fng an arbitrary
| 3 incorporatihg
method for this
jmtinous domain
pr the mapping,

Maguire for

ic Animation

fim for his pati-
{Fellowship.

EE Trans. Pat-

wed Image Pro-

L (SIGGRAPH
|
L Computer
1
EE Computer

wings of Euro-

mages in Mass
Yocessing, vol.

(Allo Research
plications, vol.

wnipulation of
B, vol. 21, no.

w Processing,

Press, 1982.
@phics, (SIG-

Proceedings),

Cooper Union
Also appears

A Simple Method for Color Quantization: Octree Quantization

M. Gervautz and W. Purgathofer (Austria)

Abstract

A new method for filling a color table is presented that
produces pictures of similar quality as existing methods, but
requires less memory and execution time. ALl colors of an image
are inserted in an octree, and this octree is reduced from the
leaves to the root in such a way that every pixel has a well
defined maximum error. The algorithm is described in PASCAL
notation.

Keywords: color quantization, image display, color table, raster
granhics, octree.

Introduction

The human eye is able to distinguish about 200 intensity Llevels
in each of the three primaries red, green, and blue. ALL in all,
up to 10 million different colors can be distinguished. The
RGB-cube with 256 subdivisions on each of the red, green, and
blue axes, as it is very often used, represents about 16.77
million colors and suffices for the eye. It enables display of
color shaded scenes without visible color edges, and is
therefore well suited for computer graphics (Fig. 1).

Color devices (mainly frame buffers) that allow for the
projection of those 16 million colors at the same time are
complicated and therefore expensive. On the other hand, even
good dithering techniques produce relatively poor quality
pictures on cheap devices //Jar76//. Therefore devices with
color tables are produced that allow the use of a small
contingent K (e.g. K=256) of colors out of a larger palette
(e.g. 16 million colors).

When displaying images that contain more than K colors on such
devices, the problem arises of which K colors out of the
possible colors shall be selected and how the original colors
are mapped onto the representatives to produce a satisfying
nicture. Such a selection is also needed for some other
algorithms, such as the CCC-method for image encoding //Cam86//.
The question is how much expense can or shall be invested in

220

Figure 1: Computer generated image displayed with
16 million colors

this job. This paper first describes existing methods for the

solution of this problem, and then presents a new algorithm we
called "octree quantization" in detail.

Existing Solutions

The simplest way to handle the problem is to divide the RGB-cube
into equal slices in each dimension and use the cross product of
these (few) color Llevels of every primary for the color table.
This "uniform quantization" could, e.g., devide the red axis and
the green axis into 8 levels each, and the blue axis (our eye is
less sensitive to blue) into 4 levels, so that 8.8.4=256 colors
are available. The mapping of an image value into this selection
is simply done by rounding each of the components (Fig. 2).

Figure 2: The same image as Fig. 1 displayed with
64 colors obtained from uniform quantization

“"popu
urring
whole
color his
this hist
hest f
~ave been
ponto the
presents
for every
locally
solution
entries)
effort rei

m o n

Q

Figure

The "medi
such a wa
the same

subdivide
subdivisi
is split

the same

entries i
each of t
needed an
If the bo
used very
color tab

Ir the
thm we

RGB-cube
Pduct of
table.
8xis and
F eye 1is
Folors
tlection
D .

221

The "popularity algorithm" chooses the K most frequently
occurring colors for the color table. Therefore, in a first pass
the whole image is explored, and all its colors are stored in a
color histogram with their frequencies. The required memory for
this histogram is quite large. Then the K colors with the
highest frequencies are extracted. After the color table entries
have been selected, the problem of mapping the original colors
onto the available representatives remains. For this //Hec82//
presents a method for finding the nearest color table neighbour
for every point within the RGB-cube (Fig. 3). Although this
"locally sorted search" Llies significantly below the primitive
solution to the problem (comparison with all color table
entries) in terms of execution time, still a relatively high
effort remains.

Figure 3: The same image as Fig. 1 displayed with
64 colors obtained from the popularity algorithm

The "median cut algorithm" //Hec82// tries to select K colors in
such a way that each of these colors represents approximately
the same number of pixels. To achieve this the color cube is
subdivided into K rectangular boxes. In each of the K-1
subdivision steps the rectangular box with the most points in it
is split into two parts along the longest dimension with about
the same numbers of points in each half. The set of color table
entries is obtained by calculating the mean value of points in
each of the K boxes. For this, again, a color histogramm is
needed and additionally radix lists for the subdivision steps.
If the boxes are organized as a k-d-tree, this structure can be
used very well for the mapping of the actual colors onto the
color tablesCEigs"4) .

222

Figure 4: The same image as Fig. 1 displayed with
64 colors obtained from the median cut method

The new Method: Octree Quantization

Principle of the Method

The image is read sequentially. The first K different colors are
used as initial entries to the color table. If another color is
added, which means that the already processed part of the image
has K+1 different colors, some very near neighbours are merged
into one and substituted by their mean. For every further color
this step is repeated, so that at any moment no more than K
representatives are left. This, of course, is also true when the
image is completely processed.

The Octree

For this method a data structure has to be used that enables
quick detection of colors that lie close together in the color
space. An octree is well suited for this problem //Jak80,
Mea82//. The RGB-cube can easily be administered by an octree.

const MaxDepth = 8; (* maximum depth of the octree *)
type Color = record R,G,B : integer end ;
Octree = * Node;
Node = record
Level : integer;

case Leaf : boolean of
false : (Next : array [0..7] of Octree);
true : (ColorCount : integer;
ColorIndex : integer;
RGB =4 Collon)r,

()

3

(@1
~e

Bt suffic
256 level
million c
green, an
coordinat

very exa
ntermedi
reater t
subcube r
measure f

- eva
- fil
- mag
These thr

pctree.

represent

223

It suffices to use an octree of depth 8 (two in the eighth is
256 Llevels in red, green, blue; eight in the eighth gives 16
million colors) to represent all possible colors. The red,
green, and blue components (each between 0 and 255) are the
coordinates within the octree:

function Branch (RGB : Color; Depth : integer) : integer;

(x evaluates the branch of the octree for the color RGB
in depth Depth *)

begin
Branch:= Bit (MaxDepth-Depth, RGB.R) * &4 +
Bit (MaxDepth-Depth, RGB.G) * 2 +
Bit (MaxDepth-Depth, RGB.B);

Every exact color is represented by a leaf in depth 8.
Intermediate nodes represent subcubes of the RGB space. The
greater the depth of such a node, the smaller is the color
subcube represented by it, therefore the depth of a node is a
measure for the maximum distance of its colors.

Irs are
or is
image
irged The Algorithm
color
K Just as for the median cut algorithm, the octree quantization is
en the done in three phases:
- evaluation of the representatives
- filling the color table
- mapping the original colors onto the representatives
€S These three steps are now described in detail using the color
olor octree.
ree.
*) Evaluation of the Representatives

The octree is only constructed in those parts, that are
necessary for the image of interest. At the beginning, the
octree is empty. Every color that occurs in the image is now
inserted by generating a leaf in depth 8, thereby the color is
represented exactly.

"ee);

224

var Size : integer; (* number of leaves *)
OctreeDepth : integer; (* depth of the octree *)

procedure InsertTree (var Tree : Octree; RGB : Color;
Depth : integer);

(* inserts the color RGB into the subtree Tree
in depth Depth *)

procedure NewAndInit (var Tree : Octree; Depth : integer);
(* produces and initializes a new octree node *)

var i : integer;

bhegin (¥ NewAndInit *)
new (Tree);
with Tree4 do
begin —
Level:= Depth;
Leaf:= Depth = OctreeDepth;
ipfee lreia
then
begin
Size:= Sizetl;
ColioirCounitis= 07
RGBi:= #0010, QD8

ellsievifolny k=0 tioWida diol ‘Nie xitDid si= inalls o7

end ;

begin (¥ InsertTree *)
i et S
then NewAndInit (Tree,Depth);

begin
CoillonCount:="iCollomColunt +
AddColors (Tree#.RGB, RGB)
end
else InsertTree (Next[Branch(RGB,Depth)l, RGB, Depth+1);
end ;

In this way an incomplete octree is created, in which many
branches are missing. Actually, this octree does not have to be
filled with all the colors because every time the number of
colors reaches K+1, similar colors are merged into one, so that
there are never more than K colors left. We will call this
action a reduction of the octree.

o
@
Q

1= v o

D
5)
o w

Every
repres
reduce
always

Reduci

fteger);

th+1);

to be
p f
D that

225

procedure ReduceTree;
(x combines the successors of an intermediate node
to one leaf *)

var Tree : Octree;
¢chiitdrien,s Tt silnttegelr';
Sum s iCollioir;

begin (* ReduceTree *)
GetReducible (Tree); (* finds a reducible node *)
Sum:= (0,0,0);
with Treef do

begin
for i:=0 to 7 do
Efh © INleEER SR> ik
then
begin

Children:= Children+1;
AddColors (Sum, Next[iJ4.RGB)
end ;
Leaf:= true;
RGB:= Sum;
end ;
Size:= Size-Children+1;
end ;

Every time the number of leaves (that is the number of
representatives found up to the moment) exceeds K, the
reduced. The reduction begins at the bottom of the oct
always substituting some leaves by their predecessor.

Reducing the octree, the following criteria are releva

- From all reducible nodes, those that have the Lla
depths within the octree shall be chosen first,
represent colors that lie closest together.

- If there is more than one node in the largest de
additional criteria could be used for an optimal
(for simplicity, none of them was considered in
following program).

e.g.: Reduce the node that represents the fewes
up to now. In this way the error sum will
small.

Reduce the node that represents the most
to now. In this case large areas will be
filled in a slightly wrong color, and det
shadings (like antialiasing) will remain.

To construct the color octree, the whole image has to
once.

octree
ree by

AGE
rgest

for they

pth,

selection

the

t pixels
be kept

pixels up
uniformly
ailled

be read

var K : integer; B i g

procedure GenerateOctree (var Tree : Octree); The m:
(* constructs an incomplete octree Tree T
from all colors of the image in RGBfile *)

viar RGB 'z Color;

begin (* GenerateOctree *) -
Size:= 0; 1F the
Treel="nll =
RGBread (RGBfile,RGB); sxac
while not RGBeof (RGBfile) do 4o

)

' =

- PV .

begin will
InsertTree (Tree, RGB, 1); ehat
while Size > K do ReduceTree; snly |
RGBread (RGBfile,RGB) table
end ;
end ;

Filling the Color Table

At the end the K leaves of the octree contain the colors for the X
color table. They can be written into the color table by
recursively examining the octree:

1 re

procedure InitColorTable (Tree : Octree;
var Index : integer);
(x fills the color table with the means of the colors
represented by the octree leaves *)

viaR Tl e Y anteqgers

bec
begin (* InitColorTable x) [
if Tree <> nil '
then A1, -
with Tree#4 do
At Learf 7]
then
begin enc
ColorTablelIndexl:= Mean (RGB,ColorCount);
CollorIndex:=dIndex:e (*xsthe colorsindex is also The vi
written into the octree leaf *) qualif
Index:= Index+1;
end
else
for i:=0 to 7 do InitColorTable (Next[il, Index); Impro\

227

Mapping onto the Representatives

The mappinag of the original colors onto their representatives
can now be managed easily with the octree, too. Trying to find
any original color in the reduced octree will end at a leaf in
some depth. This node contains a color very similar to the one
- in search, and is therefore its representative. Since the index
of the color table is stored there too, no further search has to
be carried out.
If the original image used less than K colors, no reduction will
have taken place, and the found color table index will contain
exactly the correct color. Otherwise, only the path to the Lleaf
in depth 8 was shortened by the reduction, so that the color
will be displayed less exactly by the mean of all the colors
that had their pathes over this node. Since the octree contains
only K leaves, all original colors are mapped onto valid color
table entries. For this the image has to be read a second time.

procedure ImageOutput (Tree : Octree);
(¥ displays the whole image; every original color is
mapped onto a color table index *)

procedure Quant (Tree : Octree; Orig : Color) : integer;

for the (x for the original color Orig its representative
is searched for in the octree, and the index of
its color table entry is returned *)
begin (% Quant *)
with Tree4 do
RN INclo i
then Quant:= ColorIndex
else Quant:= Quant (Next[Branch (Orig, Level)l, Orig)
end ;
begin (* ImageOutput *)
RGBread (RGBfile,RGB);
while not RGBeof (RGBfile) do
begin e
PixelOutput (Quant (Tree, RGB));
RGBread (RGBfile, RGB);
end ;
end ;
Bo The visual result using this octree quantization is of similar
*) quality as the result using the median cut method (Fig. 5).
x);

Improvements

A significant portion of the execution time is spent with the
search for an optimal reducible node every time a reduction of
the octree has to take place. These nodes can be collected
during the construction of the tree easily in an appropriate
structure. They have to be sorted by depth to ensure quick

228

Figure 5: The same image as Fig. 1 displayed with
64 colors obtained from octree quantization

access. An appropriate structure f
be 8 linear lists (one for every d
reducible nodes. AlLL nodes of one depth Llevel are elements of

the same list. The node with the largest depth can then be found

quickly for reduction. For this, the declaration of the node of
the octree has to be expanded:

or this purpose has proved to
epth level) containing all

type Node = record

NextNode : Octree;
(* next node in the same depth Llevel *)

end ;

var Reducelist : array [0..MaxDepth]l of Octree;

(x one Llist for every depth Llevel in the octree *)

The procedure MakeReducible is activated when a new

intermediate
node

(Leaf = false) is created in NewAndInit.

procedure MakeReducible (Level : integer; Node : Octree);

(* inserts the node Node with depth Level into the
mitghit $disite %)

begin (* MakeReducible *)
Node4.NextNode:= ReducelList[Level];

ReduceList[Levell:= Node;
end ;

At any g
hich th
eepest

nd it nm
his "re
two repr
distance
the octr
again be
at that

decrease

w
a
T

Memory a
Let N be
image 1is
the imag
runs ins

Let K be
color "ta

Let D be

In gener

An upper
because
bintree)
memory!
image. C

Upper bc
generat:

Insert
N inser]

ClollieiR

loved to
fall

ks of

Be found
Pode of
|

)

.)
Pmediate
be) ;

229

procedure GetReducible (var Node : Octree);
(*x finds the best reducible node of the octree *)

begin (* GetReducible *)
while ReducelList[OctreeDepth=-11 = nil do
OctreeDepth:= OctreebDepth-1;
Node:= ReducelList[OctreeDepth=-11;
ReduceList[OctreeDepth=1]1:=
ReduceList[OctreeDepth-1]J4.NextNode;

end ;

At any given moment one level of the octree will be the depth in
which the reductions take place. This depth is the level of the
deepest intermediate nodes. At the beginning, this is level 7
and it moves towards the root during the octree construction.
This "reduction level" states what the minimal distance between
two representatives will already have to be. This minimal
distance can never again decrease by adding even more colors to
the octree. Therefore, nothing beneath this level + 1 will ever
again be relevant, so that the insertion of colors can also stop
at that depth. The depth of the octree is not constant, but
decreases with Llifetime (see NewAndInit).

Memory and Computational Expense
Let N be the number of pixels of the original image. If the
image is run-length encoded, N can also be the number of runs of

the image. The algorithm has to be modified slightly by using
runs instead of pixels in the octree.

Let K be the number of representatives, that is the size of the
color table.

Let D be the number of different colors in the original image.
In general the following equations hold:

N >D > K and N >> K.
An upper bound for the memory used by the octree is 2*%K-1 nodes,
because there are K leaves and at the most (in the case of a
bintree) K-1 intermediate nodes. The algorithm needs very Llittle
memory! It is also independent of N and D, that is, of the

image. Only the color table size is relevant.

Upper bounds for the number of steps for the insertions, for the
generation of the color table, and for the quantization are:

Insertion : N * MaxDepth

N insertions take place, each of them not deeper than MaxDepth.

Color table generation 5 72 %K

230

To fill the color table the incomplete octree has to be examined
once, for every node there is exactly one call to the procedure
InitColorTable.

Mapping : N * MaxDepth

For every pixel the color index of its representative is found
not deeper than in the maximum tree depth.

Thus the octree quantization algorithm is of OCN), the Llarger
part of the execution time is spent by I/O-operations.

Comparison with the other Methods

The following Table 1 gives a short comparision with the other
mentioned methods.

search for picture
memory representatives mapping quality
Uniform Quant. 0 0(K) 0(N) bad
Popularity 0(D) 0 (K*N) at least depends
algorithm 0(N) on data
Median Cut 0(D) O(N*Ld(K)) 0(N*Ld(K)) good
Octree Quant. 0(K) 0(N) 0(N) good

Conclusion

A new method was presented to find a color table selection for
displaying an image on a screen. The picture quality of this
"octree quantization" is as good as that for existing methods.
The expense in terms of memory and execution time, however, Llies
significantly below the expense of those algorithms, especially
the memory occupied is independent of the image complexity. The
method is therefore well suited for microcomputers, too. The
implementation is described completely so that it is easy to
adapt it.

Acknowledgements

This project was sponsored by Digital Equipment Inc. and the
Foschungsférderungsfonds der gewerblichen Wirtschaft and
developed on a minicomputer VAX 11/730. We want to thank our
colleagues for valuable discussions, especially Mr. Eduard
Groller and Mr. Michael Zeiller.

Reference

//Cam86//

//Hec82//

//Jak80//

//Mea82/

//Jar76/

examined
locedure

f found
|

B other

|
picture
quality
R ——

bad

depends
on data

good

good
- —

Son for
this
thods.
er, lies
ecially
ty. The
The

y to

References

//Cam86//

//Hec82//

//J3ak80//

//Mea82//

//Jdar76//

G.Campbell, T.A.De Fanti, et.al.: Two Bit/Pixel full
Color Encoding. In Computer Graphics, ACM-SIGGRAPH,
Vol .20, No.4, 1986, pp.215-223.

P.Heckbert: Color Image Quantization for Frame Buffer
Display. In Computer Graphics, ACM-SIGGRAPH, Vol.16,

No.3, July 1982, pp.297-307.

C.L.Jakson, S.L.Tanimoto: Octrees and Their Use in
Representing Three-Dimensional Objects. In Computer
Graphics and Image Processing, Vol.14, No.3, 1980,
pp.249-270.

D.Meagher: Geometric Modelling Using Octree Encoding.
In Computer Graphics and Image Processing, Vol.19,
No.2, 1982, pp.129-147.

J.F.Jarvis, N.Judice, N.H.Nike: A Survey of
Techniques for the Display of continous tone Pictures
on bilevel Displays. In Computer Graphics and Image
Piroicieisisiing, " Vol o5, No- 1, 1976, "ppl. 1 3=40

