
Rendering: Spatial Acceleration Structures

Bernhard Kerbl

Research Division of Computer Graphics

Institute of Visual Computing & Human-Centered Technology

TU Wien, Austria
With slides based on material by Jaakko Lehtinen, used with permission

How to produce an image?

A good image needs realistic intensity and visibility

Intensity creates stimulus of optic nerve (black, white, color)

Visibility makes sure that objects adhere to depth
How would you process the scene on the right to make sure
the rendered output image is correct?

(Naïve) Ray-Casting Render Loop

Shoot a ray through each pixel into the scene

Iterate over all objects and test for intersection

Record the closest intersection (visibility)

Compute color and write to pixel (intensity)

Rendering – Spatial Acceleration Structures 2

Source: Wojciech Mula, Wikipedia “Painter's algorithm”

Render Loop

Rendering – Spatial Acceleration Structures 3

void render(Camera cam)
{

for(Pixel& pix : pixels)
{

pix.Color = background;

Intersection closest;
closest.Distance = INFINITY;

Ray ray = rayThroughPixel(cam, pix);

for (Triangle& tri : triangles)
{

Intersection sect = findClosestIntersection(ray, tri);
if(sect.Distance < closest.Distance) { closest = sect; }

}

if(closest.Distance != INFINITY) { pix.Color = computeColor(closest); }
}

}

void render(Camera cam)
{

for(Pixel& pix : pixels)
{

pix.Color = background;

Intersection closest;
closest.Distance = INFINITY;

Ray ray = rayThroughPixel(cam, pix);

for (Triangle& tri : triangles)
{

Intersection sect = findClosestIntersection(ray, tri);
if(sect.Distance < closest.Distance) { closest = sect; }

}

if(closest.Distance != INFINITY) { pix.Color = computeColor(closest); }
}

}

Spatial Aliasing

Rendering – Spatial Acceleration Structures 4

Those are your dad’s pixels!

Source: renderstuff.com/

http://renderstuff.com/

Supersampling

Instead of a single ray through each pixel, use multiple „samples“

Rendering – Spatial Acceleration Structures 5

Source: Parcly Taxel, Wikipedia “Supersampling”

Supersampling

Rendering – Spatial Acceleration Structures 6

void render(Camera cam)
{

for(Pixel& pix : pixels)
{

pix.Color = background;

Intersection closest;
closest.Distance = INFINITY;

Ray ray = rayThroughPixel(cam, pix);

for (Triangle& tri : triangles)
{

Intersection sect = findClosestIntersection(ray, tri);
if(sect.Distance < closest.Distance) { closest = sect; }

}

if(closest.Distance != INFINITY) { pix.Color = computeColor(closest); }
}

}

Antialiased

Source: renderstuff.com/

http://renderstuff.com/

Updated Render Loop

7

pix.Color = background;

Intersection closest;
closest.Distance = INFINITY;

for(int s = 0; s < NUM_SAMPLES; s++)
{

SampleInfo sInfo = drawSample();
Ray ray = rayThroughSample(cam, sInfo.Location);
for (Triangle& tri : triangles)
{

Intersection sect = findClosestIntersection(ray, tri);
if(sect.Distance < closest.Distance) { closest = sect; }

}

if(closest.Distance != INFINITY)
{

RGBColor sample = computeColor(closest);
pix.Color += filter(sInfo.Filter, RGBWColor(sample, 1));

}
}
pix.Color /= pixColor.w;

Rendering – Spatial Acceleration Structures

pix.Color = background;

Intersection closest;
closest.Distance = INFINITY;

for(int s = 0; s < NUM_SAMPLES; s++)
{

SampleInfo sInfo = drawSample();
Ray ray = rayThroughSample(cam, sInfo.Location);
for (Triangle& tri : triangles)
{

Intersection sect = findClosestIntersection(ray, tri);
if(sect.Distance < closest.Distance) { closest = sect; }

}

if(closest.Distance != INFINITY)
{

RGBColor sample = computeColor(closest);
pix.Color += filter(sInfo.Filter, RGBWColor(sample, 1));

}
}
pix.Color /= pixColor.w;

Updated Render Loop

8

Color and Light

Sample Integration

Rendering Equation

Filtering

Sampling

Rendering – Spatial Acceleration Structures

Let‘s look at the basic runtime (single sample per pixel)

Render Loop Run Time

9Rendering – Spatial Acceleration Structures

void render(Camera cam)
{

for(Pixel& pix : pixels)
{

…

for (Triangle& tri : triangles)
{

…
}

…
}

}

Let‘s look at the basic runtime (single sample per pixel)

This is 𝒪(𝑁 ⋅ 𝑀), but even worse, it’s Ω 𝑁 ⋅ 𝑀 !

Render Loop Run Time

10Rendering – Spatial Acceleration Structures

void render(Camera cam)
{

for(Pixel& pix : pixels) 𝑁
{

…

for (Triangle& tri : triangles) 𝑀
{

…
}

…
}

}

Is That Actually a Problem?

Run time complexity quickly
becomes a limiting factor

High-quality scenes can have several
million triangles per object

Current screens and displays
are moving towards
4k resolution

Rendering – Spatial Acceleration Structures 11

Rendering – Spatial Acceleration Structures 12

Amazon Lumberyard “Bistro”

3,780,244 triangles

1200x675 pixels

3 trillion ray/triangle

intersection tests?

At 10M per second, one shot

will take ~4 days.

Good luck with your movie!

Picture provide through Creative Commons CC-BY.4.0

What can we do about it?

For rendering, we will want to learn to run before we can walk

Find ways to speed up the basic loop for visibility resolution

Enter “spatial acceleration structures”

Essentially, pre-process the scene geometry into a structure that
reduces expected traversal time to something more reasonable

Rendering – Spatial Acceleration Structures 13

Spatial Acceleration Structures

Rendering – Spatial Acceleration Structures 14

Structure Additional Memory Building Time Traversal Time

none none none abysmal

Consider a group of triangles

Which ones should we test?

Speeding Up Intersection Tests

Rendering – Spatial Acceleration Structures 15

Overlay scene with regular grid

Sort triangles into cells

Traverse cells and test
against their contents

Regular Grids

Rendering – Spatial Acceleration Structures 16

Overlay scene with regular grid

Sort triangles into cells

Traverse cells and test
against their contents

Regular Grids

Rendering – Spatial Acceleration Structures 17

Overlay scene with regular grid

Sort triangles into cells

Traverse cells and test
against their contents

Regular Grids

Rendering – Spatial Acceleration Structures 18

Geometry is usually not uniform

Comes in clusters (buildings,
characters, vegetation…)

Regular Grids

19Rendering – Spatial Acceleration Structures

Geometry is usually not uniform

Comes in clusters (buildings,
characters, vegetation…)

Almost all triangles in one cell!
Hitting this cell will be costly!

Regular Grids

20Rendering – Spatial Acceleration Structures

Regular Grids

21Rendering – Spatial Acceleration Structures

Geometry is usually not uniform

Comes in clusters (buildings,
characters, vegetation…)

Almost all triangles in one cell!
Hitting this cell will be costly!

Using a finer grid works

Regular Grids

22Rendering – Spatial Acceleration Structures

Geometry is usually not uniform

Comes in clusters (buildings,
characters, vegetation…)

Almost all triangles in one cell!
Hitting this cell will be costly!

Using a finer grid works, but
most of its cells are unused!

Spatial Acceleration Structures

Rendering – Spatial Acceleration Structures 23

Structure Memory

Consumption

Building Time (Expected)

Traversal Time

none none none abysmal

Regular Grid low – high

(resolution)

low uniform scene: ok

otherwise: bad

Quadtrees and Octrees

24Rendering – Spatial Acceleration Structures

Start with scene bounds, do
finer subdivisions only if needed

Define parameters S𝑚𝑎𝑥, 𝑁𝑙𝑒𝑎𝑓

Recursively split bounds into
quadrants (2D) or octants (3D)

Stop after S𝑚𝑎𝑥 subdivisions or
if no cell has > 𝑁𝑙𝑒𝑎𝑓 triangles

Quad and Octrees: 𝑁𝑙𝑒𝑎𝑓 = 4

Start with scene bounds, do
finer subdivisions only if needed

Define parameters S𝑚𝑎𝑥, 𝑁𝑙𝑒𝑎𝑓

Recursively split bounds into
quadrants (2D) or octants (3D)

Stop after S𝑚𝑎𝑥 subdivisions or
if no cell has > 𝑁𝑙𝑒𝑎𝑓 triangles

25Rendering – Spatial Acceleration Structures

Quad and Octrees: 𝑁𝑙𝑒𝑎𝑓 = 4

Start with scene bounds, do
finer subdivisions only if needed

Define parameters S𝑚𝑎𝑥, 𝑁𝑙𝑒𝑎𝑓

Recursively split bounds into
quadrants (2D) or octants (3D)

Stop after S𝑚𝑎𝑥 subdivisions or
if no cell has > 𝑁𝑙𝑒𝑎𝑓 triangles

26Rendering – Spatial Acceleration Structures

1 2

34

Quad and Octrees: 𝑁𝑙𝑒𝑎𝑓 = 4

27Rendering – Spatial Acceleration Structures

.

3 41 2

1 2

34

Quad and Octrees: 𝑁𝑙𝑒𝑎𝑓 = 4

28Rendering – Spatial Acceleration Structures

1 2

34

.

3 41 2

3 41 2

Quad and Octrees: 𝑁𝑙𝑒𝑎𝑓 = 4

29Rendering – Spatial Acceleration Structures

1 2

34

.

3 41 2

3 41 2

Quad and Octrees: 𝑁𝑙𝑒𝑎𝑓 = 4

30Rendering – Spatial Acceleration Structures

.

3 41 2

3 41 2

3 41 2

1 2

34

Quad and Octrees: 𝑁𝑙𝑒𝑎𝑓 = 4

31Rendering – Spatial Acceleration Structures

.

3 41 2

3 41 2

3 41 2

1 2

34

Quad and Octrees

Triangles may not be contained
within a quadrant or octant

Triangles must be referenced in
all overlapping cells or split at
the border into smaller ones

32Rendering – Spatial Acceleration Structures

Quad and Octrees

Triangles may not be contained
within a quadrant or octant

Triangles must be referenced in
all overlapping cells or split at
the border into smaller ones

Can drastically increase
memory consumption!

33Rendering – Spatial Acceleration Structures

Spatial Acceleration Structures

Structure Memory

Consumption

Building Time (Expected)

Traversal Time

none none none abysmal

Regular Grid low – high

(resolution)

low uniform scene: ok

otherwise: bad

Quadtree/Octree low – high

(overlap/uniformity)

low good

Rendering – Spatial Acceleration Structures 34

BSP Trees & K-d Trees

Binary Space Partition Tree

Recursive split via hyperplanes

Left/right child nodes treat
objects in each half-space

Splits can be arbitrary!

35Rendering – Spatial Acceleration Structures

BSP Trees & K-d Trees, 𝑁𝑙𝑒𝑎𝑓 = 4

Binary Space Partition Tree

Recursive split via hyperplanes

Left/right child nodes treat
objects in each half-space

Splits can be arbitrary!

36Rendering – Spatial Acceleration Structures

.

A B

A

B

BSP Trees & K-d Trees, 𝑁𝑙𝑒𝑎𝑓 = 4

Binary Space Partition Tree

Recursive split via hyperplanes

Left/right child nodes treat
objects in each half-space

Splits can be arbitrary!

37Rendering – Spatial Acceleration Structures

.

A B

C

D

C D

E

F

E F

BSP Trees & K-d Trees, 𝑁𝑙𝑒𝑎𝑓 = 4

Binary Space Partition Tree

Recursive split via hyperplanes

Left/right child nodes treat
objects in each half-space

Splits can be arbitrary!

38Rendering – Spatial Acceleration Structures

.

A B

C D E F

G

H

G H

C

F

E

BSP Trees & K-d Trees

Binary Space Partition Tree

Recursive split via hyperplanes

Left/right child nodes treat
objects in each half-space

Splits can be arbitrary!

K-dimensional (K-d) Tree

Every hyperplane must be
perpendicular to a base axis

Limits search space for splits

39Rendering – Spatial Acceleration Structures

BSP Trees & K-d Trees, 𝑁𝑙𝑒𝑎𝑓 = 4

Binary Space Partition Tree

Recursive split via hyperplanes

Left/right child nodes treat
objects in each half-space

Splits can be arbitrary!

K-dimensional (K-d) Tree

Every hyperplane must be
perpendicular to a base axis

Limits search space for splits

40Rendering – Spatial Acceleration Structures

BSP Trees & K-d Trees, 𝑁𝑙𝑒𝑎𝑓 = 4

Binary Space Partition Tree

Recursive split via hyperplanes

Left/right child nodes treat
objects in each half-space

Splits can be arbitrary!

K-dimensional (K-d) Tree

Every hyperplane must be
perpendicular to a base axis

Limits search space for splits

41Rendering – Spatial Acceleration Structures

BSP Trees & K-d Trees, 𝑁𝑙𝑒𝑎𝑓 = 4

Binary Space Partition Tree

Recursive split via hyperplanes

Left/right child nodes treat
objects in each half-space

Splits can be arbitrary!

K-dimensional (K-d) Tree

Every hyperplane must be
perpendicular to a base axis

Limits search space for splits

42Rendering – Spatial Acceleration Structures

Spatial Acceleration Structures

Structure Memory

Consumption

Building Time (Expected)

Traversal Time

none none none abysmal

Regular Grid low – high

(resolution)

low uniform scene: ok

otherwise: bad

Quadtree/Octree low – high

(overlap/uniformity)

low good

K-d Tree low – high

(overlap)

low – high good – excellent

Rendering – Spatial Acceleration Structures 43

Find enclosing (“conservative”) volumes that are easier to test

Ideally: tight, but easy to check for intersection with ray

Common choices:

Bounding Spheres

Bounding Boxes
Axis-aligned (AABB)

Oriented (OBB)

Saves on computational effort if reject

Bounding Volumes

Rendering – Spatial Acceleration Structures 44

Axis-Aligned Bounding Boxes (AABBs)

AABBs are defined by their two extrema (min/max)

Linear run time to compute

Iterate over all vertices

Keep min/max values for
each dimension

Done!

Rendering – Spatial Acceleration Structures 45

Find the AABB that encloses multiple, smaller AABBs

Operates only on
extrema of each
smaller AABB

Merging process
is commutative

Merging AABBs

Rendering – Spatial Acceleration Structures 46

Bounding Spheres

Bounding spheres need a center Ԧ𝑐 and a radius 𝑟

For Ԧ𝑐, can pick the mean vertex
position or center of AABB

Once center is chosen, find vertex
position Ԧ𝑣𝑚𝑎𝑥 farthest from it

𝑟 = | Ԧ𝑐 − Ԧ𝑣𝑚𝑎𝑥|

Rendering – Spatial Acceleration Structures 47

How to Use Bounding Volumes

Can also be applied to entire objects

Reject entire object if volume is not hit

Good start, but what if…

…scene is not partitioned into objects?

…objects are extremely large (terrain)?

…objects are extremely detailed (characters)?

…there are millions of objects with ∼ 2 triangles each (leaves)?

Rendering – Spatial Acceleration Structures 48

Bounding Volume Hierarchy (BVH)

Each node of the hierarchy has its own bounding volume

Every node can be

An inner node: references child nodes

A leaf node: references triangles

Each node’s bounding volume is a
subset of its parent’s bounding volume
(i.e., child nodes are spatially contained by their parents)

49Rendering – Spatial Acceleration Structures

Bounding Volume Hierarchy (BVH)

The final hierarchy is (again) a tree structure with 𝑁 leaf nodes

Leaf nodes can be

Individual triangles

Clusters (e.g., ≤ 10Δ)

Total number of nodes for a binary tree: 2𝑁 − 1

If balanced, it takes ∼ log𝑁 steps to reach a leaf from the root

If trees have more than 2 branches, they require fewer nodes

51

Source: Schreiberx, Wikipedia “Bounding Volume Hierarchy”

Rendering – Spatial Acceleration Structures

What makes BVHs special?

Important feature: bounding volumes can overlap!

No duplicate references or
split triangles necessary!

Implicitly limits the amount
of memory required

52Rendering – Spatial Acceleration Structures

BVH Building

Generating BVH and tree
for input triangle geometry

CPU: usually top-down
GPU: usually bottom-up

From here on out, we will
consider box BVHs only

Rendering – Spatial Acceleration Structures 53

BVH Building, Top-Down

Rendering – Spatial Acceleration Structures 54

Define 𝑁𝑙𝑒𝑎𝑓 for leaves

For each node, do the following:

Compute bounding box that
fully encloses triangles & store

Holds ≤ 𝑁𝑙𝑒𝑎𝑓 triangles? Stop.

Else, split into child groups

Make one new node per group

Set them as children of current

Repeat with child nodes

BVH Building, Top-Down, 𝑁𝑙𝑒𝑎𝑓 = 4

Rendering – Spatial Acceleration Structures 55

Define 𝑁𝑙𝑒𝑎𝑓 for leaves

For each node, do the following:

Compute bounding box that
fully encloses triangles & store

Holds ≤ 𝑁𝑙𝑒𝑎𝑓 triangles? Stop.

Else, split into child groups

Make one new node per group

Set them as children of current

Repeat with child nodes

BVH Building, Top-Down, 𝑁𝑙𝑒𝑎𝑓 = 4

Rendering – Spatial Acceleration Structures 56

A

B

Define 𝑁𝑙𝑒𝑎𝑓 for leaves

For each node, do the following:

Compute bounding box that
fully encloses triangles & store

Holds ≤ 𝑁𝑙𝑒𝑎𝑓 triangles? Stop.

Else, split into child groups

Make one new node per group

Set them as children of current

Repeat with child nodes

BVH Building, Top-Down, 𝑁𝑙𝑒𝑎𝑓 = 4

Rendering – Spatial Acceleration Structures 57

.

BA

A

B

BVH Building, Top-Down, 𝑁𝑙𝑒𝑎𝑓 = 4

Rendering – Spatial Acceleration Structures 58

.

BA

C

D

E

F

DC FE

BVH Building, Top-Down, 𝑁𝑙𝑒𝑎𝑓 = 4

Rendering – Spatial Acceleration Structures 59

.

BA

DC FE

HG

G H

How to split a node?

Which axes to consider for building bounding boxes/splitting?

Basis vectors 1,0,0 , 0,1,0 , (0,0,1) only

Oriented basis vectors only

Arbitrary

Where to split?

Spatial median

Object median

Something more elaborate...

Rendering – Spatial Acceleration Structures 60

How to split a node?

Which axes to consider for building bounding boxes/splitting?

Basis vectors 1,0,0 , 0,1,0 , (0,0,1) only

Oriented basis vectors only

Arbitrary

Where to split?

Spatial median

Object median

Something more elaborate...

Rendering – Spatial Acceleration Structures 61

Algorithms exist (e.g. “separating axis theorem”),

but usually very slow!

Splitting at spatial median

Pick the longest axis (X/Y/Z)
of current node bounds

Find the midpoint on that axis

Assign triangles to A/B based
on which side of the midpoint
each triangle’s centroid lies on

Continue recursion with A/B
Rendering – Spatial Acceleration Structures 62

Splitting at spatial median

Careful: can result in infinite recursion!

All triangles are assigned again to
one node, none in the other

Can guard against it in several ways

Limit max. number of split attempts

Try other axes if one node is empty

Compute box over triangle centroids
and split that on longest axis instead

Rendering – Spatial Acceleration Structures 63

Pick an axis. Can try them all,
don’t pick the same every time

Sort triangles according to their
centroid’s position on that axis

Assign first half of the sorted
triangles to A, the second to B

Continue recursion with A/B

Splitting at object median

Rendering – Spatial Acceleration Structures 64

BVH Traversal

0. Set 𝑡𝑚𝑖𝑛 = ∞. Start at root node, return if it doesn’t intersect ray.

1. Process node if its closest intersection with ray is closer than 𝑡𝑚𝑖𝑛

2. If it’s an inner node, run from 1. for child nodes that intersect ray

Process the closest node first

Keep others on stack to process further ones later (recursion works)

3. If it’s a leaf, check triangles and update 𝑡𝑚𝑖𝑛 in case of closer hit

Rendering – Spatial Acceleration Structures 65

BVH Traversal Example

1. Process node if its closest intersection with ray is closer than 𝑡𝑚𝑖𝑛

Rendering – Spatial Acceleration Structures 66

BVH Traversal Example

1. Process node if its closest intersection with ray is closer than 𝑡𝑚𝑖𝑛

Rendering – Spatial Acceleration Structures 67

BVH Traversal Example

2. If it’s an inner node, run from 1. for child nodes that intersect ray

Process the closest node first

Keep others on stack to process further ones later

Rendering – Spatial Acceleration Structures 68

BVH Traversal Example

1. Process node if its closest intersection with ray is closer than 𝑡𝑚𝑖𝑛

Rendering – Spatial Acceleration Structures 69

BVH Traversal Example

1. Process node if its closest intersection with ray is closer than 𝑡𝑚𝑖𝑛

Rendering – Spatial Acceleration Structures 70

BVH Traversal Example

3. If it’s a leaf, check triangles and update 𝑡𝑚𝑖𝑛 in case of closer hit

Rendering – Spatial Acceleration Structures 71

BVH Traversal Example

3. If it’s a leaf, check triangles and update 𝑡𝑚𝑖𝑛 in case of closer hit

Rendering – Spatial Acceleration Structures 72

BVH Traversal Example

2. If it’s an inner node, run from 1. for child nodes that intersect ray

Process the closest node first

Keep others on stack to process further ones later

Rendering – Spatial Acceleration Structures 73

BVH Traversal Example

1. Process node if its closest intersection with ray is closer than 𝑡𝑚𝑖𝑛

Rendering – Spatial Acceleration Structures 74

BVH Traversal Example

1. Process node if its closest intersection with ray is closer than 𝑡𝑚𝑖𝑛

Rendering – Spatial Acceleration Structures 75

BVH Traversal Example

3. If it’s a leaf, check triangles and update 𝑡𝑚𝑖𝑛 in case of closer hit ()

Rendering – Spatial Acceleration Structures 76

BVH Traversal Example

3. If it’s a leaf, check triangles and update 𝑡𝑚𝑖𝑛 in case of closer hit ()

Rendering – Spatial Acceleration Structures 77

BVH Traversal Example

3. If it’s a leaf, check triangles and update 𝑡𝑚𝑖𝑛 in case of closer hit ()

Rendering – Spatial Acceleration Structures 78

BVH Traversal Example

3. If it’s a leaf, check triangles and update 𝑡𝑚𝑖𝑛 in case of closer hit ()

Rendering – Spatial Acceleration Structures 79

BVH Traversal Example

3. If it’s a leaf, check triangles and update 𝑡𝑚𝑖𝑛 in case of closer hit ()

Rendering – Spatial Acceleration Structures 80

The Surface Area Heuristic [1]

Simple, but powerful heuristic for choosing splits

Created with traversal in mind, based on the following ideas:

Assume rays are uniformly distributed in space

Probability of a ray hitting a node is proportional to its surface area

Cost of traversing it depends on the number of triangles in its leaves

Hence, avoid large nodes with many triangles, because:

They have a tendency to get checked often

Getting a definite result (reject or closest hit) is likely to be expensive

81Rendering – Spatial Acceleration Structures

Applying the Surface Area Heuristic

Goal: To split a node, find the hyperplane 𝑏 that minimizes

𝑓 𝑏 = 𝐿𝑆𝐴 𝑏 ⋅ 𝐿(𝑏) + 𝑅𝑆𝐴(𝑏) ⋅ (𝑁 − 𝐿 𝑏), where

• 𝐿𝑆𝐴 𝑏 /𝑅𝑆𝐴(𝑏) are the surface area of the nodes that enclose the
triangles whose centroid is on the “left”/“right” of the split plane 𝑏

• 𝐿(𝑏) is the number of primitives on the “left” of 𝑏

• N is the total number of primitives in the node

82Rendering – Spatial Acceleration Structures

The Sweep SAH BVH

We want to constrain the search space for a good split

Pick a set of axes to test (e.g., 3D basis vectors X/Y/Z)

When splitting a node with 𝑁 triangles, for each axis

Sort all triangles by their centroid’s position on that axis

Find the index 𝑖 that minimizes

𝑓 𝑖 = 𝐿𝑆𝐴 𝑖 ⋅ 𝑖 + 𝑅𝑆𝐴(𝑖) ⋅ (𝑁 − 𝑖), where

• 𝐿𝑆𝐴(𝑖) is the surface area of the AABB over sorted triangles [0, 𝑖)

• 𝑅𝑆𝐴(𝑖) is the surface area of the AABB over sorted triangles [𝑖, 𝑁)

Select the axis and index 𝑖 with the best 𝑓 𝑖 for the split overall!
83Rendering – Spatial Acceleration Structures

Importance of Optimizing Splits

Important trade-off: building time vs. traversal time

Given the same tracing/traversal code, the quality of a BVH tree
may have a big impact on performance!

Can be as high as 2x compared to naïve splitting

Benefits depend on the parameters of your rendering scenario

How big is your scene and how are triangles distributed?

How long will your BVH be valid?

What are the quality requirements for your images?

Rendering – Spatial Acceleration Structures 84

Evaluation of Combined Building + Traversal [2]

Rendering – Spatial Acceleration Structures 85

Check out the paper this comparison came from https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf

https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf

Evaluation of Combined Building + Traversal [2]

Rendering – Spatial Acceleration Structures 86

Check out the paper this comparison came from https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf

https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf

Evaluation of Combined Building + Traversal [2]

Rendering – Spatial Acceleration Structures 87

Check out the paper this comparison came from https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf

https://users.aalto.fi/~ailat1/publications/karras2013hpg_paper.pdf

Spatial Acceleration Structures

Structure Memory

Consumption

Building Time (Expected)

Traversal Time

none none none abysmal

Regular Grid low – high

(resolution)

low uniform scene: ok

otherwise: bad

Quadtree/Octree low – high

(overlap/uniformity)

low good

K-d Tree low – high

(overlap)

low – high good – excellent

BVH low low – high good – excellent

Rendering – Spatial Acceleration Structures 88

BVH Building Hints

Rendering – Spatial Acceleration Structures

For each split, sort the node’s portion of the triangle list L in-place

When constructing child nodes, pass them L and start/end indices

89

BVH Building Hints

Rendering – Spatial Acceleration Structures

For each split, sort the node’s portion of the triangle list L in-place

When constructing child nodes, pass them L and start/end indices

90

BVH Building Hints

Rendering – Spatial Acceleration Structures

For each split, sort the node’s portion of the triangle list L in-place

When constructing child nodes, pass them L and start/end indices

91

SAH Coding Hints

Rendering – Spatial Acceleration Structures

Don’t loop over triangles at each 𝑖 to get 𝐿𝑆𝐴 𝑖 and 𝑅𝑆𝐴(𝑖)!

Precompute them once per node and axis instead

Create two 0-volume bounding boxes 𝐵𝐵𝐿, 𝐵𝐵𝑅
Allocate N+1 entries for 𝐿𝑆𝐴/𝑅𝑆𝐴, set 𝐿𝑆𝐴 0 = 𝑅𝑆𝐴 𝑁 = 0

Iterate 𝑖 over range [1, 𝑁], for each 𝑖:

Merge 𝐵𝐵𝐿 with the AABB of sorted triangle with index (𝑖 − 1)

Store surface area of 𝐵𝐵𝐿 as value for 𝐿𝑆𝐴(𝑖)

Merge 𝐵𝐵𝑅 with the AABB of sorted triangle with index (𝑁 − 𝑖)

Store surface area of 𝐵𝐵𝑅 as value for 𝑅𝑆𝐴(𝑁 − 𝑖)

92

BVH Building Hints (C++)

Consider using stdlib container (e.g., vector)

Try to avoid dynamic memory allocation

2𝑁 − 1 is an upper bound for the total number of nodes you need

std::sort(<first>, <last>, <predicate>)

std::nth_element(<first>, <nth>, <last>, <predicate>)

Can be used for splitting if you don‘t need exact sorting

Reorders the 𝑁-sized vector such that:

𝑛 smallest elements are on the left

𝑁 − 𝑛 biggest are on the right

Faster than sorting!
93Rendering – Spatial Acceleration Structures

BVH vs K-d Tree vs Others

Each have their specializations, strengths and weaknesses

E.g., K-d Trees with ropes do not require a stack for traversal [5]

Which acceleration structure is the best is contentious

Currently, BVHs are extremely widespread and well-understood

Rendering – Spatial Acceleration Structures 94

State-of-the-Art Variants and Trends

Higher child counts (>2) per node, mixed nodes (children + triangles)

Actually DO split triangles sometimes to get maximal performance

Build BVHs bottom-up in parallel on the GPU [3]

In animated scenes, reuse BVHs, update those parts that change

Actually use built-in traversal logic of GPU hardware (NVIDIA RTX!)

Rendering – Spatial Acceleration Structures 95

References and Further Reading

Interesting topics: BVHs for animation, LBVH, SIMD/packet/stackless traversal, Turing RTX architecture

[1] Heuristics for Ray Tracing Using Space Subdivision, J. David MacDonald and Kellogg S. Booth, 1990

[2] On Quality Metrics of Bounding Volume Hierarchies, Timo Aila, Tero Karras, and Samuli Laine, 2013

[3] Parallel BVH generation on the GPU, Tero Karras and Timo Aila, 2012

[4] Fast Parallel Construction of High-Quality Bounding Volume Hierarchies, Tero Karras and Timo Aila, 2013

[5] Stackless KD-Tree Traversal for High Performance GPU Ray Tracing, Stefan Popov, Johannes Günther,
Hans-Peter Seidel and Philipp Slusallek, 2007

[6] Realtime Ray Tracing and Interactive Global Illumination, Phd Thesis, Ingo Wald, 2004

[7] Bonsai: Rapid Bounding Volume Hierarchy Generation using Mini Trees, P. Ganestam, R. Barringer, M.
Doggett, and T. Akenine-Möller, 2015

Rendering – Spatial Acceleration Structures 96

