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Abstract

The objective of Cartoon Style Rendering is to produce a cartoon
looking rendering out of a 3D scene. Instead of rendering photore-
alistic images the focus lies on artistic and stylistic characteristics.
In this paper we give an overview of the common methods to gen-
erate cartoon looking scenes. We describe the basic techniques for
the silhouette edge detection and the shading of the interior. Then
we show how to enhance these techniques to mimic various car-
toon styles and methods for special effects. We present methods for
silhouette edge detection that operate in image-space as well as in
object-space. For the interior shading we describe cel-shading, self-
shadowing, diffuse-lighting and specular highlights. Then several
approaches for enhanced cartoon style rendering follow, namely
Chinese Painting, Pencil Drawings, and different styles of comic
artists. Afterwards we show some possibilities for special effects in
cartoon style renderings, including simulation of liquids and smoke
as well as methods for stylistic shadows.

CR Categories: I.3.7 [Computer Graphics]: Three dimensional
graphics and realism—;

Keywords: cartoon style rendering, rendering, non-photorealistc
rendering, artistic

1 Introduction

Cartoon style rendering is a part of the non-photorealistic ren-
dering (NPR) techniques. The field of non-photorealistic render-
ing aims at simulating handmade illustrations with computer algo-
rithms. In other words, non-photorealistic rendering imitates non-
photographic techniques, such as pen and ink drawings, paintings
or comic style drawings [Gooch et al. 1998; Spindler et al. 2006].

NPR techniques are often useful when we want to emphasize on a
particular aspect of the picture we want to create, for example in
a technical illustration many details are left out to show the most
important features, which are the only ones we are concerned of.
Its the same with cartoons and comic, studies have shown that we
can perceive the emotions of cartoon drawn faces much more easily
than of photorealistic ones. So we see that the abstraction, which
cartoon style renderings and all the other NPR styles use, help us
to emphasize on the important features we want to show. Differ-
ent applications need a different level of abstraction and need to
concentrate on different aspects of the content.
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This paper starts with a short summary of several non-photorealistic
rendering applications and describes their underlying approach and
their usage.

One application area of NPR aretechnical illustrations. This term
summarizes illustration conventions used in technical manuals, il-
lustrated textbooks, encyclopedias and similar forms. The commu-
nication of geometry information is their primary objective. A nor-
mal photograph would confuse the observer by the details. There-
fore the object is described in a more abstract form. Leaving out
unnecessary information in the final image improves the perception
of the objects main characteristics [Gooch et al. 1998].

Another approach of NPR is the emulation of various artistic styles.
There are many different styles of artistic drawings, depending on
the country and the preferences of the artist. Some combine differ-
ent styles or even create there own ones. Therefore we only men-
tion a selection of styles, where methods for NPR rendering already
exist.

Watercolor paintings are created with a water soluble color, com-
posed of pigments. Several different colored layers are applied with
a brush to the painting background. The background color shim-
mers through, due to the transparent colors. In chinese and japanese
painting the watercolor technique is the dominant form and is of-
ten drawn in monochromatic black or brown tones. This aesthetic
form of NPR was used in the computer game Okami(see Figure 1),
which was released in the year 2006. A similar NPR technique that
simulate a chinese painting style will be discussed later.

Figure 1:Still from the computer game Okami, which uses a NPR
chinese painting technique in realtime.

Another common drawing style ispencil rendering. It is used for
sketches but has also established as an autonomous art style. The
basic element in a pencil drawing is the line. Outlines represent the
main features of the object and are drawn usually with a thicker line.
Interior regions are filled with hatching and simulate spatial effects
or different tones. Normal hatching uses parallel lines, whereas in



cross hatching, as the name already explains, uses crossed lines. An
NPR technique for pencil rendering in real time is also discussed in
the paper(see Figure 2).

Figure 2: Drill. Generated with an NPR pencil rendering method
in realtime.

The next NPR method iscartoon style rendering. As the name
suggests, cartoon style rendering has its origin in comic books and
cartoon movies. Essential of the traditional cartoon stylized look
are the black outline and the solid color of the interior regions(see
Figure 3). The aim is to produce a flat looking 2D comic style
image out of a 3D model. This basic cartoon style rendering tech-
nique is called cel shading, also know as toon shading. It is used
in a few animation movies, for example the recent movie ”Simp-
sons the movie”, but is also required in real time applications, like
computer games (Okami, Zelda Windmaker, etc).

Another field of application is the rapid prototyping of cartoon
movies. Before an artist starts with the time consuming painting
and inking process, an animation environment can be used to test
animation, coloring and shot angles [Lake et al. 2000].

Besides the traditional cel shading more sophisticated cartoon ren-
dering methods have been developed. Instead of only replicat-
ing the material of an object, NPR methods for enhanced carton
style rendering have been found, which mimic a particular drawing
style of comic artists, like the Sin-City style of Frank Miller or the
graphic style of Mike Mignola in the hellboy comic series.

It is difficult to model a realistic looking human character. Paradox-
ically they look strange to the viewer, even when the textures come
from photographs of real people. It is the same with the anima-
tion of characters. People are able to appreciate a life like motion
for an animated character in cartoon style, but for a photorealistic
human model a similar animation is annoying [Lander 2000]. Car-
toon style rendering is capable of broadening our ability to commu-
nicate thoughts, emotions, and feelings through computers. More
people can identify themselves with the characters and the story, if
the scene and included objects are in an abstract style [Lake et al.
2000].

Silhouette edges are an important factor in cartoon drawings. They
express shapes and the visual style of an cartoon character(see Fig-
ure 4). In short, a 3D computer model used in computer games or
animation movies is defined by vertices, which are connected by
edges. The faces of the object normally are triangles, built up by
the edges. In NPR a silhouette edge is an edge we want to stroke out
in the final rendering. Silhouette edges are distinguished in contour

Figure 4:Still from the computer game XIII. Black silhouette edges
simulate an aesthetic comic look.

edges, crease edges and marked edges. The geometric classifica-
tion of an edge is done by some algebraic vector calculation of the
surface normal vectors adjacent to an edge. If the edge is shared by
a front and back a face, it is classified as a contour edge, also called
a silhouette. Crease edges are defined by the angle of the faces nor-
mal vector and marked edges which are defined by the modeling
artist. Back and front faces can be found by the dot product of the
face normal vector and the vector of the viewing direction(see Fig-
ure 5). The dot product of a front face is negative and for a back
face it is positive or zero. The dot product of two vectors is the co-
sine of the angle between them and is used to classify the silhouette
edges.

Figure 5:Back face polygon. N is the surface normal vector and V
is the viewing vector.

In the traditional shading model(see equation 1)the color of a sur-
face is not calculated physically correct. A lighting model - which
is a synonym for shading model - approximates the physical law to
reduce the computation complexity. The color of a surface is the
sum of an ambient, diffuse and specular term. The realation of the
vectors used in the traditional shading model fromequation 1are
specified inFigure 6.

I = Ia ∗ka + Id ∗kd ∗ (L ·V)+ Is∗ks∗ (V ·R)ns (1)

The ambient termIa∗ka approximates the background lighting and
the global diffuse reflections.Ia is the ambient light andka the am-
bient material coefficient. The ambient term produces a flat light.

Diffuse reflection assumes that each incident light is scattered with
equal intensity in all directions. The reflecting surfaces are also



(a) Zelda Windwaker. (b) Pop-art image by Roy Lichtenstein. (c) Sin-city by Frank Miller.

Figure 3:Several examples for a cartoon stylized look. Cartoon style rendering used in the Computer game Zelda Windwaker (a). Pop-Art
image by Roy Lichtenstein with smoke particles (b). An enhanced cartoon style look, like the double contour lines, is used by Frank Miller in
his Sin-City comic series (c).

called diffuse reflectors and are approximated by the Lambert’s co-
sine lawId ∗ kd ∗ (L ·V) (see Figure 7). Id is the diffuse light and
kd is the diffuse material coefficient. The number of light rays in-
tersecting a surface is proportional to the dot product of the light
direction vectorL and the surface normalN.

Figure 6:Vectors for the traditional shading model. L is vector to
the light direction. N is the surface normal. V is the vector to the
viewing direction. R is the reflection vector.

Figure 7: Lambert’s cosine law. The amount of reflected light is
proportional to the angle between the incident light and the surface
normal N.

The specular term simulates the shininess of a surface and depends
on the material properties. Dull surfaces have a wider reflection
range than shiny surfaces. The empirical calculation mode uses
an exponential value of the dot product from the viewing and the
reflection vector. A shiny surface has high exponent.Is is specular
light, ks is specular material coefficient,V is viewing vector,R is
reflection vector, andns is shininess [Hearn and Baker 2003].

On todays consumer graphics hardware the integrated standard
shading model for surfaces is goraud shading. In goraud shading
the color for each vertex is calculated with the traditional shading
model and interpolated linearly over the surface. This results in an
smooth surface color.

The aforementioned traditional shading technique is also the foun-
dation of the interior shading in cartoon style rendering and essen-
tial to understand NPR processes. The interior shading of a cartoon
looking scene is done with discrete color values. This means in-
stead of a smooth surface color, as it is calculated by the goraud
shading method a solid shaded surface, or in other words a more
stylized shaded surface is desired. This is the reason why the result
of the traditional shading technique can not be used without any
changes to color the interior regions. Several NPR methods, which
utilize this value are introduced in the rest of this paper.

We describe the basic techniques for creating cartoon looking
scenes, which consists of the silhouette edge detection and the in-
terior shading (see section 3). Furthermore we present methods
extending the basic technique to generate pencil drawings (see sec-
tion 4.1) and chinese paintings (see section 4.2). Afterwards we
present several methods to render cartoon styles of different comic
artists (see section 4.2.1) and methods to process effects, like liquid
surfaces, smoke and shadows (see section 4.3).

2 Previous Work

A variety of work has been done in comic- and non-photorealistic
rendering. In this paragraph we review these previously published
works.

Decaudin built a non realtime rendering system for a 3D scene with
a cartoon looking output, using OpenGL [Decaudin 1996]. They
use a multi-pass rendering approach to detect edges. Discontinu-
ities in the z-buffer and normal-buffer are detected and used for
drawing the edges. The z-buffer from the light source is used to
calculate shadow maps and the composition of all rendering passes
produce a cel shaded picture. The output looks like a basic comic
with shadows.

Lake et al. show techniques for emulating cartoon style graphics in
real time. Various different styles were achieved [Lake et al. 2000].
Using textures for contours and for the interior of the cel (a cel
in cartoons is usually an area surrounded by an inked line). Real



time pencil sketching can be emulated. New methods for detecting
silhouettes and crease edges using the normal of the faces are also
proposed. This rendering system scales to the hardware used and
renders cartoons or sketch style graphics in real time.

Silhouettes are of artistic importance for cartoon style graphics and
play a very important role in NPR in general. Wang et al. as well as
Hertzmann introduce important techniques and algorithms for sil-
houette detection [Wang et al. 2004; Hertzmann 1999]. Algortihms
are analyzed and classified according to their use.

Gooch et al. use non-photorealistic rendering methods to create
technical illustrations [Gooch et al. 1998] . These are normally
hand drawn, but with the right degree of abstraction and coloring
and adjusting the hue and the luminance, they show a technique for
creating technical illustrations based on a 3D scene.

Silhouette, edge and crease detection algorithms often perform per-
edge and per-face mesh computations using global adjacency infor-
mation, which is unsuitable for an implementation on modern hard-
ware using pixel- or vertex-shaders, where only local information
is accessible. McGuire and Hughes describe a technique to pack
global adjacency information into a vertex data structure [McGuire
and Hughes 2004] . Using this algorithm they manage to compute
feature-edges entirely on the hardware. Furthermore they use it to
draw thick contours and describe methods for mapping stroke tex-
tures on the thick contours.

The aforementioned resources shows only techniques for rendering
cartoon style imagery of a static scene and characters, but not ef-
fects like liquid animations or smoke. Eden et al. publish a method
to render a liquid surface obtained from a three-dimensional phys-
ically based liquid simulation system in cartoon style inspired by
cartoons such as Futurama and The Little Mermaid [Eden et al.
2007]. They use bold outlines to show depth discontinues, patches
of constant color to highlight near-silhouettes and areas of shini-
ness. With these approaches they achieved cartoon style water ani-
mations.

Diepstraten and Ertl extend the hard shading algorithm for cel shad-
ing from Lake et al. to render transmissive and reflective surfaces in
cartoon style [Diepstraten and Ertl 2004; Lake et al. 2000]. They
use new methods because techniques for photorealistic rendering
can not be applied.

Selle et al. propose a technique for producing artistic and physically
correct smoke renderings [Selle et al. 2004] . They use the output of
a smoke simulator to obtain physically correct behavior and create
an abstract picture using simple color and line strokes only.

McGuire and Fein use a similar approach for rendering smoke
[McGuire and Fein 2006]. They use a particle system to render
animated smoke in real time. For self-shadowing effects they use
nailboard shadow volumes that create complex shadows from few
polygons, only three polygons are drawn per particle. For smoke
simulation they use a simulator that is artistically controllable. This
method is very usable for application where performance and ex-
pressiveness is needed, for example games and rapid development
systems for animations.

Petrovic et al. invented a system to support comic artists with draw-
ing shadows in an existing, hand drawn, scene [Petrovic et al.
2000]. The method is semi-automatic and the input from the user
is required. The user has to specify the depth of various objects in
the scene. The method employs a scheme for ”inflating” a 3D fig-
ure based on the hand-drawn art. This method is especially useful
when shadows are cast by a complex object and/or fall over inter-
esting shapes.

Cartoon drawing is an art, and contrary to photorealistic render-
ing cartoon style rendering can be used to produce many different
styles. If we think of cartoons or comics we see that hardly any
cartoon looks like another, each one has a distinct style.

For example traditional chinese painting is famous for its freehand
brushwork an lingering spirits. It is primarily done with a brush
pen dipped in pine soot made ink. Cartoons made by this tech-
nique are called ink-and-wash cartoons. Yuan et al. propose a
method for rendering and animating this style of comic [Yuan et al.
2007]. They use a GPU-based real-time approach that automati-
cally converts animated 3D models into Chinese-style cartoon. The
rendering process uses interior shading, silhouette extracting and
background shading. This method can be used to create games and
movies and greatly simplifies the process of creating animated chi-
nese cartoons.

Spindler et al. enhance the cel rendering techniques to achieve ren-
dering styles inspired by Frank Miler’s ”Sin City” and McFarlane’s
”Spawn” [Spindler et al. 2006]. They implement four new cartoon-
like rendering styles, namely: stylistic shadows, double contour
lines, soft cel shading and pseudo edges. All of them are applicable
for real-time rendering and can be used in stylistic games.

Lee et al. present a real-time technique for rendering 3D scenes in
pencil drawing style [Lee et al. 2006]. They incorporate the char-
acteristics of pencil drawing into the rendering process, which runs
on the GPU. For contours, a multiple contour drawing technique
is used that imitates trial-and-errors of humans in contour draw-
ing. A simple approach for mapping oriented textures onto surfaces
was presented for interior shading. The quality of pencil rendering
was improved compared with previous methods, textures that re-
flect the properties of graphite pencils and paper were generated
and mapped.

3 Techniques

3.1 Silhouette edge detection

Silhouettes define the basic shape of an object. They are view based
dependent that is they have to be recalculated when the viewpoint
(eye point) changes. In a realtime or interactive system this calcula-
tion is typically updated every frame. The silhouette edge detection
(SED) algorithms can be classified in image space and object space
methods.

A recapitulation of the silhouette definition from the introduction
paragraph is given before this two SED algorithms are discussed in
more detail. The outline or silhouette is an edge which connects
a back facing polygon to a front facing polygon. A back facing
polygon is invisible to the viewer and a front facing polygon is po-
tentially visible. InFigure 8 the silhouette edge highlights the ob-
ject from the background and describes the objects profile. Internal
discontinuities are also represented by this type of silhouettes.

Figure 8: Silhouette edge connecting a front face and a back face
polygon.



The next silhouette type is the crease edge. They can be classified
in a ridge edge and a valley edge. Both depend on the dihedral
angle of the adjacent polygons. For ridge edges the value of the
angle is less than a threshold and for valley edges it is greater than a
specified threshold. Material edges are defined by the artists during
the modeling process. They are computed in advance and must not
be recalculated during the animation phase every frame. Another
silhouette type, called boundary for non solid objects, for example
a sheet of paper, exists. It has a marginal role in cartoon style ren-
dering, where mostly closed objects are used.Figure 9 shows the
various types of silhouette edges, whereB is a boundary edge,C is
a crease edge,M is a material edge andS is a silhouette.

Figure 9:Several types of silhouette edges. B is a boundary edge.
C is a crease edge. M is a material edge. S is a silhouette.

Image SED algorithms detect edges with image processing meth-
ods. They do not need the 3D geometry information of an object,
because the algorithm works with the final rendered 2D image of
the object or scene. Furthermore the computational complexity cor-
responds to the image resolution and is constant if the image reso-
lution remains constant. The amount of geometry data has no in-
fluence on the calculation time and effort required, so image based
algorithms scale well.

A simple approach is to use the color buffer (which contains the
color value for every pixel) to detect silhouettes with image space
SED algorithms. However the result is not convincing, because it
will not find an edge for overlapping objects with the same color.
Moreover objects with detailed textures will produce edges with no
relevance to the object.

Another approach is to use geometry characteristics, like the depth
buffer and a normal map. On todays hardware the visibility detec-
tion is done with the depth buffer. It is an image space method
and contains the depth value for every visible pixel. The scene
is rendered and the depth values are extracted. A edge detection
algorithm is applied to the depth values stored in an image or a
texture. Depth values between different objects are large, whereas
depth values for the same object are small. With the depth buffer
only C0 surface discontinuities can be detected, that means crease
edges are not found.

The normal map contains the components of the normal vector for

every pixel. Each value in the color-buffer, depth-buffer and normal
buffer is associated to a corresponding 3D point. The values in the
normal map can be produced by rendering the scene two times. The
material coefficients of each object are set to a pure diffuse light
and three directional lights with the colors red, green and blue are
positioned on the coordinate axis. In the second rendering step the
light positions are inverted on the coordinate axis and finally the
normal components are computed by subtracting the two results of
the light intensities [Decaudin 1996].

Another method to fill the normal map is to use a shader. A shader
makes it possible to alter the fixed-functional pipeline of the graphic
processing unit with a user defined program. On todays graphic
hardware three stages of the pipeline are represented, namely the
vertex-, fragment- and geometry-stage. The latter is only presented
on modern hardware and is not needed for the normal map calcula-
tion. In the vertex shader the normal is sent to the fragment shader
and automatically interpolated over the polygon surface. After-
wards in the pixel shader - because of the interpolation - the normal
can be accessed per pixel. An image processing method for edge
detection is applied to the normal map. C1 discontinuities - de-
tection of crease edges - can be found by the normal map method.
Afterwards the two images are combined to get the silhouettes(see
Figure 10).

Figure 10:(a) Depth buffer. (b) Detected silhouette edges using the
depth buffer. (c) Normal map. (d) Detected silhouette edges using
the normal map. (e) The Final image is a combination of the edges
detected by the depth buffer and the normal map.

A drawback of image space SED algorithms is that the 3D infor-
mation is no more available and the generation of stylished edges is
more complex than to object space methods. Object space methods
exists for polygonal meshes and free-from surfaces.

An easy method to detect object space methods for polygons is to
check all edges. Two normal vectors of the adjacent polygon faces
are stored for every edge. Afterwards the result of the dot productis
evaluated. For non-interactive animation this simple method is suf-
ficient. For real-time applications it is too time consuming, because
the silhouette edge have to be recomputed every frame.

The idea is to take advantage of coherence information to speed up
this calculation and test only a few edges. The first coherence infor-
mation to improve the performance is that a silhouette edge never
exists in isolation. There is always an neighboring silhouette edge
at the two points defining an edge. Small changes in the viewing
parameters is the requirement for the second coherence informa-
tion. The possibility is very high that a given chain of silhouette
edges contains edges that were also detected as silhouette edges in
the previous frame. Markosian describes an algorithm to randomly



select edges for the testing process [Markosian et al. 1997]. The
algorithm is about 5 times faster than the brute force method, but
there is no guarantee to detect all edges.

The silhouette edge detection for a free form surfaces is different
to objects represented by polygons. The most common represen-
tation of free form surfaces are NURBS (Non-Uniform Rational B
Splines) and subdivision surfaces. The silhouette for smooth sur-
faces is the set of pointsxi where the surface normalni is perpen-
dicular to the viewing vector(see equation 2).

ni ∗ (xi −C) = 0, (2)

whereC is the position of the camera center(see Figure 11).

Figure 11: The silhouette of a smooth surface is the set of points
where the surface normal is perpendicular to the viewing vector.

Hertzmann describes an algorithm to find the silhouette edges of
free form surfaces approximated by a triangular mesh [Hertzmann
1999]. In the first step they calculate the dot product of the surface
normal and the view vector for each vertex. Two perpendicular vec-
tors have a dot product of 0, so the goal is to find these. Because
the value of the dot product varies smoothly over the surface only
the sign of the dot product is interesting. If the sign of the two
edge vertices is different than there must be a silhouette point on
this edge. The position on the point is computed by an linear inter-
polation along the specified edge. Finally a silhouette is generated
between the determined silhouette points of the triangle mesh. This
process is repeated for every triangle(see Figure 12). For large tri-
angles the generated silhouette edges are very coarse and not every
silhouette edge can be detected.The solution for this problem is to
produce smaller triangles and refine the mesh.

Typically the silhouette edges are rendered with a simple black line.
However more artistic line styles can be generated with the addi-
tional geometry information available within the object space SED
algorithms. Various textures can be applied to the silhouette edges
to achieve more sophisticated line styles.

Lake present a method that a texture follows the curvature of the
edge [Lake et al. 2000]. Three different textures corresponding
to the curvature of the line strokes are used(see Figure 13). The
chosen edge texture depends on the angle of the edgeE1 with it’s
successor edgeE2. The angle can be determined by the dot product
of this two vectors. If the angle of the two corresponding edges is
smaller than a specified valued a texture with a leftward stroke is
applied. If the angle is greater than the valued a rightward stroke is
used. Otherwise a straight stroke is mapped onto the quadrilateral
representing the edge(see equation 3).

Figure 12:Silhouette points lies on edges with a different sign of the
dot product for the vertices. The position is determined by a linear
interpolation. Afterwards all resulting point are connected to form
the silhouette edge.

E1 ·E2 =











≤−cos(d) use leftward texture
−cos(d) < 0 > cos(d) use straightward texture
≥ cos(d) use rightward texture

(3)

Figure 13:Different textures for generation of stylized strokes (from
left to right): Rightward stroke, Straight stroke and Leftward stroke

A simplified 2D scene shows the difference between a drawing us-
ing only straight strokes and a more stylized version with silhouette
edges depending on the curvature(see Figure 14). Other artistic
effects can be generated by varying the width of the quadrilater-
als. However this algorithm produces new problems while render-
ing the stylized silhouette edge. The effect can be observed easily
by the viewer in regions with high curvature. Moreover the textured
quadrilaterals can overlap with the polygons of the texture and gaps
in the silhouette edge can result for quads with sharp angles.

3.2 The Painter

The aim of the Painter is to produce a flat looking image out of the
3D models. With this method a variety of styles can be produced by
varying the shadow an highlight parameters and weighting factors
of the shading calculations.

By creating animations and cartoons the artists deliberately abstract
from the real world and reduce the visual detail in order to empha-
size the emotions and humor in the story. In contrary to shading the
character in 3D, the cartoon artists use a solid color that does not
change in the over cel expect for maybe a hard edge between the



Figure 14: Scene with straight silhouette edges and a scene with
stylished strokes depending on the curvature of the edge.

shadowed and illuminated surface. In the shadow part of the object
an artist will often use a darkened color of the main material color.
This helps to add lighting to the scene and adds cues to the shape
and context of the character in a scene. There is mostly a boundary
between the light and the dark color, which is a hard edge, deter-
mined by the properties and shape of the character or object. This
technique is called hard shading.

This hard shading technique proposed by Lake et al. relies on tex-
ture mapping and the mathematics of traditional diffuse lighting
[Lake et al. 2000]. It tries to find a transition boundary and shades
on each side of the boundary with a solid color, rather then inter-
polating smoothly across the model.equation 4is used to calculate
the lightning for non cartoon styles with gradient color transitions:

Ci = ag×am+al ×am+Max(L∗n,0)×dl ×dm (4)

Ci is the vertex color,ag is the coefficient of global ambient light,
al and dl are the ambient and diffuse coefficients of the object’s
material.L is the unit vector from the light source to the vertex, and
n is the unit vector normal to the surface at the vertex. The result of
L∗n is the cosine of the angle formed between the two vectors.

The math for the hard shading algorithm is essentially the same.
But only a discrete number of colors will be used, mostly two (one
for the illuminated part and one for the shadowed part of the char-
acter). These two colors can be set for each material or can be
calculated. The color for the illuminated part can be calculated if
we set the dot product ofequation 4to 1 (as if the light vector and
the normal vector point in the same direction) and the shadow color
can be computed if we set the dot product in the equation to 0 (as if
the light vector and the normal vector are orthogonal to each other).
If more colors are desired the dot product can be set to an arbitrary
value for the computation of the color. This results in a one dimen-
sional texture containing two or more texels. This texture is only
needed to be computed once for every material and therefore can
be computed at startup or when creating the model.

Just as in calculating the colors for smooth shading, the colors
for the hard shading algorithm depend on the cosine of the an-
gle between light and normal vectors. For every frame and vertex
Max(L ∗n,0) is calculated and used as texture coordinates for the
pre-computed one-dimensional texture map. A threshold is used to
decide which texel is chosen. For example whenMax(L ∗n,0) <
0.5 the shadow color is used and forMax(L ∗n,0) >= 0.5 the il-
luminated color is used(see Figure 15). This creates a hard edge
between the two colors. If more colors are desired then for every
color an interval for the dot product is needed.

Figure 16shows a rendering of an character with these methods.

Figure 15: Generation of texture coordinates from Max(L ∗ n,0).
0.5 is used as the shadow boundary.

We can clearly see the hard edges between the shadowed and the
illuminated surface. The look of traditional cartoons can be simu-
lated very well.

If you examine the edge closely it may look jagged. In this case
3D graphic APIs offer texture-filters which can help. The linear
texture-filtering mode smoothes the color boundaries, but if the
polygon is too big, than the smooth transition may be too wide.
The ”nearest” texture-filtering mode chooses the nearest texel to a
pixel and results in an applicable result.

Figure 16:Ogre Olaf rendered with hard shading and inked silhou-
ettes.

Notice that this method needs to do a dot product for each vertex per
frame. This can easily be done on the GPU which would increase
performance, it will be explained later.

Here are the preprocess and runtime portions of the hard shading
algorithm as in [Lake et al. 2000]:

• Preprocess

1. Calculate the illuminated diffuse color for
each material:

Ci = ag×am+al ×am+dl ×dm



2. Calculate shadowed diffuse color:

Cs = ag×am+al ×am

3. For each material, create and store a one-
dimensional texture map with two texels
using the texture functionality provided by
standard 3D graphics API. Color the texel at
theu = 1 end of the texture withCi and the
texel at theu = 0 end of the texture withCs.

• Runtime

1. Calculate the one-dimensional texture coor-
dinate at each vertex off the model using
Max(L∗n,0), whereL is the normalized vec-
tor from the vertex to the light source loca-
tion, n is the unit normal to the surface at the
vertex, andL ∗ n is their vector inner (dot)
product.

2. Render the model using a standard graph-
ics API with lighting disabled and one-
dimensinal texture maps enabled.

By customizing some values of the hard shading algorithms it can
be used to create a variety of different styles. The colors can be set
manually instead of computing them of the material, so the artist
can choose the exact colors he wants to use. When a high contrast
between the two colors is chosen, the picture is rendered in a dark
style. Two light sources can be simulated by using three colors,
with the middle one lighter then the other ones.

Decaudin takes a completely different approach to render the flat
looking interior of the cels of the cartoon drawings [Decaudin
1996]. They use the Phong shading algorithm and eliminate the
L ∗ n portion of it, so the whole cel looks flat, using only a solid
color that does not change. To get a 3D looking effect for the image
using only solid colors, the shadow is calculated using the shadow
map technique. Therefore a z-Buffer Image from the viewpoint of
the light source has to be calculated. To obtain this buffer, the scene
is rendered with the camera replacing the light source and then the
z-Buffer is read back. This has to be done for each light source.

To determine if a pixel is lightened or not by a light source, it is
compared with its corresponding pixel on the z-buffer image from
the light source. If it is visible on the image from the light source
it is lightened, and if it is not visible on the image from the light
source it is darkened, this calculation is done for every light source.
Figure 17shows a simplification of a scene with lighting. It can
be seen which transformations have to be necessary to calculate the
shadows.

Figure 17:Calculation of the projected shadow

For each pixel(xe,ye) of the image:

• Calculate the coordinates(xw,yw,zw) of 3D point
corresponding to this pixel in the world frame (ob-

tained fromxe,ye, value read into the z-bufferze,
and the 4x4 camera projection matrix),

• Calculate the coordinates(xl ,yl ,zl ) of the 3D
point in the light frame,

• Comparezl and the valuezs read from the z-buffer
of the light at position(xl ,yl ): if zl > zs then the
point is not ”seen” by the light, it is into shadow,
else it is lit.

This method has a big problem because the z-buffer has a fixed
resolution. When an object viewed from the camera is big, but
viewed from the light source is small the shadow appears aliased.
To overcome this problem many different shadowing methods exist,
for example calculating the values of the neighboring pixels and
averaging the result. This technique could also be use for backface
shadowing of the objects, but it is not accurate enough and would
not lead to a hard edge between the illuminated and the dark surface
of the object. But since theL∗n is already computed, it can be used
to calculate if the polygon is not illuminated. WhenL ∗ n is less
then than the polygon is opposed to the light source.

By using this algorithm we obtain an image with backface and pro-
jected shadows for every light source. After this all images have
to be merged into one to obtain the final image with shadows from
multiple light sources.

This algorithm has the advantage to the previous one that it renders
shadows from multiple sources correctly (not just simulating it) but
it is not as efficient. The two algorithms could be combined, using
the technique for coloring the cels from the algorithm from Lake
et al. and implementing multiple light source such as it is done in
the algorithm from Decaudin and using an efficient algorithm for
calculating projected shadows [Lake et al. 2000; Decaudin 1996].

Winnemoller extends the former standard algorithm for comic style
rendering with a comic style specular component [Winnemoller
2002]. Secular lightning is often used in classic, hand drawn comics
for shiny objects like cars, weapons, glass, etc. Drawings or render-
ings use specular lighting usually not to increase realism but to give
cues about surface properties such as the material and the geome-
try. The aforementioned lighting model only uses diffuse light and
the aim is to extend this lighting model with a specular compo-
nent while preserving the banded-shading look.Figure 18shows
some examples of traditional hand drawn cartoons that use specu-
lar lighting. As we can see the specular highlights help to create
a more 3-dimensional look while still preserving the cartoon style
look. While doing so, they introduce two geometric approxima-
tions, namely theperspective projection correction angleand the
vertex face orientation measure.

To create the specular component for the cartoon shader we take a
look at the phong reflection model,N is the normal at any given
point P, L is the light vector,V is the vector spanning from the
viewer’s position to the pointP (which is not necessary the direc-
tion the user is looking at),R is the reflected light vector,α is the
shininess constant of the material,is and id are the intensities of
the specular and the diffuse component respectively andks, ka and
kd are the reflection constants of the specular, diffuse and ambient
components respectively.equation 5is the phong lighting model.

Ip = kaia + ∑
lights

(kd(L ·N)id +ks(R·V)α is) (5)

R·V = L ·V −2(N ·L)(N ·V) (6)

equation 6the expansion ofR·V. The diffuse component can be
easily computed, but is view independent. The specular compo-



Figure 18:Example of cartoon drawings that use specular lighting.

nentks(R·V)α is extends the creative potential of comic renderings
through view dependency and more freedom using shading maps.

In theory the extension of the diffuse only shading approach is
pretty easy, instead of using a 1D texture map for use with as a
shading texture a 2D texture is used. One dimension indexes the
diffuse part (N ·V) and the other dimension indexes the specular
component (R·V). The shininess value should be applied before
normalization and indexing.Figure 19shows a 1D and two 2D tex-
tures. The y-axis is describes the diffuse component and the x-axis
the specular component. As we can see many different effects can
be achieved by using different textures.

Figure 19:Examples for 2D-textures for specular shading

The problem with this approach is the computation of the indexing
specular lighting value. As we can see in the former equation the
calculation needs some heavy computational overhead, especially
since this expression has to be calculated for every vertex. This
is due to the fact that the specular component is dependent on the
view vector (unlike the diffuse component) but this is the very thing
that causes the cartoon renderings with a specular component to be
visually more appealing than the ones without it. Therefore the goal
is to approximate the exact solution, which remains visually close
to the more expensive exact solution.

To include a specular component into the comic lightning model for
each vertex additional computations are needed and these calcula-
tions easily become a dominant role in the whole rendering process.
This leads to the introduction of a face-orientation determination
with this goal:

”Even though determination of face-orientation will
introduce a further load on the system, it would still ben-
efit us if this load were to be balance by a decrease of
vertices that have to be included in the lighting calcula-

tions as well as a decrease in triangles that have to be
rendered.” [Winnemoller 2002]

With the standard approach (with the lack of information about face
orientation), lighting values have to be calculated for each vertex
and then all triangles have to be rendered twice (once for the silhou-
ette (assuming that an object space algorithm is chosen) and once
for the shading of the interior. So the cost of the standard algorithm
is shown inequation 7(Verare the computations per vertex andTri
are the computations per triangle).

Θ(Ver+2∗Tri) (7)

It should be noted that the performance calculations get slightly
skewed up when implemented, because part of the algorithm is run
on the host computer (e.g. custom lighting calculations and manual
face sorting and part is run on the graphics cards (i.e. rendering of
triangles and face culling). Additionally in some cases it is faster
to render more faces while using display list optimization than ren-
dering fewer faces without display list enabled.

So how to determine if a face is front- or back-facing? The cor-
rect way to do so is to spawn a vectorV from the camera’s/viewer’s
position to the center of the face and then comparing it with the nor-
mal N of the face. This is done by calculatingN ·V. If the result is
smaller than zero the face is back-facing and when the result is big-
ger then zero it is front-facing. The method used for flagging faces
as back- or front-facing has an big performance impact, therefore
we will discuss different methods.

The first method is to mark the triangles during traversal of the tri-
angles. All triangles are traversed and marked as back- or front-
facing, also the vertices have to be marked when they are part of
a front-facing triangle. Then the vertex list is traversed and the
light-values for the front-facing ones are calculated. Then front and
back-facing triangles can be rendered separately. Ifb is the propor-
tion of the number of front facing-triangles to the total number of
triangles the costs is shown inequation 8.

Θ(b∗Ver+2∗Tri) (8)

We can assume thatb is approximately 0.5 because the percentage
of the front-facing faces is most likely 50%. Therefore this ap-
proach is faster than the standard approach whenb < 1 and this is
always the case when there are back-facing faces.

Another approach is marking the triangles during traversal of ver-
tices. For each vertex it is checked if it is front or back-facing and
then mark the attached triangles. This is useful because a well be-
haved, closed object has much more triangles than vertices. Win-
nemoller defines the normal of a vertex as follows:”The normal
of an object-vertex is the average of the normals of all triangles of
which this vertex is a part” [Winnemoller 2002]. Because of this
definition the face orientation can be concluded from the vertices
that define the face. But the normals from the vertices mostly differ
from those of the attached faces, but with finely tessellated objects
the difference is negligible.

The algorithm is as follows:

Traverse the vertex list and determine the orienta-
tion of a vertex. If it is front-facing, perform the nec-
essary lighting calculations and mark the attached trian-
gles as front -facing. Otherwise mark attached triangles
as back-facing. [Winnemoller 2002]

An alternative is to check the vertices only when the triangle is
rendered. This adds the benefit that different rules can be applied



Figure 20:Example of artifacts of face sorting without perspective
correction at different distances to the object.

in the rendering phase to vary quality and performance. The rules
tested by Winnemoller are:

1. All vertices of a triangle have to be front-facing
for the triangle to be considered front-facing (This
is the most restrictive condition and will render
the least triangles. This results in the best perfor-
mance, but may produce artifacts if the viewer is
too close to the object).

2. At least two vertices have to be front-facing (pos-
sible artifacts, but fewer).

3. Only one vertex has to be front facing (perfect ren-
dering without artifacts).

[Winnemoller 2002]

The rules can be dynamically chosen at runtime. For instance the
rules can be made dependent of the distance from the viewer to the
object as well as from the deviation of a vertex normal from its at-
tached triangle normals (this can be calculated when loading the
object-model). So the cost for this method is determining the ori-
entation and calculating the lighting for each vertex plus rendering
the front- and back-facing triangles (seeequation 9).

Θ(Ver+Tri) (9)

Using this method for face-orientation determination in combina-
tion with the rendering process the performance is significantly bet-
ter than without face-orientation determination. And objects that
are far away from the viewer, the level of detail also speeds up the
rendering performance.

So the amount of geometric elements has been reduced success-
fully, but the rendering of specular lighting is still very expensive
due to its view dependent nature. To correctly implement specular
shading the view-vector has to be calculated for each vertex un-
der consideration and these computations are very expensive. In
order to reduce the complexity of the computation the view-vector
can be calculated once for every object and then regarded as con-
stant throughout the object. Theoretically this is only true when

the viewer is infinitely far away from the object but in practice this
heuristic is still pretty good for objects that are relatively far away
from the viewer, but it fails when the viewer is near the object.
Figure 20shows this problem, by rendering the objects from three
different distances. From far away (upper left image) the object
renders normally but when the proximity from the camera to the
object decreases then the holes get bigger.

To correct the problem for objects with holes, we have to look into
the problem more thoroughly. The constant view vector~V is de-
fined inequation 10.

~V = C−V (10)

C is the center of the bounding box of the object andV is the po-
sition of the viewer. We look at the situation where the viewer is
close to the object and near the edge of the bounding box. Then the
following situation may exist: A surface elementSclose to the edge
of the bounding box has a normalNs that when compared with the
normal of the view-vectorNV appears to point backwards, while
actually being a front-facing face. This situation is illustrated in
Figure 21(a).

Figure 21:a) a situation in which object holes arise. b) the angles
that have to be considered when correcting the problem.

In order to find a solutionFigure 21(b)shows the angles involved.
The viewer is placed on the most extreme position, on the bottom
edge of the bounding box where the viewer is able to move towards
or away from he object and therefore changing the angleα . Then
a surface element on the bottom of the bounding box that is almost
parallel to the lower edge would lead to a negative evaluation of
~V ·N and therefore be considered back-facing even though it is not.
Now it can be observed that the angle between the view vector and
the view vectorβ is always less or equal toα . Because of this
observation an heuristic can be applied to the face orientation de-
tection. All faces that deviate by at mostα from the front facing



criterion (the dot product of the surface normal with the view vec-
tor is negative) are marked as front-facing. Thus all holes in the
rendering can be filled. FromFigure 21this formula forα can be
derived, s given inequation 11.

sinα =
a

|~V|
(11)

V is the view vector anda is the length of the largest edge of the
bounding box (the largest edge is taken to get the most conservative
measure).α is calledthe perspective angleor perspective correc-
tion anglebecause of its usage as a offset in order to counteract the
effects of perspective projection.

Figure 22:a) shows the normal approach for determining the ori-
entation of faces (N·V) and b) shows the new approach withα as
an offset

The equation for calculation the face orientationV ·N is zero when
the angle betweenV andN is π/2. This means that the two vectors
are perpendicular and is used as threshold for the normal face ori-
entation test, but with a constant view vector, a different threshold
is needed.cos(π/2−α) is perfectly suitable. This results in more
faces being marked as front facing (even some back facing) but no
holes are rendered any more.Figure 22shows the cosine function
of the angle betweenV andN and compares the use of the threshold
for the standard and the hole-correcting approach.

To see the benefits of this approach we again take a look at the
shading equations.equation 12is the phong lighting model and
equation 13is how theR·V part of the phong lighting model can
be computed.

Ip = kaia + ∑
lights

(kd(L ·N)id +ks(R·V)α is) (12)

R·V = L ·V −2(N ·L)(N ·V) (13)

TheL ·V part of the equation is not vertex dependent and thus can
be computed once for every rendering pass. The second dot prod-
uct L ·N is already computed in the normal diffuse component and

therefore is not an additional cost. The last dot productN ·V is
new, but is also used to determine the face orientation of a ver-
tex. So this approach renders the specular component virtually for
free. For large values of the shininess valueα heuristics or opti-
mizations should be used to reduce the additional cost for power
computations.

Figure 23shows a comparison of the different lighting approaches
on a single object. The leftmost is rendered with only diffuse light-
ing. The middle one with only specular lighting and the right one
with a combination of both. We can see that the specular highlights
help to communicate geometry and material properties while still
maintaining a cartoonish look.

Figure 23: Examples of a cartoon rendering. From left to right:
diffuse only, specular only and combined diffuse and specular

Figure 24shows example renderings of a model using a diffuse only
lighting component, using a specular only lighting component and
a composition of both diffuse and specular lighting. The specular
component retains the comic style perfectly and also adds geometry
cues.

Figure 24:A comparison of the exact and the approximative ren-
dering approach at different shininess values (here n isα of the
lighting equation)

In a comparison of the performance test the gouraud lighting model
is the fastest, followed by standard cartoon style rendering without
a specular component and at last the specular and diffuse lighting
model, but with larger numbers of triangles per model the render-
ing process with specular and diffuse lighting even outperforms the
standard cartoon style renderer with only diffuse lighting. This can
be explained as the benefit from the approximations described be-
fore. The rendering of the exact specular lighting is much more
expensive and the approximations are very well suited when speed
is more important than exactness of the renderings.

3.3 Discussion

In combination the silhouette edge detection and the painter pro-
duce a basic cartoon looking rendering and offer many ways to cus-



tomize the look. But there are still some features missing, like how
to render transmissive surfaces like glass or reflective surface (e.g.
mirrors). And how can we achieve cartoon looking animations of
water, smoke or other particle effects? What are the ways for an
artist to customize the algorithms to achieve his specific style and
how is it implemented efficiently on modern hardware (mainly us-
ing vertex and pixel shaders) to run efficiently for usage in real time
applications. All this questions are answered in the next sections,
when we describe various applications of cartoon style rendering.

4 Applications

4.1 Pencil drawings

Pencil drawing has a long tradition in art. It is used to draw sketches
and has also been established as an independent art style. Charac-
teristic for pencil drawing is the outline and the inner shading with
pencil strokes.

Traditional NPR methods do not work with pencil drawings. The
reason for this problem is that the silhouette edges in the basic NPR
methods appear as a continuous black stroke, whereas in pencil
drawing an hand drawn pencil stroke should be simulated. Further-
more the shading of the object is not done with solid colors but with
hatching or cross hatching. The interior parts of an object are filled
with strokes having a small space to each other. In normal hatch-
ing the strokes are drawn parallel and in cross hatching the strokes
are drawn so that they are crossing. Another important point is the
material of the paper. The typical style of a pencil drawing is a com-
bination of the used paper and pencil. This has to be considered in
NPR pencil drawings.

In this part two NPR pencil drawing methods are discussed. The
first one is from [Lake et al. 2000] and uses textures to simulate
the hatching. The interaction of the pencil with the material of the
paper is done with multitexturing. Multitexturing is a technique to
combine different layers of textures and is well supported on todays
hardware.

A more advanced NPR pencil drawing method is shown by [Lee
et al. 2006]. The silhouette edges are detected in image space and
randomly perturbed to get a hand drawn looking stroke. Instead of
a simple texture to generate the material of a paper a more sophisti-
cated texture mapping procedure is used. The surface of the paper
is simulated with normal mapping. Normal mapping is a technique
to modify the surface normal to make the surface uneven.

In the NPR pencil drawing method of [Lake et al. 2000] the diffuse
lighting componentL ∗N is calculated, whereL is the light vector
andN is the surface normal. This value is used in the basic NPR
cartoon shading method for a lookup in a one dimensional texture
to acquire the color of the surface. Instead of that the value ofL∗N
choose a texture with a specific density. As in the cartoon shading
process we discretize this selection process. The available hatching
textures are splitted into intervals and the value ofL∗N maps to the
texture to avoid a non-linear mapping between the valueL ∗N and
the density of the texture. A high value means that the surface re-
ceives much amount of light, so a texture with a low density is used.
If the light is lower a texture with an higher density is selected.

The texture for the hatching is composed of different stroke types
in advance(see Figure 25a). The different strokes are selected ran-
domly and are put with an random space onto the texture. For
textures representing a higher density the space of the strokes are
reduced. In addition the density effect can be increased by cross

hatching that is strokes with an horizontal direction are combined
with strokes having a vertical direction(see Figure 26).

(a) Texture with different strokes. (b) Texture representing
the material of the paper.

Figure 25:The strokes are selected randomly from (a) to compose
a hatching texture. The material of the paper (b) is combined with
the final hatching texture.

Figure 26:Texture to simulate the hatching. The level of intensity
decreases from left to right.

As mentioned before the material of the paper is simulated by an
separate texture(see Figure 25b). With the multitexturing tech-
nique the paper texture and texture representing the hatching are
combined together and mapped onto the object to produce a draw-
ing, sketched on paper.

To complete the texture mapping step the coordinates for the tex-
ture have to be calculated, because the valueL∗N selects a texture
instead of a single texel. The coordinates can be determined with a
projection of the texture through the viewpoint onto the object and
the normalized device coordinates are used as the texture coordi-
nates(see Figure 27). For faces with vertices assigned to different
texture density a subdivision of the face is needed. This approach
works for static objects but is annoying in animated objects, be-
cause the texture seems to move on the object.

Figure 27:The texture is projected onto the object to generate the
texture coordinates.

Silhouette edges are detected in object space and with the additional
geometry information, more stylistic lines can be generated as de-
scribed in the chapter about silhouette edge detection. InFigure
28 shows the final image composed of the textures (simulating the
hatching) and the black silhouette edges.



Figure 28:Example of an NPR generated pencil drawing generated
with the method from Lake in the work [Lake et al. 2000].

In the paper of [Lee et al. 2006] a more sophisticated NPR pencil
rendering method is introduced. The silhouette edges are detected
in image space and are drawn slightly distorted to imitate an hand
drawn style. For the interior shading the pixel intensity is calculated
and the contrast of the pixel brightness is adjusted to achieve pencil
drawing tones. The two steps are combined with a pixel shader to
produce the final image.

Figure 29:Rendering Pipeline of the method from [Lee et al. 2006].

In the following section the algorithm from [Lee et al. 2006] is
described in more detail. The silhouette edge detection is done with
the depth-buffer and the normal-map and results in an black and
white or gray scale image. Afterwards the lighting effect for the
contours are calculated in a pixel shader withequation 14.

I ′c = lc ∗ Ic, (14)

wherelc is the light effect factor,Ic the original pixel value andI ′c
is the modified pixel value of the contour.

The generated silhouette edges are straight lines and do not look
hand drawn. A characteristic of handdrawn lines is that they con-
sists of small errors. These errors are in an limited range, because
the artist will remove noticeable errors during the drawing process.

For this reason the contour shaking can be approximated by the sine
function, as shown inequation 15.

y = a∗sin(bx+c)+ r, (15)

wherea andb determine the range and period of the error,c is a
shift of a periodic function andr adds randomness to the shaking
valuey. The generation of random contours is hard to implement
with a pixel shader, where writing is only possible to the current
pixel. In the preprocessing step the screen space is divided into
regularly sized rectangles and the coordinates on the contour image
are assigned to the texture coordinates of the rectangle. So the con-
tour image is redrawn by texturing the rectangles with the contour
image(see Figure 30). The contour shaking is done by adding the
approximated valuey to the texture coordinates.

Another characteristic of hand drawn lines is that they are com-
posed of multiple overlapping lines. This effect can be achieved
with multi-texturing of several distorted textures. Furthermore the
intensity of a pixel is set to a darker value in the pixel shader for
contours with much overlapping to simulate a darkening effect of
the pencil strokes(see Figure 31).

Figure 30:Texture with randomly generated contours.

Figure 31: Several cubes with shaked contours are combined to
simulate an hand drawing style.

The brightness of the interior shading depends on the density of
the strokes, which are placed uniformly in the texture image. The
brightness of a pixel is adjusted by drawing the strokes with a per-
turbation on the top of the current texture. With a lot overlapping
strokes the brightness of the texture get darker but as in real pencil



drawing the increase of brightness becomes smaller. This is simu-
lated byequation 16.

c′t = ct −αb∗ca;ca = ct ∗ (1.0−cs), (16)

wherec′t is the updated texture color,ct is the current texture color,
cs is the stroke color andca is the maximum increase of darkness
by this stroke andαb is a user controlled parameter. The differ-
ent brightness levels are stored in a 3D texture starting with a pure
white image for the highest brightness level and are calculated in
advance. The decision parameter for the brightness level of the
texture is determined by a general shading technique, like Goraud
Shading.

In pencil rendering the intensity variation in a bright region is more
important than the contrast between bright and dark regions so this
decision parameter is adjusted with a square root function in the
pixel shader. In a hand made pencil drawing the direction of the
interior strokes depend on the curvature of the surface.

For each vertex of the face the curvature direction is precomputed
and the texture is rotated according to the calculated value. Usually
a face is represented by a triangle and therefore consists of three
vertices(see Figure 32a). Because of the texture rotation technique
three different aligned textures are mapped onto the every face. The
interior strokes for surfaces with complicated shapes consists of dif-
ferently orientated pencil strokes(see Figure 32b). Since there are
already three textures per face this effect can be achieved by blend-
ing this textures per multi-texturing, as well the discontinuities of
the neighboring faces are eliminated.

(a) Different rotated textures. (b) Combined tex-
tures.

Figure 32: Different rotated texture for each vertex of the face.
These are combined to simulate the interior shading of pencil draw-
ing.

The material of the paper, such as roughness, is simulated with a
separate texture. The surface structure of the paper is stored in an
height map and a normal map is precomputed of it. The interaction
of the paper and the pencil stroke is calculated by the function, as
shown inequation 17.

c′t = ct +αp∗ (d ·n), (17)

wherect ’ is the modified texture color,ct is the original texture
color,αp is a weighting factor,d is the curvature direction andn is
the normal direction(see Figure 33). If the direction of the stroke
and the normal vector of the paper surface are similar than the tex-
ture color is brighter, otherwise it is darker.

The composition of the final image is done in an pixel shader. First
the silhouette edges are generated and applied to the final pixels.
Than the interior shading is added and finally a paper texture is
blended onto the background, because the color of the paper is not
completely white(see Figure 34).

Figure 33:Interaction of the paper material and the pencil stroke.

Figure 34:Composition of the final image.

4.2 Chinese Painting

Chinese Painting is famous for its freehand brushwork and has
evolved as a school of its own in the world animation circle. In
the traditional chinese painting process the ink is made of a black
or colored pine soot. A brush pen is used to apply the ink onto a spe-
cific paper, called Xuan paper. The irregular dispersion of the ink
onto the Xuan paper makes the generation of chinese painting time
consuming. In contrast to western cartoon generation, where the
artist is assisted by advanced techniques during the process of cre-
ation, little research have been done in this area for chinese paint-
ing.

[Yuan et al. 2007] present a NPR method including the interior
shading, the silhouette detection and the background shading for
the simulation of a chinese painting. The aim of this method is
that artists are able to efficiently create chinese style paintings and
animations for movies or games. Another demand of the presented
method is the rendering efficiency, which is mostly done on the
GPU with vertex and pixel shaders to achieve the framerates needed
for real-time applications.

Instead of physically model the brushes and paper, the appearance
is improved by pre-processing of textures and smoothing filters.
This method works for static and dynamic objects and only a tri-
angular surface mesh is required as input. The rendering process
at runtime consists of three passes. In the first pass the interior
shading is determined, in the second pass the silhouette edges are
extracted and in the third pass the results of the previous two passes
are combined.Figure 35shows the stages of the rendering pipeline
of the NPR chinese painting process.

The general steps in the rendering process at runtime are [Yuan
et al. 2007]:



1. Initialize two 2D textures as rendering targets.

• In vertex shader, compute the diffuse color
as the texture coordinate delivering to pixel
shader.

• In pixel shader, map the shading texture us-
ing the incoming coordinates to output the
color.

• Render not to the screen, but to the first ren-
dering target texture.

• If Silhouette enhancing is required, add an-
other silhouette-extracting operation in step
3 but rendering to the target texture in this
pass.

2. Draw the mesh to render the silhouette to the other
rendering target texture.

• In vertex shader, compute the texture coordi-
nate delivering to pixel shader.

• In pixel shader, map the edge texture using
the incoming coordinates to output the color.

• Render not to screen, but to the second ren-
dering target texture.

3. Draw a rectangle with the same dimension as the
window, and then determine the display color in
pixel shader.

• Calculate the smoothed color by box filter-
ing on the silhouette in the second rendering
target texture.

• Multiply it with the color in the first render-
ing texture and background texture.

• Render to screen.

Figure 35:Three passes in the rendering pipeline.

As in the most NPR methods the interior shading depends on the
diffuse lighting component. The diffuse lighting value corresponds
to a color value in a pre-computed shading texture. A point light
source is defined for every object, which is static relative to the
object. In a vertex shader the diffuse color value can be computed
with equation 18.

C = N ·L, (18)

whereC is the diffuse color value,N is the surface normal andL the
vector of the light direction. The range of this continuous value lies
between 0 and 1 and is quantized afterwards. There are five levels

of brightness and the function for the quantization is described in
equation 19.

C0 =



















0.1 0.8 < Ci

0.4 0.55< Ci ≤ 0.8
0.7 0.25< Ci ≤ 0.55
1.0 Ci ≤ 0.25

(19)

whereCi is the diffuse color of a point andC0 is the quantized color.
The conclusion ofequation 19is that for a dark diffuse colorCi the
rendered colorC0 is brighter.

This step function is implemented with a 1D texture,see Figure 36,
and bilinear filtering is used to smooth the sharp transition. The
irregular dispersion of the ink onto the Xuan paper is simulated by
blurring the shading texture with a Gaussian functionequation 20.

G(x) =
1

2π
e−

x2

2 (20)

Figure 36: (a) Original 1D shading texture, (b) Bilinear filtering,
(c) Blurred with the Gaussian function

Figure 37:(a) unshaded mesh, (b) shaded with texture from Figure
3.a, (c) shaded with texture from Figure 3.b, (d) shaded with texture
from Figure 3.c

The outline of an object in chinese painting is usually irregular due
to the dispersions of the ink. Yuan et. al. extract the silhouette
by texture mapping and smooth the silhouette edges by a box filter
[Yuan et al. 2007].

Geometrically a silhouette edge for a free form surface exists if the
surface normal is perpendicular to the vector from the viewpoint. A
point p lies on a silhouette edge if theequation 21is satisfied.

V ·N = 0, (21)

whereV is the vector from the viewpoint andN is the vector of the
surface normal. Since this condition is to strict a threshold value is
introduced, as shown inequation 22.



Figure 38:Object rendered only with the detected silhouette edges.

edge= V ·N, (22)

if edgeis greater than or equal to zero and is less than or equal
to thethresholdthan p lies on a silhouette edge. The calculation
of the valueedgecan be done fast in a vertex shader on the GPU.
For performance reasons the threshold value can be stored in a 1D
texture which is fully supported by todays graphics hardware. At
the left part of the 1D texture the color represents the silhouette
edges (usually black) and on the right part of the texture it is filled
with white color. To avoid the aliasing of the silhouette edges multi-
sampling is used. Moreover to eliminate unwanted broken lines a
smooth filter operation is applied to the resultp of the silhouette
detection process. A Gaussian filter is used to smooth the silhouette
edges and is calculated in advance(see Figure 39).

(a) Aliased silhouette edge. (b) Antialiasid silhouette edge.

Figure 39:The aliased image (a) is blurred with an Gaussian filter
(b).

Finally the interior shading and the silhouette edges are merged and
combined with a background texture, which represents the charac-
teristics of the Xuan paper used in traditional chinese paintingssee
Figure 40).

Figure 40:Final chinese painting picture on a background texture,
imitating the Xuan paper.

In [Yuan et al. 2007] a animation framework is discussed in which
a set of mesh models is ordered by key-frames and linearly interpo-
lated the vertices between them(see Figure 41). Animation in a chi-
nese painting cartoon gain dynamic effects by softly waving parts
of the character. This effect is simulated by the morphing technique
as described before, the vertex position between two frames is lin-
early interpolated. A constraint for morphing is that the amount
and order of the objects vertices stay constant during the animation.
The key-frame animation is done in a vertex shader separately for
every animated object and the algorithm from [Yuan et al. 2007]
looks as follow:

At time t, for a character:

1. Find out the nearest two key frames with timet0,
t1, wheret0 ≤ t ≤ t1;

2. ComputeScalar= (t − t0)/(t1 − t0) for interpo-
lating, and deliverScalar into vertex shader with
two meshes.

Figure 41: Two key frames and the linear interpolated frames in
between.

The algorithm works well with most animations in chinese painting
cartoons, such as animals and plants, but do not fit for animations
with water or clouds. With this NPR chinese painting method the
artists can concentrate on other important things than the tedious
painting painting process, such as the scenarios or stories.

4.2.1 Cartoon Styles

Cartoons or comics as we know them today evolved from comic or
sequential art strips in newspapers and magazines at the end of the
19th century. Since then, their styles has changed remarkably and
different and independent styles have been created in different re-
gions. In the USA the western comic (e.g. ”Superman”), in Europe
for example frankobeligan comics (e.g. ”The advantures of Tintin”)
and in Japan manga comics (e.g. ”Akira”) evolved.

All this comics have completely different styles, but they have also
some characteristics in common which makes them recognizable as
comics respectively cartoons. For example the usage of silhouette
edge lines (although they are sometimes used differently), the ab-
straction from real world, sometimes the use of discrete colors, the
usage of special effects like speed lines, certain camera techniques
and perspectives, the usage from text in the artwork and unrealis-
tic physical properties e.g. for shadows. Modern cartoon or comic
artists like Frank Miller for example use many styles and mix them
to create there very own style. The methods are not only chosen by
artistic considerations, but also to help telling the story and under-
lining the plot.



Spindler et al. observed a lack of research in computer graph-
ics of how to create such different styles for computer rendering
[Spindler et al. 2006]. They use the algorithms mentioned in the
Techniques section and extend them to create four different cartoon
styles for a real-time game engine, namely those styles used by
Frank Miller in ”Sin City” and those used McFarlane’s in ”Spawn”.

Frank Miller’s ”Sin City” style

The ”Sin City” comics by Frank Miller have a distinct ”pen and
ink” look, but he does not use only one style, he uses an uncon-
ventional combination of hatching, stippling, large black faces, and
monochromatic silhouettes seeking the contrast to the background.
His style seems very dark and dusky throughout his comics and he
sometimes uses colored objects or characters to emphasize its im-
portance in the storyline.

(a) Silhouette style (b) Inverse silhouette style

(c) Foreground shaded only (d) Foreground and background
shaded

Figure 42:Renderings of the four different styles in Frank Miller’s
”Sin City” comics

Spindler et al. analyzed the ”Sin City” style and identified four
different plot-dependend cases [Spindler et al. 2006]:

• silhouette style: background white and foreground black

• inverse silhouette style: background black and foreground
white

• foreground shaded only: background is black

• foreground and background shaded

In figure 42different styles are simulated with the rendering engine
from [Spindler et al. 2006]. In addition to these styles they found
two very distinct characteristic style elements, namely double con-
tour lines and stylistic shadows, as shown infigure 43andfigure
44

The stylistic shadows are very complex, there are two different
cases, when the shadow falls on an object that is in the foreground
it is drawn black, but if the shadow falls on a background object,
the color of the object is inverted where the shadow falls so that
the structure of the background-object is still recognizable. For the

Figure 43:Example for stylistic shadows in Frank Miller’s Sin City

implementation of stylistic shadows in a game engine, objects have
to be classified into foreground and background objects and then be
treated differently.

Figure 44:Example for double contour lines in Frank Miller’s Sin
City

In comparison to other comics foreground objects the ”Sin City”
style use a rather thick contour line, which is also often drawn dou-
bly (see figure 44). For use in a game engine they are simplified
as thick white lines surrounded by very thin black outlines. As for
the stylistic shadows ,foreground objects have to be rendered dif-
ferently than background objects.

The rendering pipeline for the ”Sin City” style rendering consists of
three passes. A projection of the scene is computed including color,
normals depths and object information. This pass is used to deter-
mine foreground regions and shadow areas. In the second pass the
information from the first pass is used for image space computation
of the silhouette and crease edges. In the third pass the shadowed
areas of the background are inverted and the shadowed areas of the
foreground are draw as solid black surfaces. Then the contour lines
are thickened and drawn with black outlines (the method for doing
this is described more thoroughly in the Techniques section). After-
wards the computed images are combined.Figure 45shows these
three rendering passes.

Note that the rendering pipeline mentioned before is the one used
by Spindler et al. and is in no way mandatory, it uses image
space methods for silhouette detection, which may in some cases
not be useful, especially if modern hardware is available object
space methods can be computed with the support of vertex and pixel
shaders and may be faster than this approach [Spindler et al. 2006].
Nonetheless this method successfully reaches its goal and showed
how to enhance the current NPR techniques to render a different
style.



Figure 45:Rendering passes used for ”Sin City” style rendering

Todd McFarlane’s ”Spawn” style

The ”Spawn” style from Todd McFarlane uses many different col-
ors and even color gradients. Many feature edges are inked, em-
phasizing on small details. This results in more realistic look but is
still recognizable as a cartoon.

For the implementation of this style Spindler et al. use the methods
for painting the cels described in the techniques section by Lake
et al. and extend it [Spindler et al. 2006; Lake et al. 2000]. This
method uses a 1D texture to map the colors onto the object. The co-
sine of the angle between the normal of the surface and the vector to
the light source is computed (L∗n). This value is used to determine
which texel of the 1D texture is used. The intervals ofL ∗n where
each texel is used are uniformly distributed between 0 and 1.

Figure 46:Enhancement of the cel shading (left) technique: soft cel
shading (middle) and pseudo edges (right).

By increasing the resolution of the 1D texture a combination of
solid colors and gradients can be achieved. This method is called
soft cel shading. With this approach a designer can decide where
to use color gradients and where to use a hard border between two
colors. Figure 46shows the effect of the enhancement of the hard
shading algorithm to soft shading and feature edges.

Figure 47:Cross-hatching using pseudo edges

To add another specific feature from the spawn style, namely fea-
ture edges between solid color and gradients the same method is
used. Small black intervals between the solid color and the gradi-
ent are added to the 1D texture. This method is called pseudo edges.
The same technique can be used to simulate cross hatching.Figure
47shows how the simulation of cross hatching looks on tea pot.

Figure 48:Renderings of the same character in Sin City style (left)
and in Spawn style (right)

Figure 48shows a character rendered with the to new styles and
compares them. We can see that with only little enhancements to
the basic algorithms completely new styles can be created.

Mike Mignola’s ”Hellboy” style

Mike Mignola uses high contrast lighting, angular design and very
textured line work in the drawings in his Hellboy comic series. The
minor details in the ”Hellboy” style, like the ragged line on Hell-
boy’s arm or leg, is problematic to mimic with traditional NPR
methods(see Figure 49). Highly detailed texture only works for
certain angles and representing the details geometrically, increase
the complexity of the object to much.

Brown explains a method to simulate the Hellboy style of Mike
Mignola [Brown 2007]. The following four techniques are applied
to a black and white image to provide the impression of an un-inked
illustration of this artist:



Figure 49:A image from Mike Mignolas Hellboy comic.

1. Outline the model with the finning technique described in
[McGuire and Hughes 2004]

2. High contrast lighting to imitate the inky shadows and a the
usage of texture to simulate the interior shading with a marker.

3. Graftals are used to mimic the otherwise invisible surface de-
tails, like pock marks or bumps.

4. Textured outlines and graftals are used to create the complex
division between lit and shaded areas.

As usually for silhouette edge detection or outlining in object space
the vector dot product is evaluated for the normal vectors of the
faces adjacent to an edge. This general method is GPU-accelerated
by using Vertex Buffer Objects described by [McGuire and Hughes
2004], where 6 values have to stored for every edge. This 6 values
are the 4 vertex position defining the two triangles and the normal
vectors on the vertices defining the edge(see Figure 50). The sur-
face normal vector can be calculated in the vertex shader with the
other passed 6 values.

Figure 50: Encoded edge information. v0, v1, v2, v3 define the
faces. n0 and n1 are the normals on the endpoint of the edge. The
surface normals nA and nB can be calculated in the vertex shader.

The edge information is determined by iterating over the faces of

the object and are stored in an single vertex structure, so that they
can be used with Vertex Buffer Objects (VBO). The edge informa-
tion is encoded into the Position, Color and MultiTexCoord0-3 and
is denoted by the name ”Edge Vertex Object”.

Since with a vertex shader or fragment shader, additional geom-
etry can not be created on the GPU, the Edge Vertex Object has
to be duplicated four times to define an edge quad. Maybe with
the possibility of the newly programmable geometry stage with a
shader this additional expense can be avoided in the future. The
vertices are transformed by this attributes in the vertex shader and
the stroke information and appearance are mapped with a texture to
define stylized silhouette edges.

The black and white interior shading is simulated with a modified
shading algorithm where the intensity of the light is adjusted. If
the intensity is below a specified value (a), the pixel color is set to
black, otherwise theequation 23is used to provide a subtler gradi-
ent.

Color = ((i ∗0.5)∗ (i ∗0.5)+0.75)∗White, (23)

wherei is the intensity. The usage of textures to draw black shad-
ows works for static objects but fails for animations, because of the
missing information on surface orientation.

The small marks used for the surface details follow the 2D orien-
tation of the surface so graftals must be generated according to the
surface geometry. Unfortunately generating the graftals parallel to
the screen with one edge set to an edge on the mesh failed, because
of self intersection problems. A time consuming self intersection
prevention has to be done to produce randomly placed graftals.

The self intersection problem also exists in the shadow outlining
process, but is more manageable with textured strokes. An edge,
adjacent to face one and face two, is a shadow-bounding if the in-
tensity of face one is greater than the valuea from the clamping of
the interior shading and the face two is smaller than this value. The
intensity is calculated with the usual equation of Lambert, as shown
in equation 24.

Intensity= L ·N, (24)

whereL is the light direction andN is the normal of the face. Due
to the fact that the stroke-generation is done in an vertex shader it
is not possible to get shadow-boundaries smoother than the edges
defining the face. This leads to a zigzagging stroke which can not
be avoided without any interpolation across the triangles, defining
the faces.

Besides the mentioned problems the NPR method represented by
[Brown 2007] produces a comparable style to Mike Mignolas Hell-
boy comic style(see Figure 51)

4.3 Effects

4.3.1 Liquid Animations

Liquid animations in photorealistic computer graphics exist for a
long time, but how can these techniques be used to create visually
appealing cartoon style renderings? Prior art exists of cartoon style
rendering of smoke but these methods can not be adapted for liquid
animations because liquid renderings mainly focus on the surface,
which is not existing in smoke effects.



Figure 52:A drop of water falling into a pool of liquid. The near silhouette and thinness coloring effects as well as the bold outline can be
seen.

Figure 51:Image rendered with the NPR method to mimic the Hell-
boy style of Mike Mignola.

In [Eden et al. 2007] a method for rendering such liquid animations
in cartoon style is shown that uses a liquid simulator that computes
physically correct liquid motion. The simulator generates a mesh
that represents the surface of the liquid. It is not required that the
surface is represented as a mesh, the only constraint is that a normal
of every point must be computable. To achieve a cartoon looking
animation like it is seen in classic comics, large regions of constant
color are needed. The presented implementation only uses three
different blue tones and black. The black color is used for the sil-
houette lines and the different blue shades are used for the normal
water, for near silhouette edges and for thin water.

Near silhouette areas can be identified with the same approach we
used for painting the cels in different colors, but this areas are view-
point dependent and therefore we use the vector to the viewpoint
instead to the light source. When the termn∗ v (n is the surface
normal,v the vector to the viewpoint) is smaller than a user-defined
thresholdt than it is a near silhouette area, otherwise not. The map-
ping of colors is done as described inequation 25.

C =

{

Cnear silhouette if n∗v < t
Cbody else (25)

The shape of the near silhouette areas helps the viewer to perceive
the geometry and motion of the liquid.

Another view-dependent cue is highlighting the areas where the liq-
uid is thin. This can give the impression of foam and transparency

Figure 53: The near silhouette and thinness criteria. Left: Near
silhouette: when the angle between the normal and the vector to
the viewpoint exceeds a certain threshold a point (A) is identified
as a near silhouette region. Right: Thinness: When the distance
between the entry and exit point from a ray between the viewpoint
and a point on the surface is less than a threshold (A) the point is
colored in the color of thin regions.

at thin regions. Here thinness is defined as the distance between
the entry and exit point of a ray from the camera. If the distance is
smaller than an user-defined threshold the region is highlighted.

Outlines are detected by performing an edge detection on the depth
map generated during the rendering pass. This image-space method
is described more thoroughly in the Techniques section. The de-
tected outlines and depth discontinuities are drawn with bold black
lines.

All three methods are user-controllable. By adjusting the threshold
the user can customize the first two effects and thereby altering the
painting of the water surface. The latter method can by adjusted to
draw more detail.

Motion is not well perceived if there is little change in the geometry
of the liquid. To help convey motion many cartoon animations add
objects or shapes that appear attached to the surface. To do this
with the liquid simulator points have to be tracked on the surface
and a texture is mapped on the points. But not only the position of
the point is necessary but also their orientation, so that the texture
can be mapped properly. This oriented points are tracked by a set
of unoriented points. This set of points is required to move rigidly
so that it can be assumed that the orientation can be computed. By
backtracking the position of the set of point the orientation of point
can be calculated.

The combination of these four techniques result in a cartoon look-
ing animation of liquids with a good abstraction of details while
still having enough information available in the picture so that the
viewer perceives the motion and geometry of it. But a downside
of this method is that in most cartoons, like everything else, the
liquid animations are normally not physically correct. Liquids in
cartoon behave somewhat differently and serve more an artistic pur-



pose than to be physically correct. Artistically behaved liquid sim-
ulation would be a field for future research. But nonetheless the
output of this rendering can be used for prototyping cartoons or can
be used as a basis for the artist that would afterwards enhance the
renderings for use in an animation.

Figure 52shows these techniques in action. A drop of water falls
into a pool. In the second as well as in the third and fourth picture
we can see the effect created by the usage of different colors in near
silhouette areas. And in the third picture a we see the effect of thin
water as well.

4.3.2 Animation of Cartoon Smoke and Clouds

Drawings and animations of smoke are often used in cartoons. For
real time rendering in cartoon style they pose many problems. The
structure of smoke and clouds is normally very complex and a mesh
with a very high polygon count would be needed, when traditional
algorithms for cartoon style rendering would be used to render the
smoke animation. This would make the render process very slow
and especially rendering with shadowing and self-shadowing would
not be possible in real time.

Figure 54:Clouds deflected by collisions with an airplane and in-
teracting with the forces from the propellor.

McGuire and Fein introduced a technique for rendering real time
smoke animations in cartoon style that overcomes the mentioned
problems, by using billboards for rendering the particles [McGuire
and Fein 2006]. This technique relies, like the rendering of water
animations, on a fluid simulator. Individual smoke molecules have
little mass or volume therefore smoke simulation is actually fluid
simulation of the surrounding medium. Many smoke molecules are
combined to one particle, so that every particle represents a set of
spherically arranged smoke molecules.

To approximate the behavior of smoke with a liquid simulator it
is represented as a compressible fluid on which six environmental
forces can act upon, namely vortex, buoyancy, gravity, wind, tur-
bulence, and drag. The artist using the simulator can configure the
values of these six forces to adjust the behavior of the smoke. Col-
lisions with the rigid bodies can also be calculated by the simulator
(see Figure 54), but collisions between particles are not calculated
because they do not constrain each other and it would be too ex-
pensive to compute. So motion is limited to the interaction with
the environment. Smoke disappears over time due to diffusion, so
the particles density is reduced over time. This makes them shrink
and when they disappear they have a zero size, which makes the
simulation more realistic.

For rendering the particles, billboards are textured parallel to the
image plane. The size of the billboard is proportional to the density
of the smoke, so that the particle disappears unnoticed over time. To
provide variety, four different smoke puff variations are assigned to
each particle at creation time.

The rendering process uses for values four each pixel of the bill-
board texture: a unit camera-space surface normalNxyz, signed
camera space depthd, diffuse colorCrgb, and coverage maskα .
To speed up the computation time these values are packed into the
eight 8-bit channels of two RGBA texture maps, so only two 32-bit
memory operations are needed per pixel. The surface normal and
the camera space depth are packed into one RGBA-texture using
integers as inequation 26.

(r,g,b,a) =
(Nx +1

2
,
Ny +1

2
,
Ny +1

2
,d+0.5

)

(26)

The diffuse colorCrgb and the coverage mask are packed into the
second texture map as inequation 27.

(r,g,b,a) =
(

Cr ,Cg,Cb,α
)

(27)

Figure 55 shows the texture maps of four smoke puff variations.
These are created as a preprocessing stage. In order to create these
texture maps 3D meshes are rasterized and colored by the surface
normal, depth, and unshaded diffuse color as appropriate forN, d,
andC. Theα map is created by rendering white puffs on a black
background and dilating the resulting shape.

Figure 55:The two texture maps representing the billboards includ-
ing surface normals, depth, color, and alpha maps.

The rendering is done with a pixel shader. The pixel shader reads
the values of the texture maps and converts them into floating point
numbers and then computes the camera space depth and pixel col-
ors.

For ambient light colorKa, light color KL, camera-space direction
L to the light source and diffuse color C from the texture map, the
pixel at (x,y) is colored by a pixel shader using Lambertian shading
as inequation 28 and equation 29.

pixelrgb = Ka(x,y)+C∗KL ∗q(max(0,N∗L)) (28)

pixelα = α (29)

The functionq is the quantification function and is implemented as
an 1D texture. This is basically the same approach as for painting
cells by Lake et al. as described in the techniques section of this
article [Lake et al. 2000]. The function takes a number between 0
and 1 and returns a color. Variations ofq can be used to stylize the
shadows.

Ka(x,y) also represents a function and can be used to implement
gradient fills, which is very popular in cartoon drawings. Gradi-
ents differ from surface-normal based shading because they pro-
vide color changing in image-space rather than using properties of
the surface.



For creating the appearance of 3D intersections of billboards, so
called nailboards are used. Nailboards offset the depth at each pixel
of a billboard to achieve this effect. By using the depth output reg-
ister on a modern graphics card, an implementation on the GPU is
possible.

Therefore in the same pixel shader that performs illumination,d
(the depth of the billboard) is added to the depth of the pixel and
the depth buffer test automatically produces correct intersections.
A drawback of this method is the reduction of peak fill-rate perfor-
mance due to disabling early-out depth tests.

Figure 56: Schematic view of depth offset for two particles. The
depth test will conceal outlines on the interior of the clouds.

As we can see in Figure 55 theα-shapes are slightly bigger than
the others. This is used to create the outlines of the smoke. In
these areasα is one and the colorC is black and farther away from
the camera because the depthd is zero. With this technique dif-
ferent smoke particles seem to merge together because the body
of the neighboring particle is nearer than the outline and therefore
the body of the particle is visible and the outline is not. So in the
interior of a cloud the outlines of are occluded by other particles
and on the outside they are visible. This although requires a lin-
ear depth buffer because normal depth buffers use hyperbolically
interpolated depth values, which results in a higher depth precision
near the image-plane and therefore is not suitable because it could
distort the outline.

Big clouds are subject to self-shadowing, this is especially impor-
tant when the clouds are between the light source and the camera
so that only small parts of the clouds are illuminated.

McGuire and Fein use stencil shadow volumes and extend it to
work with billboards [McGuire and Fein 2006]. For each particle
a square with the normal perpendicular to the view vector is cre-
ated and the shadow volume cast by this square is calculated. This
volume consists only of two polygons, one front- and one back-
facing polygon, which exactly overlap in image space (technically
the volume would consist of six polygons but the other ones are
not necessary because they are perpendicular to the view vector).
Figure 57 illustrates the creation of stencil shadow volumes with
billboards.

Now the depth values of the shadow volume are modified so that
the intersection with other billboards is realistic. The depth values
are taken from pre-calculated depth map. With this enhancement
the shadowed regions of clouds/smoke can be marked and drawn
with a different and darker color and the details in this area can be
reduced to achieve a cartoon style effect.

With this algorithm complex smoke or clouds can be created and
rendered in real time. There are many values, both in the simulator
and in the renderer that can be adjusted to create the exact effect
one wants to create. The colors of the cel shading can be adjusted,
just like described in the technique section. Self shadowing can be
switched on or off and by adjusting the position of the light source,
as much detail as desired can be abstracted away from the smoke

Figure 58:An example of the output of the real time smoke renderer.
(a) Cloud rendered only with outlines (b) The same cloud rendered
with cel-shading turned on. (c) And finally rendered with outlines
cel-shading and self-shadowing effects. (d) The cloud from c com-
posited into a hand-drawn scene is comparable to (e) the artist’s
original.

rendering. This is a very common property of cartoons and comics.
And the behavior of the smoke can be adjusted by changing values
in the simulator so that artistically behaved smoke and clouds can
be created. This is especially useful for computer games.Figure
58 shows how the output of the smoke rendering engine compares
to hand drawn cartoon smoke. Three pictures of a smoke rendering
are shown (a-c) with different rendering options. (a) only silhouette
rendering turned on, (b) with additional cel shading and c) a combi-
nation of silhouettes, cel shading and self shadowing. Then picture
(c) is composited into a hand drawn cartoon (d) and compared with
the original drawing (e).

The engine renders thousands of particles at 30 frames per second.
This makes it suitable for use in a computer game and in rapid de-
velopment of cartoon animations. Even scenes with 500,000 par-
ticles can be rendered in real time on current hardware. But the
PCI-express bus is a bottleneck because it is necessary to expand
each particle to a billboard and then transmit it over the bus (80
bytes/particle). Future hardware is likely to eliminate this bottle-
neck by allowing to compute this data on the graphics board.

4.3.3 Shadows

Shadows plays an important role in the perception of the world de-
scribed with a cartoon looking scene. They provide information of
the light direction, atmospheric conditions and can be used for dra-
maturgy effects. Besides this information, shadows have the main
objective to anchor the character in the scene. In cartoon looking
scenes the character and the background is normally rendered in
different style and the shadow gives the viewer a cue where the feet
of the character meets the ground.



Figure 57:Construction of a shadow volume out of a billboard. (a) Eye, light source and billboard geometry. (b) Square perpendicular to
the normal of the billboard, used as an approximation to generate the shadow volume. (c) The volume cast by the square. (d) Removal of
unused polygons, they are perpendicular to the view vector and thereforinvisible. (e) The three polygons that are needed for rendering: the
billboard and the two shadow faces.

In the paper of [Petrovic et al. 2000] a semi-automatic method to
create shadow maps in hand drawn cel animations is described. The
system requires small amount of user input and produces shadow
mattes based on hand drawn art.

Much research has been done for rendering physically correct shad-
ows. In cartoon looking scenes physically correct shadows distract
the viewer with unnecessary details. [DeCoro et al. 2007] presents
a method that gives an artists the opportunity to render more ab-
stract and stylized shadows by adjusting a few parameters. In the
remaining part of this section these two techniques are described in
more detail.

The method described by [Petrovic et al. 2000] is not fully auto-
matic. The user has to set up the scene and following the shadows
can easily be customized by altering several lighting conditions.
Initial point is a hand drawn line art and a hand painted scenery,
both created by a human artist. The basic algorithm can be outlined
by the following points:

1. Arrange the camera, ground plane and background objects by
marking features in the painted background.

2. Inflate a 3D mesh out of the character drawn in 2D.

3. Specify the depth for the character in the scene and the light
positions.

4. Based on the preceding input three different shadow mattes
are rendered for the character:

• Tone mattes: Self-shadowing and shadows of other ob-
jects on the character.(see Figure 59b, blue)

• Contact shadow mattes: Shadow representing the con-
tact point of the character with the ground.(see Figure
59b, green)

• Cast shadow mattes: Shadows cast by the character
onto the background.(see Figure 59b, red)

5. Compose the shadow mattes in the final image.(see Figure
59c)

The background scenery is constructed with a fixed field of view
and aspect ratio. The camera roll (rotation about the z-axis) and
ground plane both point upright. A few other settings have to be
done to establish the relationship between the camera and the scene.
The pitchφ (rotation about the x-axis) is defined byequation 30.

φ = arctan(h/d), (30)

Figure 59:Images used in shadowing process.

whereh is the height of the horizon relative to the image center and
d is the distance from the camera to the image plane. Two parallels
lines, which intersects at the horizon in a perspective projection, are
drawn by the user on the ground plane to determine the horizon’s
height(see Figure 60).

Figure 60:Parallels lines to determine the height of the horizon.

Because presently no objects are included in the scene the yaw (ro-
tation about the y-axis) of the camera is set arbitrarily and the height
is chosen that the camera stays above the ground plane. Lastly a co-
ordinate system is aligned and objects are constructed relative to the
ground plane.

The 2D line art is inflated to a 3D character in the next step to cast
plausible shadows. The line art is converted manually into char-
acter maps, which are bitmaps that define regions covered by the
character(Figure 61a). These map are also used in the normal cel
animation pipeline for filling and clipping of the character in the
final compositing of the scene. To improve the control possibilities,
the character maps are splitted into several layers. Each layer of a
character mate is converted automatically in an closed 2D polyline
and subsequently inflated to form a 3D shape(Figure 61b and c).

After inflating the layers of the character their depth in the 3D world



(a) Character maps. (b) Blue layer after in-
flation.

(c) Side view of the 3D
character.

Figure 61:Inflated character maps.

is determined. The two methods depth-translation and depth-shear
provides a depth adjustment where the image plane projection is
preserved. With a uniform scale about the camera center the depth-
translation method moves the figure out of the image plane(Figure
62) For finer control of the shadows the depth of the layers can be
adjusted with the depth-shear method. In the latter method the lay-
ers are shared so that the objects are closer or further away from the
image plane. Both of the methods can be adjusted with parameters
by the user, separately for each layer. Furthermore for the purpose
of animations key frames can be set.

Figure 62: Depth-translation moves the figure out of the image
plane.

Till now the background and the camera is justified and the a 3D
character is positioned in the scene. In the next step different lights
(directional light, point light) are positioned and the shadow mattes
are rendered. A standard ray tracer is used to render tone shadows
and cast shadows. Contact shadows needs a greater extend and are
rendered in two passes. In the first pass an orthographic camera is
placed in the ground and this captured image is re-projected in the
second pass viewed from the original camera position. The color
of the character is darkened by the tone mattes and the background
is accommodated by the cast shadows and contact shadows. The
final image consists of the shadowed character and shadowed back-
ground.

A number of reason exists why artists avoid physically accurate
shadows. Detailed shadows deflect the viewer from the scene and
viewers tend not to recognize if shadows are drawn physically cor-
rect or not. Artists have a lot of freedom in designing shadows and
some basic methods are already used in practice to abstract shad-
ows, like blurring the shadow map or cast the shadow of an simpli-
fied object. [DeCoro et al. 2007] describes a image based method
to produce stylized shadows from a shadow matte by varying the
following four parameters:

1. Inflation (i) controls the size of the shadow, rela-
tive to the original, such that increasedi gives the

Figure 63:Final image, composed of a background, the character
and the shadow.

effect of a shadow emanating from a larger ver-
sion of the shadow-casting object.

2. Brightness(b) is the intensity of the shadow re-
gion when fully occluded (or the effect of indirect
illumination).

3. Softness(s) indicates the width of the transition
region from fully occluded to fully visible, simu-
lating the effect of an area light.

4. Abstraction(α) is a measure of shadow’s accu-
racy; lower values yield more detailed, accurate
shadows, whereas larger values produce, simpli-
fied shadows.

Figure 64: The effect of the different control parameters. Listed
from left to right: Original, Inflation, Brightness, Softness, Abstrac-
tion

Figure 64shows the influence of the different control paramters (in-
flation, brightness, softness and abstraction) based on the original
image. Following equation is used to calculate the standard illumi-
nation of a point x, describe inequation 31.

L0(x,ω0) = ∑
l

ρ(x,ωl ,ω0)Sl (x)Ll (ωl ), (31)

whereL0 is the exitant radiance fromx in direction ω0, ρ is the
reflectance,Ll is the incident radiance andSl (x) is a shadowing
function. In real-time applications the shadowing function is the



binary visibility Vl (x) and is called the shadow matte. For stylistic
control an alternative formulation of the shadowing functionSl (x)
is given by defining an operator onVl (x):

1. Render the visibility bufferVl (x) corresponding to
the l-th light.

2. Compute a signedLp-averaged distance transform
D(Vl )

3. FilterD with a GaussianG, producingG⊗D(Vl )

4. Apply a transfer functionf , yielding Sl (x) =
f (G⊗D(Vl )).

5. Light the scene withSl (x) according toequation
31.

Increasing the inflation parameteri approximates the inflating of
the original mesh by inflating the shadow represented in the matte.
A metric is defined thatD(V(x)) is the distance fromx to the orig-
inal shadow contour andV is the boundary between shadowed and
unshaded regions. An inflation at distancei of the hard shadow is
equivalent toD(V(x)). This can be represented by a threshold trans-
fer function fi(D) = thresholdi(D), so that a modification ofi re-
quires no recomputation off from D(V). The metric used is based
on theLp-averaged distance metricdefined overR3 relative to a
surface [DeCoro et al. 2007]. It is used for the displacement along
the normal, which is free from cusps and visual artifacts. InFigure
65 a comparision of an accurate shadow to an inflated shadow is
given.

(a) Accurate Shadow (b) Inflated Shadow.

Figure 65: Comparison of an accurate shadow and an inflated
shadow.

The brightness parameterb simulates the effect of the ambient light
in the shadowed area and is the minimum of the transfer function
f . It represents the darkest light intensity a shadow can have. The
maximum value is 1, that means objects outside a shadow are fully
visible to the light. A shadow with a low brightness for the umbra
and an inflated shadow with a higher brightness can be combined
to produce a more stylized shadow.(see Figure 66)

The softness parameter softens the hard shadows. The visibility of
a shadow varies continuously across the penumbra region and two
shadow contours are considered. One deflating from the location
of the hard shadow and one delineating the outermost boundary of
the penumbra. These contours can be extracted with the distance
transform function, where the softness is the width of the transition
from f (D) = b to f (D) = 1, which is fully visible.

Figure 67shows a comparision of an accurate shadow to an soft-
ened shadow.

The original hard shadow defines the least abstraction of a shadow
and a perfect circle defines the highest abstraction of a shadow.
Therefore the abstraction parameterα is a limit of the curvature,
a high value ofα leads to a rounder shadow. It is implemented by

Figure 66:Usage of the umbra and penumbra to produce a stylized
shadow.

(a) Accurate Shadow (b) Softened Shadow.

Figure 67: Comparison of an accurate shadow and an softened
shadow.

convolving the distance function with a Gaussian kernel of standard
deviationα . Figure 68shows a comparision of an accurate shadow
to an abstract shadow.

(a) Accurate Shadow (b) Abstract Shadow.

Figure 68: Comparison of an accurate shadow and an abstract
shadow.

Additional geometry information is used to provide a more intuitive
shadow behavior. The geometry information is specified per pixel
and the three additional values are the world-space position, normal
and distance to the occluder. With the assistance of the world-space
position, foreshortening of shadows away from the camera is possi-
ble. Normal discontinuities prevent sampling artifacts and with the
distance to the occluder the softness or brightness for shadows with
a greater distance can be varied.

5 Conclusion

The main focus in computer graphics today lies in the production
of photorealistic looking images and animations. Other important
aspects of animated scenes and behaviour of the included objects
also concentrate on being physically correct. In the beginnings of



computer graphics the resources were limited and photorealism was
not possible in real time applications. But this forced computer
graphic artists to create artistic and abstract looking scenes to attract
the viewer. This resulted in a broad variety of different computer
graphic styles. Nowadays the artistic aspect is rather small, espe-
cially in computer games, because the aim is to produce realistic
environments and lighting effects.

Cartoon style rendering is an example to conquer these develop-
ments and bring back the stylistic aspect to computer graphics. The
most distinctive attributes in comics are the mostly black drawn sil-
houettes and the discrete interior shading.

We describe methods for silhouette edge detection and their im-
plementation in image space as well as in object space. Image
space methods tend to be more efficient than silhouette edge de-
tection methods in object space. The advantage of object space
methods is the additional information of the object geometry which
can be used to produce stylized outlines. The calculation of the
object space methods include an additional overhead that can be
overcomed with the programmable geometry stage in the future
series of graphic cards. The interior shading of the cels depends
on the traditional lighting equation, while using discrete colours.
The dot product of the surface normal and the light direction vector
(L ∗N) is subdivided into intervals, which represent a solid color
value. This creates the distinct look of the solid shaded cels with
hard transitions between the shaded and illuminated parts of the ob-
ject. A method to simulate cartoon looking specular highlights by
altering the specular part of the traditional lighting equation is also
presented.

We summarize methods to imitate several drawing styles, which
extend the basic silhouette detection and cel shading.

To produce hand drawn looking outlines in pencil drawings we
present techniques which map textures on the detected silhouettes
or alter the textures in a pre-processing step before. The hatching
process for the interior shading is done by choosing textures with
different stroke intensities. The temporal coherence between suc-
cessive frames in an animation cycle is problematic and appears in
artifacts on the texture borders. The usage of the coherence infor-
mation should be improved to reduce this errors. Another progress
is to support different colors and more typically pencil drawing ef-
fects, like erasers. A chinese painting effect operating on the GPU
is shown, which simulates the interaction between the monochro-
matic ink and the traditional Xuan paper. In this interrelation the
morphing animation is introduced, but as in pencil rendering the
coherence information should be utilized in future research.

Then we also showed how to create different artistic styles by using
and extending the existing methods. This was done by the examples
of Frank Miller’s ”Sin City” style, Todd McFarlane’s ”Spawn” style
and Mike Mignola’s ”Hellboy” style. These were all styles used
before in comic books and the goal was to implement them in real
time. It turned out that some styles were easy to approximate with
only some minor extensions of the basic methods while others are
hard to achieve. The main problem lies in the mostly 2-dimensional
nature of cartoons and comics. Objects behave differently, shadows
are stylistic and animations emphasize on the action going on and
mostly look good from the intended perspective.

Another important aesthetic aspect is the shadow of the objects
in an scene. A semi automatic method supporting the artist in
the creation process of shadows for traditional animations is dis-
cussed. Shadows in fine art are more abstract than the physically
correct ones generated with the standard shadowing algorithms. We
summarize a method to produce more stylized shadows by vary-
ing different parameters. In future work this parameters should be
functions over time for the possibility of key framing in animated

scenes. Moreover the methods can be extend to work with area light
sources.

We also showed methods for smoke and water animations and re-
alized that the effects simulated were not very cartoonish while the
drawings were. These are all problems we are facing when try-
ing to implement real time cartoon style rendering. Future work
has to be done in the stylizing effects and their animations. And
maybe we should not concentrate on transferring styles from comic
books or cartoons to real-time computer graphics but should keep
in mind that we are dealing with a completely different medium
with other advantages but also disadvantages compared to the tra-
ditional mediums. And therefore create styles suitable for real-time
3-dimensional animations and interactions.
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