Information
- Publication Type: Conference Paper
- Workgroup(s)/Project(s):
- Date: June 2001
- ISBN: 3-211-83709-4
- Publisher: Springer-Verlag
- Organization: Eurographics
- Lecturer: Michael Wimmer
- Editor: Steven J. Gortler and Karol Myszkowski
- Booktitle: Rendering Techniques 2001 (Proceedings Eurographics Workshop on Rendering)
- Pages: 163 – 176
Abstract
We present a new data structure for encoding the appearance of a geometric model as seen from a viewing region (view cell). This representation can be used in interactive or real-time visualization applications to replace a complex model by an impostor, maintaining high quality rendering while cutting down rendering time. Our approach relies on an object-space sampled representation similar to a point cloud or a layered depth image, but introduces two fundamental additions to previous techniques. First, the sampling rate is controlled to provide sufficient density across all possible viewing conditions from the specified view cell. Second, a correct, antialiased representation of the plenoptic function is computed using Monte Carlo integration. Our system therefore achieves high quality rendering using a simple representation with bounded complexity. We demonstrate the method for an application in urban visualization.Additional Files and Images
Weblinks
No further information available.BibTeX
@inproceedings{Wimmer-2001-Poi, title = "Point-Based Impostors for Real-Time Visualization", author = "Michael Wimmer and Peter Wonka and Fran\c{c}ois Sillion", year = "2001", abstract = "We present a new data structure for encoding the appearance of a geometric model as seen from a viewing region (view cell). This representation can be used in interactive or real-time visualization applications to replace a complex model by an impostor, maintaining high quality rendering while cutting down rendering time. Our approach relies on an object-space sampled representation similar to a point cloud or a layered depth image, but introduces two fundamental additions to previous techniques. First, the sampling rate is controlled to provide sufficient density across all possible viewing conditions from the specified view cell. Second, a correct, antialiased representation of the plenoptic function is computed using Monte Carlo integration. Our system therefore achieves high quality rendering using a simple representation with bounded complexity. We demonstrate the method for an application in urban visualization.", month = jun, isbn = "3-211-83709-4", publisher = "Springer-Verlag", organization = "Eurographics", editor = "Steven J. Gortler and Karol Myszkowski", booktitle = "Rendering Techniques 2001 (Proceedings Eurographics Workshop on Rendering)", pages = "163--176", URL = "https://www.cg.tuwien.ac.at/research/publications/2001/Wimmer-2001-Poi/", }