karras and Timo Aila, 2013
- [5] Stackless KD-Tree Traversal for High Performance GPU Ray Tracing, Stefan Popov, Johannes Günther, Hans-Peter Seidel and Philipp Slusallek, 2007

■ [6] Realtime Ray Tracing and Interactive Global Illumination, Phd Thesis, Ingo Wald, 2004
- [7] Bonsai: Rapid Bounding Volume Hierarchy Generation using Mini Trees, P. Ganestam, R. Barringer, M. Doggett, and T. Akenine-Möller, 2015```

