Visual Analytics -Introduction

Eduard Gröller

Institute of Computer Graphics and Algorithms Vienna University of Technology

Goals of VA [VisMaster, 2010]

Creation of tools and techniques to enable people to:

Synthesize information and derive insight from massive, dynamic, ambiguous, and often conflicting data

Detect the expected and discover the unexpected

Provide timely, defensible, and understandable assessments

Communicate these assessment effectively for action

What is Visual Analytics?

"Visual Analytics is the science of analytical reasoning supported by a highly interactive visual interface." [Wong and Thomas 2004]

"Visual Analytics combines automated analysis techniques with interactive visualisations for an effective understanding, reasoning and decision making on the basis of very large and complex datasets" [Keim 2010]

Detect the expected and discover the unexpected

Visual Analytics Process

First step: preprocess and transform data

Data cleaning, normalization, grouping, data fusion

Automated methods

- + Scale well
- Get stuck in local optima
- Run in a black box fashion

Visualization

- + Interactive data analysis
- Scalability

Visual Analytics integrates both

- Tied together by the user
- Alternating between visual and automatic methods

Visual Data Exploration

Interdisciplinary!

Challenges

Data

Dealing with very large, diverse, variable quality datasets

Users

Meeting the needs of the users

Design

Assisting designers of visual analytic systems

Technology

Providing the necessary infrastructure

Data Mining Definition

Automatic algorithmic extraction of valuable information from raw data

Knowledge Discovery and Data Mining (KDD)

Semi or fully automated analysis of massive data sets

Contributions are more about general methodologies

Black-box methods in the hands of end users Users need to understand the algorithms for using them What attributes to use? What similarity measure? etc. Often trial and error

The Ability Matrix

1	Data Storage					
nputer	Numerical		Insight is generated by the human – not the computer!			
Con	Calculations					
of	Searching/Finding		Planning			
mance	L	ogic	Prediction			
Perfor			Cognition Common Knowledge Creativity			
\neg	Performance of a Human					

adapted from Daniel Keim, Uni. Konstanz

Why Graphics?

Figures are richer; provide more information with less clutter and in less space.

Figures provide the 'gestalt' effect: they give an overview; make structure more visible.

Figures are more accessible, easier to understand, faster to grasp, more comprehensible, more memorable, more fun, and less formal.

Total Bandwidth (millions of bits per second)

list adapted from: [Stasko et al. 1998]

Statistics vs. Visualization: Anscombe's Quartet

Ansconne s quarter							
I		II		III		IV	
х	У	х	у	х	У	х	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Anecombo's quartet

Statistics vs. Visualization: Anscombe's Quartet

Statistics profile is the same for all!

Property	Value		
Mean of x in each case	9 (exact)		
Variance of x in each case	11 (exact)		
Mean of y in each case	7.50 (to 2 decimal places)		
Variance of <i>y</i> in each case	4.122 or 4.127 (to 3 decimal places)		
Correlation between x and y in each case	0.816 (to 3 decimal places)		
Linear regression line in each case	y=3.00+0.500x (to 2 and 3 decimal places, respectively)		

Anscombe's Quartet

Four datasets that have identical simple statistical properties, yet appear very different when graphed.

Wikimedia Commons

Property	Value		
Mean of x in each case	9 (exact)		
Variance of <i>x</i> in each case	11 (exact)		
Mean of y in each case	7.50 (to 2 decimal places)		
Variance of y in each case	4.122 or 4.127 (to 3 decimal places)		
Correlation between <i>x</i> and <i>y</i> in each case	0.816 (to 3 decimal places)		
Linear regression line in each case	y=3.00+0.500x (to 2 and 3 decimal places, respectively)		

Visualization Can Be Biased

The same data plotted with different scales is perceived dramatically differently.

x- and *y*-values.

Diagram vs. Visualization

A diagram represents information. A visualization represents data.

The DIKW-Hierarchy according to [Bellinger 2004]

From Epistemology: Data = ground truth Information = phenomena Knowledge = causes Wisdom = possible (inter-)actions

"Above all else, show the data" - Edward R. Tufte

Mantras

Guide to visually explore data - Shneiderman's Mantra:

Overview first, zoom/filter, details on demand

[Shneiderman, 1996]

Describes how data should be presented on screen

For massive datasets it is difficult to create overview without loosing interesting patterns

Extended Mantra for VA:

Analyse first, show the important, zoom/filter, analyse further, details on demand [Keim, 2006]

Traditional Data Mining vs. Visual Analysis Processes

Visualization Pipeline

What is not surrounded by uncertainty cannot be the truth [Richard Feynman]

True genius resides in the capacity for evaluation of uncertain, hazardous, and conflicting information [Winston Churchill]

Doubt is not a pleasant condition, but certainty is absurd [Voltaire]

Uncertainty

Definition

"Degree to which the lack of knowledge about the amount of error is responsible for hesitancy in accepting results and observations with caution" [Hunter 1993]

Measurement data

e.g., DNA microarray expression data

Can be handled in data or view space

Data Management Challenges

" Big Data"

Uncertainty

Semantics Management

Data Streaming

Distributed and Collaborative VA

VA for the Masses

What is "Big Data"?

\rightarrow Moving target

Fields dealing with this kind of data:

Meteorology

Genomics

Connectomics

Complex physics simulations

Biological and environmental research

Business intelligence

Multiples of bytes V· T· E					
SI decimal pre	efixes	Binary	IEC binary pro	efixes	
Name	Value	usage	Name	Value	
(Symbol)			(Symbol)		
kilobyte (kB)	10 ³	2 ¹⁰	kibibyte (KiB)	2 ¹⁰	
megabyte (MB)	10 ⁶	2 ²⁰	mebibyte (MiB)	2 ²⁰	
gigabyte (GB)	10 ⁹	2 ³⁰	gibibyte (GiB)	2 ³⁰	
terabyte (TB)	10 ¹²	2 ⁴⁰	tebibyte (TiB)	2 ⁴⁰	
petabyte (PB)	10 ¹⁵	2 ⁵⁰	pebibyte (PiB)	2 ⁵⁰	
exabyte (EB)	10 ¹⁸	2 ⁶⁰	exbibyte (EiB)	2 ⁶⁰	
zettabyte (ZB)	10 ²¹	2 ⁷⁰	zebibyte (ZiB)	2 ⁷⁰	
yottabyte (YB)	10 ²⁴	2 ⁸⁰	yobibyte (YiB)	2 ⁸⁰	
See also: Multiples of bits · Orders of magnitude of data					

http://en.wikipedia.org/wiki/Template:Quantities_of_bits

Visual Steering to Support Decision Making in Visdom

Jürgen Waser

http://www.cg.tuwien.ac.at/research/publications/2011/waser_2011_VSD/

Flood emergency assistance

New Orleans 2005: 17th canal levee breach

24

Image courtesy of USACE, US Army Corps of Engineers

Jürgen Waser Visual Steering to Support Decision Making in Visual Steering to Support Decision Making in

Flood emergency assistance

Testing sandbag configurations in a virtual environment

25

V

Jürgen Waser

Visual Steering to Support Decision Making in

Solution: World Lines

Visual Steering to Support Decision Making in Jürgen Waser

26

Solution: World Lines

Jürgen Waser Visual Steering to Support Decision Making in

- Kisdom

27

V

Video

Jürgen Waser Visual Steering to Support Decision Making in

v r

28

vis

Worldlines – Multiple Linked Views

SimVis: Interactive Visual Analysis of Large & Complex Simulation Data

Dr. Helmut Doleisch VRVis Research Center

http://www.VRVis.at/

Motivation

large data sets from simulation

- goal: support exploration and analysis of results
 - analyze n-dim. data interactively
 - use 3D visualization
 - overview, zoom and filter, detail on demand (Shneidermans' information seeking mantra)

challenge:

- occlusion
- interactive data handling

Interactive Data Handling

sample data set size:

- 540 million data items
- currently working to expand to billions

cells	timesteps	attributes	cells * timesteps	cells * timesteps * attributes
704.900	20	16	14.098.000	225.568.000
150.124	600	6	90.074.400	540.446.400
7.680.000	288	15	2.211.840.000	33.177.600.000

SimVis

VRVis' solution for these challenges Feature-based visualization framework

SimVis key features:

- Multiple, linked views
- Interactive feature specification
- Focus+Context visualization
- Smooth feature boundaries
- Explicit feature representation
- On-the-fly attribute derivation

SimVis: Multiple Views

Scatterplots, histogram, 3D(4D) view, etc.

Brushing

Move/alter/extend brush interactively

Update linked F+C views in real-time

VAICo: Visual Analysis for Image Comparison

Johanna Schmidt¹, M. Eduard Gröller¹, Stefan Bruckner²

¹Vienna University of Technology, Austria ²University of Bergen, Norway

VAICo

Visual Analysis for Image Comparison

Johanna Schmidt

Vienna University of Technology, Austria M. Eduard Gröller

Vienna University of Technology, Austria Stefan Bruckner

University of Bergen Norway

YMCA - Your Mesh Comparison Application

[Johanna Schmidt et al.]

Literature on Visual Analytics

Daniel A. Keim, Jörn Kohlhammer, Geoffrey Ellis and Florian Mansmann: Mastering the Information Age - Solving Problems with Visual Analytics, Eurographics Association, 2010. ISBN: 978-3905673777.

Free download: http://www.vismaster.eu/book/

James J. Thomas and Kristin A. Cook : Illuminating the Path: The Research and Development Agenda for Visual Analytics, National Visualization and Analytics Ctr, 2005. ISBN: 978-0769523231 Free download: http://vis.pnnl.gov/

Literature on Visualization

<section-header><section-header><text>

Matthew Ward, George Grinstein, Daniel Keim: *Interactive Data Visualization: Foundations, Techniques, and Applications,* AK Peters Verlag, 2010. ISBN: 1568814739

Heidrun Schumann, Wolfgang Müller: *Visualisierung - Grundlagen und allgemeine Methoden*, Springer Verlag, 2000. ISBN: 3540649441

Alexandru Telea: Data *Visualizaton – Principles and Practice,* AK Peters Verlag, 2008. ISBN: 9781568813066

Literature on Scientific Visualization

Charles D. Hansen \cdot Min Chen Christopher R. Johnson \cdot Arie E. Kaufman Hans Hagen *Editors*

Scientific Visualization

Uncertainty, Multifield, Biomedical, and Scalable Visualization

Literature on Information Visualization

Colin Ware: Information Visualization, Second Edition: Perception for Design, Morgan Kaufmann, 2nd edition, 2004. ISBN: 1558608192

Robert Spence: *Information Visualization - Design for Interaction,* Pearson Verlag, 2001. ISBN13: 9780132065504

Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, Christian Tominski: *Visualization of Time-Oriented Data*, Springer Verlag, 2011. ISBN13: 978-0857290786

For material for this lecture unit

Marc Streit, Johannes Kepler University Linz

Praktika, Bachelorarbeiten, Diplomarbeiten

http://www.cg.tuwien.ac.at/courses/projekte/

Christmas Tree Case Study

