
MASTERARBEIT

Interactive Exploration and Quantification
of Industrial CT Data

ausgeführt am Institut für Computergraphik und Algorithmen
der Technischen Universität Wien

in Kooperation mit dem
VRVis, Zentrum für Virtual Reality und Visualisierung

unter Anleitung von
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller

in Kooperation mit
Dipl.-Ing. Dr.techn. Markus Hadwiger

durch
Laura Fritz

Matr. Nr.: 9826587
A - 8042 Graz, Peterstalstrasse 129

Wien, im Jänner 2009

Abstract

Non-destructive testing (NDT) is a key aspect of present day engineering and de-

velopment which examines the internal structures of industrial components such as

machine parts, pipes and ropes without destroying them. Industrial pieces require

critical inspection before they are assembled into a finished product in order to

ensure safety, stability, and usefulness of the finished object. Therefore, the goal of

this thesis is to explore industrial Computed Tomography (CT) volumes, with the

goal to facilitate the whole quantification approach of the components at hand by

bridging the gap between visualization on the one hand, and interactive quantifica-

tion of features or defects on the other one.

The standard approach for defect detection in industrial CT builds on region growing,

which requires manually tuning parameters such as target ranges for density and size,

variance, as well as sometimes also the specification of seed points. To circumvent

repeating the whole process if the region growing results are not satisfactory, the

method presented in this thesis allows interactive exploration of the parameter

space. The exploration process is completely separated from region growing in

an unattended pre-processing stage where the seeds are set automatically. The

pre-computation results in a feature volume that tracks a feature size curve for

each voxel over time, which is identified with the main region growing parameter

such as variance. Additionally, a novel 3D transfer function domain over (density,

feature size, time) is presented which allows for interactive exploration of feature

classes. Features and feature size curves can also be explored individually, which

helps with transfer function specification and allows coloring individual features and

disabling features resulting from CT artifacts. Based on the classification obtained

through exploration, the classified features can be quantified immediately.

The visualization and quantification results of this thesis are demonstrated on

different real-world industrial CT data sets.

i

Kurzfassung

Zerstörungsfreie Werkstoffprüfung (ZfP) ist heutzutage ein Schlüsselaspekt in der

Maschinenbau- und Bauindustrie, und dient zur Inspizierung der internen Struk-

turen von, zum Beispiel Maschinenteilen, Rohren und Drahtseilen, ohne dabei

ihre Struktur zu zerstören. Werkstücke, welche in der Industrie angefertigt wer-

den, müssen einer strengen Kontrolle unterzogen werden, um die Stabilität und

generelle Verwendbarkeit zu garantieren, bevor sie zur Produktion zugelassen

werden. Diese Diplomarbeit wurde speziell zur Untersuchung von industriellen

Computer Tomographischen (CT) Daten durchgeführt. Das Ziel, den gesamten

Quantifizierungsablauf eines vorliegenden Werkstücks zu erleichtern, wird durch

interaktive Quantifizierung auf visueller Ebene ermöglicht.

Der üblicherweise verwendete Anstatz zur Erkennung von Ungänzen in Bauteilen

basiert auf Region-Growing-Methoden, welche sowohl das Setzen von Parametern

wie Varianz-, Dichte- und Featuregrössenintervall verlangen, als auch manchmal

ein manuelles Setzen von Seeds voraussetzt. Um zu vermeiden, dass der gesamte

Region-Growing-Prozess bei nichtzufriedenstellenden Ergebnissen wiederholt wer-

den muss, erlaubt die in dieser Diplomarbeit vorgelegte Methode eine interaktive Er-

forschung des Parameterraums, welche sich komplett von dem zu Grunde liegenden

Region-Growing-Prozess abhebt. Auch das Setzen von Seeds passiert automatisch.

Das zuvor berechnete Feature-Volumen verfolgt für jedes Voxel eine eigene Fea-

turegrössen-Kurve über die Zeit, welche durch den wichtigsten Region-Growing-

Parameter (in unserem Fall die Varianz) bestimmt wird. Zusätzlich wird eine neue

3D Transfer Funktion über (Dichte, Featuregrössen, Zeit) vorgestellt, welche zur

interaktiven Untersuchung der verschiedenen Klassen von Ungänzen herangezo-

gen werden kann. Ungänzen- und Featuregrössenkurven können auch individuell

betrachtet werden, was die Einstellung der Transfer Funktion erleichtern soll. Die

einzelnen Ungänzen können je nach Bedarf farblich hervorgehoben, oder von der

ii

iii

Quantifizierung ausgeschlossen werden (z.B. durch die CT Aufnahme entstandene

Artefakte). Die Quantifizierung der erhaltenen Featureklassen erfolgt zeitgleich mit

der Exploration.

Die Visualisierungs- und Quantifizierungs-Ergebnissse werden anhand verschiedener,

Daten aus der Industrie gezeigt.

iii

Contents

1 Introduction 1
1.1 Motivation . 2

1.2 Problem Statement and Objectives 3

1.3 Organization and Pipeline Overview 5

2 Fundamentals and State of the Art 8
2.1 Industrial CT . 8

2.2 GPU-Based Direct Volume Rendering 11

2.3 Region Growing . 15

2.4 Multi-Dimensional Transfer Functions 19

2.5 3D Visualization of Industrial CT Data 24

3 Pre-Computation 27
3.1 Parameter-Settings . 27

3.2 Feature-Size Curves . 28

3.3 Feature Volume . 30

3.4 Feature-Growth Table . 31

3.4.1 Storing the Feature-Growth Table 32

3.4.2 Merging Features . 33

3.5 Multi-pass Region Growing and Seed Selection 34

3.5.1 Culling . 35

3.5.2 Region Growing . 37

3.6 Region Growing Criteria . 41

3.6.1 Region growing method A 42

3.6.2 Region growing method B 42

3.7 Statistical Feature Properties . 43

iv

CONTENTS v

4 Exploration 45
4.1 Exploring Feature Classes . 46

4.1.1 Feature Histograms . 47

4.1.2 3D Transfer Functions and 2.5D Widgets 48

4.2 Exploring Individual Features 49

4.2.1 Feature Picking . 51

4.2.2 Feature Color Coding . 52

4.2.3 Removal of Artifacts . 53

4.2.4 Feature Table . 53

4.2.5 Optional Slice Plane . 55

4.3 Volume Rendering . 56

4.3.1 Brick Caching . 56

4.3.2 Rendering . 58

5 Quantification and Results 61
5.1 Feature Quantification . 61

5.2 Results . 62

5.2.1 Reduced-Pressure-Test Sample 63

5.2.2 Asphalt Core . 64

5.2.3 Golf Ball . 66

5.2.4 Laser Build-up Welding 67

5.2.5 Refractory Material . 69

5.2.6 Isolation Material . 70

5.2.7 Aluminum Tensile Test Sample 71

5.2.8 Cast Housing I . 72

5.2.9 Cast Housing II . 74

5.3 Performance and Memory Usage 75

6 Conclusion and Future Work 79
6.1 Conclusion . 79

6.2 Future Work . 80

Acknowledgments 82

Bibliography iii

v

Chapter 1

Introduction

This work presents the development of a novel method for interactive exploration of

industrial CT volumes such as cast metal parts or even more complex components

composed of completely different materials, like minerals. The goal is to interac-

tively detect, classify, and quantify features using a visualization-driven approach

which allows exploration of all feature classes irrespective of specific density, size,

or variance characteristics, e.g., cracks and holes in casting parts (Figure 1.1(a)) or

(a) Cast Housing. (b) Refractory Material.

Figure 1.1: Features can be explored and quantified interactively according to their size
and density. Therefore, a 3D transfer function is used to identify and colorize the different
feature classes. (a) Defect detection in a Cast Housing. (b) Identification of different mineral
phases in a refractory material.

1

CHAPTER 1. INTRODUCTION 2

different material components (Figure 1.1(b)).

This thesis has been carried out in the scope of a research cooperation between

the VRVis and the Austrian Foundry Research Institute (ÖGI) [2008], which has

already resulted in several publications (Hadwiger et al. [2008], Geier et al. [2008a]

and Geier et al. [2008b]), as well as the study thesis of Höllt [2007].

1.1 Motivation

Non-destructive testing (NDT) is a scientific discipline which examines the internal

structures of industrial components such as machine parts, pipes and ropes without

destroying them. It is an essential tool in construction engineering and manufac-

turing, especially in the automotive industry, heavy machinery industry and plant

industry. In cast metal parts, for example, the processes during solidification may

cause shrinkage cavities, pores, cracks, or inhomogeneities to appear inside the

structure, which are not visible from the outside.

This work was developed in co-operation with the Austrian Foundry Research

Institute and especially created to explore industrial Computed Tomography (CT)

volumes, with the goal to facilitate the whole quantification approach of the compo-

nents at hand. A common class of features in this context are defects such as pores

and shrinkage cavities in varying cast parts, as well as more complex materials with

a broad spectrum of different inclusions, like minerals or asphalt.

The CT-data recorded by the ÖGI originate on one hand from various industries

which need material testing and on the other hand from their own pilot foundry. In

the pilot foundry all cast-materials such as cast irons, cast steels, copper alloys, Al-

and Mg-alloys can be cast and afterward tested in the mechanical testing laboratory.

In this case NDT facilitates the evaluation of the behavior of such pilot castings at

each stage of the testing process as well as the assessment of material defects which

arise throughout the manufacturing process or during use which is simulated in the

mechanical testing laboratory. Furthermore, NDT is nowadays not only used for

inspecting metal parts, but for a variety of different materials such as plastics, wood,

or concrete, as well as minerals in general.

2

CHAPTER 1. INTRODUCTION 3

1.2 Problem Statement and Objectives

In recent years, 3D CT has become common in NDT, which has created powerful

new possibilities, but also new challenges for the inspection and testing process.

Industrial CT volumes are generally quite large, with voxels commonly stored with

16 bits of precision, which leads to several hundred MB to one or more GB of

raw data per scan. Real-time volume rendering has become an essential tool for

visualizing these volumes, usually using bricking strategies as described in Engel

et al. [2006] to cope with the large data sizes. However, for NDT practitioners

visualization is just one part of the workflow, which includes a variety of processing

tasks such as defect detection and quantification, computing statistical measures

and properties such as material porosity, performing accurate measurements and

comparisons, and many more.

The goal of this work is to help bridge the gap between visualization on the one

hand, and quantification of features or defects on the other one. In the NDT context,

feature detection is usually performed via some kind of segmentation, which most

commonly builds on region growing and filtering operations such as morphological

operators. Segmentation results in one or several static segmentation masks, which

can be visualized as part of the 3D volume and also form the basis of quantification.

However, the segmentation cannot be modified without re-computation. This

decouples the detection of features from visualization and prevents working in

a fully interactive manner. Most of all, it hampers interactively exploring the

volume for all different kinds of contained features without already knowing what is

contained in the volume. Segmentation parameters are specified, the segmentation

is computed, and when the results are not satisfactory the user has to change the

parameters and the entire segmentation has to be computed all over again. This

is often time-consuming and tedious. In Figure 1.2 three different values for the

segmentation parameters are used to estimate an appropriate threshold for region

growing. This example clarifies, that in many cases it is impossible to get a satisfying

result using only a single value. For some inclusions the selected parameter is too

small, which causes that the region is only partially grown, or important features are

even ignored completely (e.g., marked by the blue circle in Figure 1.2(a) and 1.2(b)).

Whereas, a larger parameter causes oversegmentation in other regions (marked

by the yellow circle in Figure 1.2(a) and 1.2(b)). In contrast to this standard

approach, this thesis proposes a visualization-driven method for feature detection,

3

CHAPTER 1. INTRODUCTION 4

Figure 1.2: Three results for different segmentation parameters in a conventional region
growing approach. A too small threshold causes that inclusions are not or not completely
segmented (marked by the blue circle in Figure (a) and (b), and the red cricle in Figure (b)
and (c)). However a too large threshold includes too much of the surrounding material into
the feature (yellow circle in Figure (a) and (b)).

where features in the volume can be explored interactively without re-computing

segmentation information. The basis for this is an unattended pre-computation

stage that computes a feature volume and some additional data structures, which

contains the result of feature detection over parameter domains instead of fixed

parameters. This pre-computation has to be performed only once for a given data

set and forms the basis of interactively exploring all contained features. Moreover,

in contrast to detection of a single type or class of features, such as “feature class

defect,” we allow the user to explore all feature classes and decide interactively

which classes and features are of interest, instead of specifying this information

beforehand. This is especially useful in the context of compound parts or complex

materials such as minerals, where a broad range of different features with different

densities and sizes emerge. In the traditional workflow, in order to detect defects in

cast metal parts, for example, the parameters that need to be set for the segmentation

are such that the density of defects must be below a certain threshold (assuming that

air or gas comprises the interior of defects), their size must be larger than a given

minimum (features that are too small are noise), or smaller than a given maximum

(features that are too big are no features anymore but, e.g., intended holes in a cast

part). Moreover, further parameters must be set for the region growing process, for

example a maximum density variance in the region, or maximum standard deviation

from the neighborhood of a seed voxel. The system might also require the user to

manually specify seed voxels or set parameters for automatic seed determination. In

contrast, our system computes and records the result of region growing for the entire

4

CHAPTER 1. INTRODUCTION 5

density domain, all different sizes of features, and the entire domain of the most

important region growing parameter (given a specific region growing algorithm),

such as maximum variance. Therefore, it is sufficient to specify just a wide range

over which the computation takes place. For generality, this parameter is referred to

as the “time” parameter t throughout this thesis. Together, these three 1D parameter

ranges comprise the 3D (density, feature size, time) domain, which is explored by

the user via 3D transfer functions. In order to make transfer function specification

tractable, a 2.5D metaphor is employed, which still provides the necessary flexibility.

To summarize, the major contributions of this thesis are:

• A fully interactive workflow for exploring features in industrial CT scans for

detection, classification, and quantification.

• Relocation of the underlying region growing process to an unattended pre-

computation stage, while still allowing the corresponding parameter space to

be explored later on.

• A new 3D transfer function domain for exploring the parameter space of

feature detection to determine feature classes.

• Quantification of only those feature classes found to be of interest during

exploration, which empowers the domain expert to interactively control the

final result.

1.3 Organization and Pipeline Overview

This thesis is organized as follows: Chapter 2 summarizes the current state of

the art and fundamentals of the main categories used in this thesis. It starts with

a brief description of the basics concerning industrial CT data acquisition and

reconstruction. The second part of this chapter focuses on the idea and concept

behind direct volume rendering of GPU-based ray-casting. Further, some region

growing techniques are mentioned and explained, especially those used in this thesis.

In recent years multi-dimensional transfer functions have become more and more

popular and contribute significantly to the image results in volume visualization. A

state of the art of the most established transfer functions is given, focusing on 2D

5

CHAPTER 1. INTRODUCTION 6

Figure 1.3: Overview of the workflow pipeline presented in this thesis. The pre-computation
stage computes feature size curves via multi-pass region growing, which are stored in a
feature volume and a feature growth table. These are the basis for the subsequent interactive
exploration stage (Hadwiger et al. [2008]).

transfer functions (TFs). Finally, some already existing visualization applications

for industrial CT data are introduced.

The main part of this thesis includes the different stages of the pipeline illustrated in

Figure 1.3. As a pre-requisite, for a given CT volume additional information must be

pre-computed, as explained in Chapter 3, which constitutes the basis of interactive

feature exploration. A multi-pass region growing approach (Section 3.5) is employed

that conceptually computes a feature size curve over “time” t (which corresponds

to the main region growing parameter) for each voxel in the volume (Section 3.2).

For memory efficiency, these curves are stored split up into a 3D feature volume

(Section 3.3), and a corresponding 2D feature growth table (Section 3.4).

When the feature volume and growth table are available, the data set can be explored

interactively for features of interest in the exploration stage, described in Chapter 4.

Figure 1.1 shows example images from the exploration of a cast metal part and a

mineral. Feature exploration builds on the specification of a 3D transfer function

in the (density, feature size, time) domain (Section 4.1.2), which is constituted by

the CT density volume, the feature volume, and the feature growth table. Transfer

function specification is not only the means by which the user determines the

visualization, but also how features to be quantified are selected. Features can also

be explored individually using a graphical feature view or picking in orthogonal slice

views and the feature tables (Section 4.2). They are also used to remove specific

features from rendering and quantification that are artifacts from the CT acquisition

process. During exploration, the current feature classification is displayed using real-

time volume rendering (Section 4.3). From the feature classification specified by

the user during the interactive exploration phase, the quantification stage, explained

in Section 5.1, automatically computes statistical measures such as feature count,

volume, and surface area for features that have been selected in the exploration

6

CHAPTER 1. INTRODUCTION 7

stage. That is, quantification is performed in a visualization-driven manner, where

everything that is selected for feature visualization is included in the quantification.

Both feature exploration and quantification can be performed as often as desired

without requiring additional pre-computation. Section 5.2 discusses the results that

were achieved with this system for real-world industrial CT-data. Image quality and

performance are compared in Section 5.3 as well as the advantages and shortcomings

for the different algorithms of the underlying region growing process, expenditure

of time and memory usage. Chapter 6 finally concludes by summarizing the results

and gives an outlook into possible future work.

7

Chapter 2

Fundamentals and State of the
Art

In this chapter the fundamentals and current state of the art concerning the main

topics of this thesis are discussed. Section 2.1 starts with a brief abstract of Industrial

Computed Tomography where the main differences between medical and industrial

applications are shown. Section 2.2 explains the basics of direct volume rendering

with the main focus on GPU-based approaches. A current state of the art is given and

the VRVis Hardware Volume Renderer is introduced, where the work of this thesis

has been embedded. Region growing is used for segmentation of the inclusions

occurring in the data. After explaining the basic concepts, the current state of the

art of region growing is given in Section 2.3. In Section 2.4 the application of

transfer functions is explained which is the part mostly related to the user and also

a summary of the current technology of 2D and multidimensional TFs is given.

Finally, Section 2.5 shows some existing visualization applications for industrial

CT data.

2.1 Industrial CT

Industrial CT is a completely nondestructive technique for visualizing features in

the interior of opaque solid objects, and for obtaining digital information on their

3D geometries and properties, which is useful for a wide range of materials. First

8

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 9

developed for widespread use in medicine for the imaging of soft tissue and bone,

X-ray CT was subsequently extended and adapted to a wide variety of industrial

tasks. Because industrial CT systems image only non-organic, non-alive objects,

they can be designed to take advantage of the fact that the items being studied do

not move and are not harmed by X-rays. Therefore it is possible to scan objects

in high resolution. Seeing that, Ketcham and Carlson [2001] quote the following

optimizations:

1. Use of higher-energy X-rays, which are more effective at penetrating dense

materials;

2. Use of smaller X-ray focal spots, providing increased resolution at a cost in

X-ray output;

3. Use of finer, more densely packed X-ray detectors, which also increases

resolution at a cost in detection efficiency;

4. Use of longer exposure times, increasing the signal-to-noise ratio to compen-

sate for the loss in signal from the diminished output and efficiency of the

source and detectors.

Beside sample preparation and machine calibration two main steps are required to

generate a 3D data volume:

Data Acquisition

The gray levels in a CT slice correspond to X-ray attenuation, which reflects the

proportion of X-rays scattered or absorbed as they pass through each voxel. X-ray

attenuation is primarily a function of X-ray energy and the density and atomic

number of the material being imaged. A CT image is created by directing X-rays

from multiple orientations through the subject and measuring their resultant decrease

in intensity. By acquiring a stacked, contiguous series of CT images, data describing

an entire volume can be obtained. Generally we can differentiate between 2D- and

3D data acquisition (see Figure 2.1).

As illustrated in Figure 2.1(a) for 2D data acquisition a scan plane is imaged where

the fan beam and detector series are wide enough to encompass the entire object,

and thus only rotation and vertical movement of the object is required. As the object

9

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 10

(a) Data acquisition with 2D industrial computed
tomography.

(b) Data acquisition with 3D industrial computed
tomography.

Figure 2.1: (a) Stepwise line acquisition by rotating the workpart 360◦ (stepsize ≤ 1◦)
and stepwise switching of the workpart. (b) Stepwise projection acquisition by rotating the
workpart 360◦ (stepsize≤ 1◦). Images by courtesy of phoenix|x-ray Systems [2003].

rotates, it passes through the fan beam for the current vertical position. This is

done for each slice position (vertical position), which permits reconstruction of a

complete image.

In volume CT (Figure 2.1(b)), a cone beam or highly-collimated, thick, parallel

beam is used rather than a fan beam, and a planar grid replaces the linear series

of detectors. This allows for much faster data acquisition, as the data required for

multiple slices can be acquired in one rotation.

Data Reconstruction

Reconstruction is the mathematical process of converting the distribution of X-

ray attenuation in the slice plane into two-dimensional slice images. The most

widespread reconstruction technique is called filtered backprojection, in which the

data are first convolved with a filter and each view is successively superimposed

over a square grid at an angle corresponding to its acquisition angle (Figure 2.2).

This removes the blurring which occurs in simple backprojection, and results in a

mathematically exact reconstruction of the image.

10

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 11

(a) CT data acquisition. (b) Data reconstruction with filtered backpro-
jection.

Figure 2.2: (a) A set of views is taken from many directions where the sum of the image
values along each ray is built. This sample is then used to reconstruct the corresponding
image. A typical CT scan uses hundreds of views at slightly different angles. (b) Filtered
backprojection is used to reconstruct the image. In each projection step the respective view
is smeared back along the path it was originally acquired. To prevent blurring, each view is
filtered before backprojection. Images by courtesy of Smith [1997].

2.2 GPU-Based Direct Volume Rendering

Generally, direct volume rendering (DVR) is a technique for rendering a 2D image

from a sampled 3D scalar field without first fitting geometric primitives to the sam-

ples as in indirect methods. Indirect methods, like the marching cubes of Lorensen

and Cline [1987] or isosurface based methods by Thévenaz and Unser [2003], need

a preprocessing step to extract surfaces which are then rendered with the traditional

polygon based method.

DVR operates directly on the volume data with the goal of simulating the interaction

between light and a volume, most commonly given as a regularly sampled grid of

densities. Therefore an optical model is used to simplify the light transport equation

of Engel et al. [2006]:
dI(s)

ds
=−κ(s)I(s)+g(s), (2.1)

where I denotes the radiance, κ denotes the attenuation caused by absorption

and out-scattering, and the term g(s) is composed of true emission and emission

caused by in-scattering. The survey paper of Max [1995] reviews several different

optical models for light interaction with volume densities including all kinds of

combinations of absorption, emission and scattering with and without shadows. A

11

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 12

Figure 2.3: In the emission-absorption model the amount of light reaching the eye after it
has been absorbed by the volume is calculated. Image by courtesy of Engel et al. [2004].

common emission-absorption model proposed by Blinn [1982] is based on a low

albedo situation where scattering and higher order lighting effects can be ignored.

This means that any element of the participating medium emits and absorbs light at

the same time. The common theme, however, is to evaluate an approximation of the

volume rendering integral for each pixel where the one most commonly used in the

literature is given as:

I =
∫ sn

s0

c(t)e−τ(t,sn)dt, (2.2)

where c denotes the emission coefficient and the absorption is given by the optical

depth τ . Hence, it is integrated over absorption and emission along a ray illustrated

in Figure 2.3, which means that color and opacity values are composited using

an appropriate blending function. With the Front-to-Back compositing algorithm

for example, acceleration techniques, like the early-ray termination by Krüger and

Westermann [2003], can be integrated:

Col = Col +(1−αakk)Ciαl (2.3)

αakk = αakk +(1−αakk)αi, (2.4)

where Col and αakk indicate the accumulated color and opacity taken at the sample

points (Ci and αi) along a ray. According to the model, the mapping of volume

densities to optical properties like color and opacity is done through a transfer

function T , which in the simplest case is a lookup table (a 1D texture for a GPU

based implementation):

T (f (x,y,z)) = {R,G,B,α}, (2.5)

where f (x,y,z) denotes a scalar function over R3 that returns a density value at

position (x,y,z) which is mapped to a color {r,g,b} and opacity α value. The order

12

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 13

of interpolation and application of the transfer function is differentiated by Engel et

al. [2001] into pre- and post-classification, depending on which occurs first. Post-

classification is characterized by applying the transfer function after interpolation

and pre-classification vice versa. This classification process is described in more

detail in Section 2.4.

In the context of DVR, the most common solutions can be separated into object- and

image-order approaches. Object-order approaches are for example cell projection,

shear-warp, splatting or texture-based algorithms. The most popular image-order

approach for DVR is ray-casting, first proposed by Levoy [1988], where for every

pixel a ray is cast through the volume, compositing the resulting values from sample

points along its way using Equation 2.3. The first GPU-based implementations for

volume rendering by Roettger et al. [2003] and Krüger and Westermann [2003]

used multi-pass ray-casting where the ray traversal process is initiated by the CPU.

Single-pass ray-casting requires support of loops to iterate along a ray entirely in

the fragment shader and for dynamic branching to stop the traversal, which was not

possible with older graphics hardware. Since the implementation of shader model

3.0 in 2004, loops are supported. This makes the implementation of single-pass

approaches possible.

For the visualization of 3D scalar fields, many successful hardware based techniques

have been proposed in the past, including 2D- (by Rezk-Salama et al. [2000]) and

3D-texture mapping (by Wilson et al. [1994]). Generally, in GPU-based volume

rendering the data is stored as multiple 2D or one 3D texture, depending on the

specific implementation and GPU, and is loaded onto the graphics board. Rezk-

Salama et al. [2000] use the multi-texturing and multi-stage rasterization capabilities

of consumer graphics boards to enable interactive high quality volume visualization

of the 2D-texture based approach. To enable real trilinear interpolation, which

overcomes the usual visual artifacts caused by stacks of 2D slices, intermediate

slices are computed on the fly. The third interpolation step is then performed within

the rasterization hardware using multitextures for blending the two texels resulting

from bilinear interpolation. A rectilinear dataset is converted into a 3D texture map

containing color and opacity information in Wilson et al. [1994]. To render an

image, the texture map is applied to a stack of parallel planes cutting the texture

in slices which are finally composited. Engel et al. [2001] present a pre-integrated

texture-based algorithm for 2D and 3D textures, respectively, which implements

an additional texture look-up of pre-integrated colors and opacities stored in a 2D

13

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 14

texture. The VolumePro system of Pfister et al. [1999] implements ray-casting

with parallel slice-by-slice processing using special purpose hardware to achieve

higher image quality. Effective solutions have been introduced for rendering large

(by Guthe et al. [2002]) and time-varying volume data (by Lum et al. [2001]). A

detailed overview of real-time volume rendering can be found in the book by Engel

et al. [2006].

In hardware based ray-casting the volume is stored in 3D textures. During the main

ray-casting pass, resampling is performed by fetching samples from this texture

using hardware-native trilinear filtering. For each pixel, compositing of the sample

locations along a ray is performed until the volume is exited or full opacity is

reached. To step along the ray, the entry position as well as the direction and the

length of the ray have to be computed. Therefore, a bounding box in the [0,1]
range of the volume is rendered with (r,g,b) color coding of each vertex position in

object space and two images are rasterized. The first image determines the volume

entry positions of the rays by rasterizing the front faces of the geometry, shown in

Figure 2.4(a). The second image is created by rasterizing the back faces, shown in

Figure 2.4(b). The direction texture is calculated by the difference of the back faces

and the front faces (Figure 2.4(c)) and yields the ray direction vectors (stored in the

RGB components of the texture) and the ray length (stored in the alpha channel).

These textures are used by the fragment program to determine the starting sample

locations and the number of sample points that have to be taken along the ray.

The density values are fetched along the rays, mapped to the (r,g,b) and α values

according to the transfer function (Equation 2.5) and composited (Equations 2.3

and 2.4) to approximate the volume rendering equation 2.2. As an image order

(a) Front faces. (b) Back faces. (c) Direction texture.

Figure 2.4: The setup for the ray-casting process stores all relevant geometry information
in the respective textures. Images by courtesy of Scharsach et al. [2006].

14

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 15

approach, raycasting benefits from the parallel architecture of the modern GPUs as

the computation of every pixel can occur in parallel without any mutual knowledge.

The high-quality hardware volume renderer (HVR) used in this thesis is a hardware

based approach which includes several performance optimizations like empty space

skipping, described in Scharsach et al. [2006]. Therefore, the volume is subdivided

into small blocks containing a fixed number of voxels. Only non-empty blocks with

an opacity greater than zero become active and form the data-dependent bounding

geometry which is finally passed to the GPU. This approach is also necessary for

rendering large data, to reduce memory consumption, which is described later in

Section 4.3.1. A second acceleration technique, called early ray termination, is used

to stop the ray traversal when the ray has left the volume or when the accumulated

opacity value reaches a constant threshold.

2.3 Region Growing

Region growing is a fundamental image processing technique for segmentation

(Zucker [1976];Sonka et al. [1993]) which assumes that neighboring voxels within

the same region are homogeneous with respect to a certain prespecified criterion

(e.g., similar intensity values). Generally the neighboring voxels are checked

against a homogeneity criterion that determines if a voxel can be classified into

the same region as its neighbor. With respect to computational complexity, region

growing belongs to the class of non-uniform problems, whose run-time complexity

is strongly data dependent and cannot be determined at compilation time. Simple

implementations are based on aggregation starting from a specified seed point in a

recursive way and can be summarized by the following steps.

• Start by choosing an arbitrary seed pixel (manually or automatically) and

compare it with neighboring pixels.

• The region is grown from the seed pixel by adding neighboring pixels accord-

ing to a homogeneity criterion, increasing the size of the region.

• When the growth of one region stops, choose another seed pixel which does

not yet belong to any region and start the process again.

15

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 16

Seeded region growing (SRG) by Adams and Bischof [1994] is a bottom up

regionbased segmentation method, that performs segmentation of an intensity image

with respect to a given set of points, called seeds. Based on the seeds the regions

are grown. Therefore, the choice of seeds is crucial as it strongly influences the

resulting features of interest, and what is irrelevant in the volume. To add a new

voxel x to the existing region, the voxel most similar to the region has to be found,

which is estimated as follows:

δ (x) = |g(x)−meany∈Ai(x) [g(y)] |, (2.6)

where δ (x) defines a measure of how different x is from the region it adjoins, g(x)
is the gray value of the voxel and Ai(x) is the region to where the new voxel should

be added. This difference is estimated for all the neighbour voxels of the region and

finally, that one with the smalles difference δ (x) is taken to the region. So, we take

a voxel z of testet voxels T such that:

δ (z) = minx∈T{δ (x)}, (2.7)

and append it to Ai(x). This process is repeated until all voxels have been allocated.

Additionally, a threshold can be applied which stops the growing of a region when

δ (x) exceeds a given value. To handle merging of different regions, all initial regions

are marked with different IDs. If the neighboring voxel belongs to a different area

it is flagged as a boundary voxel and added to a boundary set. The procedure

is iterative: The most suitable adjacent voxel is added until the whole volume is

classified. In our application we use a variation of this approach which automatically

chooses seeds and iteratively increases the threshold for Equation 2.7, explained in

detail in Section 3.6.1. This region growing method suffers from several issues, e.g.

concerning the choice of seeds or absence of performance improvements. Therefore,

over the years many approaches have been developed which varied from the one

above, to overcome certain challenges for 2D as well as for 3D applications. Some

of them are described below.

Fiorentini et al. [2003] describes a FIFO structure which is used to consider all

neighbors of the seedvoxel and all consecutive accepted region voxels, for the

growing process. For each region the initial seed voxel is put into the queue where

its six neighbors are tested against the homogeneity criterion. Every voxel which

satisfies the criterion is also added to the queue and successively used for testing

16

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 17

its neighbors in turn, until the queue is empty. This process ensures connectivity

between the segmented voxels and is one of the basics of our region growing

approach.

A more efficient implementation by Horowitz and Pavlidis [1974] uses a split-

and-merge strategy. Different research groups have suggested parallel implemen-

tations of region growing, like Willebeek-LeMair and Reeves [1990], Khan and

Gillies [1992], or Copty et al. [1994]. Segmentation using traditional low-level im-

age processing techniques, like region growing, often requires considerable amounts

of interactive expert guidance, where the specification of the seed points and the

homogeneity metric is essential for region growing techniques to work properly.

Many research groups have suggested methods to simplify and automatize their

specification. In the technique described by Adams and Bischof [1994], the ho-

mogeneity criterion is omitted by the use of several different seed points which

are evaluated simultaneously. The volume seedlings approach described by Cohen

et al. [1992] represents an interactive technique for specifying seed points to se-

lect regions of interest for volume visualization. However, since this approach is

working in screen space, it is restricted to a static viewpoint. In Leila et al. [2008]

seed selection is optimized with particle swarm optimization (PSO). The agents

are placed on random locations in the image and choose the pixel with the smallest

gradient as seed to ensure location within the region. During the growing process

the local threshold is adjusted according to the region’s structure.

Other techniques derive the homogeneity criterion from statistical information about

the local neighborhood of the seed point, mainly the mean value and the standard

deviation. In 3D, such techniques are closely related to automatic techniques for

iso-surface extraction. Tenginakai et al. [2001] propose a method for detection of

salient iso-surfaces based on the evaluation of higher-order statistical moments,

such as skewness and kurtosis. Techniques such as the contour trees by van Kreveld

et al. [1997] and the contour spectrum by Bajaj et al. [1997] analytically evalu-

ate information about the topology, the surface area, and volume of iso-surfaces.

This information is then used for feature classification. Zhu and Yuille [1996]

present a technique called region competition, using a combination of snake/balloon

models and the statistical techniques of region growing to minimize a generalized

Bayes/Minimum Description Length (MDL) criterion. Pohle and Toennies [2001]

present a region growing method which estimates the homogeneity model from

the image itself to overcome the partial volume effect (PVE). Therefore, two runs

17

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 18

of region growing are necessary. In the first run the homogeneity parameters are

estimated, including mean and two different standard deviations from the grayval-

ues of the region. The standard deviations build a range for the grayvalues of the

homogeneity function. This range may be adapted by a relaxation function during

the learning process for estimating the lower and upper threshold. In the second

step the regions are extracted.

Huang and Ma [2003] integrate a region growing technique into their volume

visualization systems. Besides full segmentation, their technique may perform

region growing on a partial data range in order to define a 2D transfer function for

volume rendering. Their method starts with a kd tree partitioning of the histogram

region defined from region growing. For each leaf node only the data points with

values over a threshold are kept, to remove noise. Two classifiers merge when their

common area is similar or less than the sum of both. An additional technique which

uses the result of the region growing process to systematically construct a boundary

surface, is also introduced in this paper, where a boundary tracking algorithm is

used to identify all the boundary faces which enclose the extracted voxels. Such

a visualization, however, will not be exact compared to the full segmentation.

Although the visualization is fast and effective, modifying the seed points at run-

time will also require re-computation. Huang et al. [2003] also demonstrate an

application of their region growing technique for non-destructive testing of CT data,

described below in Section 2.5, which is effective, but underlies the same limitations

for interactive exploration and quantification.

Selle et al. [2002] use threshold based seeded region growing for vessel segmentation

to generate a 3D model for analyzing the patient’s intrahepatic vascular system

from medical CT data. To avoid repeating the region growing process with different

thresholds until an appropriate result is found, the primary threshold is refined

stepwise to automatically find the optimal one. Therefore, an initial seed is set

interactively in the portal vein. Next, the 26 neighbor voxels are accumulated

iteratively when the intensity is greater or equal to the starting threshold of the

seed voxel. This process is continued by using the neighbor voxels as new seeds

and decreasing the threshold until a given end-threshold, which creates just voxels

outside the vessel system, is reached. For each step a list with the appropriate voxels,

for the current threshold, is generated for interactively estimating the segmentation

result.

18

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 19

Unseeded region growing by Lin et al. [2001] is a fully automatic segmentation

method, which is based on SRG. The need of placing the seeds manually, however,

is overcome and therefore no pre-knowledge of the data is required. The algorithm

starts with one arbitrary pixel in the image and grows the first region with this pixel

as seed. If the differece measure of Equation 2.7 is valid for an adjacent pixel it

is added to the region. Otherwise, the most similar region is chosen where the

homogeneity criterion is valid. If neither of the two possibilities applies, a new

region with the current voxel as seed is grown. This is an iterative process, which

is repeated until all pixels belong to a region. In our application, we use a similar

iterative approach for automatic seed selection (see Section 3.5.2), but with the

difference that our segmentation result for one time step not necessarily needs to

include all voxels of the entire volume. This depends on what is defined as potential

feature in the parameter settings.

There exists a huge number of different region growing applications where the

approaches mentioned above are just a small part of them. The reason for choosing

the two methods described in Section 3.6 for this application, was more or less

arbitrary, but they turned out to work well and were easy to implement as a proof-

of-concept. To expand the pre-computation stage with further improved region

growing options will be a task for future work, which will provide an interesting

and potential improvement for this application.

2.4 Multi-Dimensional Transfer Functions

In general, a transfer function (TF) is used in direct volume rendering to facilitate

volume exploration by assigning optical properties to values of a dataset, which are

then composited along the viewing direction into an image. Therefore, the user can

express the visualization goals with the help of a TF. Pfister et al. [2001] define a

transfer function as follows:

“A transfer function assigns values for optical properties, such as color

and opacity, to original values of the dataset being visualized.”

19

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 20

Hence Šereda [2004] defines the TF as a mapping from the data property domain D

to the domain of optical properties O:

D1×D2× . . .×Dn→ O1×O2× . . .×On. (2.8)

In other words, the TF is a function which defines how different parts of the volume

will be displayed in the volume renderer. Thus, the result and the amount of

information we can see from the final 2D image, highly depends on the definition of

an appropriate transfer function. However, defining the visualization goal through a

TF is something not very natural, and often needs pre-knowledge of the underlying

data. Therefore, the goal of current research is to make the TF design more intuitive

as well as to provide a process which automatically proposes a TF for a given

dataset, to support the user in finding the optimal solution.

Accordingly, we start with the following premises:

• The datasets we are concerned with are industrial CT-data.

• A regular grid delivers the mapping D : G→ R for a grid sample. To get

the values between the grid samples, an interpolation function is used which

extends the area to the whole space of R. These values are for example

the density, or the gradient magnitude but also many other values like the

curvature can be calculated. Therefore, for each application the question

arises which properties are suitable for the needs and the underlying data.

In this thesis, we introduce a 3D transfer function applying the density-, fea-

ture size-, time-domain. The density consists of the single scalar from the

CT-data where the meaning of the value is the transmittance of the tissue to-

wards the X-rays. The feature size defines the different sizes of the inclusions

in the dataset which are segmented in the underlying region growing process,

described in Section 3.5.2. Tracking this region growing process over several

iterations results in the third dimension – the time. This turned out to provide

good visualization possibilities for the segmented features despite the large

feature-size range. The details are further discussed in Section 4.1.

• A transfer function is a mapping of data properties to optical properties. In

our case this includes the color-transfer function c(x) := (r,g,b), which is a

mapping to the RGB-colorspace and the opacity-transfer function o(x) := a,

which assigns the opacity of a value where 0 means completely transparent

20

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 21

and 1 completely opaque. These are the most common used optical properties

first introduced by Levoy [1988]. But there exist also other approaches using

optical properties like the Phong coefficients [1975].

In recent years, usability aspects have become more and more prominent in volume

rendering systems. Since a 1D transfer function is often not sufficient to separate

different materials of the same density, the use of 2D, 3D, or even multi-dimensional

transfer functions is becoming more and more popular. The first 2D transfer function

was proposed by Levoy [1988], who added the gradient as the second dimension

in order to classify the boundaries of different classes of objects. Since then, a

lot of applications have been developed using different kinds of properties for

the additional dimensions. In their seminal paper, Kindlmann and Durkin [1998]

describe a semi-automatic transfer function design which can be regarded as the

basis for multi-dimensional classification. Although their transfer function was still

one-dimensional, the gradient magnitude and the second order directional derivative

of the scalar field were taken into account. True multi-dimensional transfer functions

were introduced by Kniss et al. [2001]. Here the gradient magnitude and the second

order derivative were pre-computed for each voxel and a 3D transfer function was

applied for classification. The authors also proposed a user-interface for multi-

Figure 2.5: Manipulation widgets can be used in the 2D TF and for better visualization in
the volume. Image by courtesy of Kniss et al. [2001].

21

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 22

Figure 2.6: Different non-photorealistic rendering approaches can be combined with the
style transfer function. The lighting models are shown at the bottom right respectively.
Images by courtesy of Bruckner and Gröller [2007].

dimensional classification based on interaction in both the spatial domain and the

feature space of the transfer function (dual domain interaction; see Figure 2.5).

Because the accuracy of the second derivative is highly susceptible to noise, Lum

and Ma [2004] provide a combination of a 1D TF for the assignment of color and

opacity and a 2D lighting TF for the assignment of ambient, specular and diffuse

coefficients. Therefore, for each sample two additional scalar values are taken into

account, one in the gradient and one in the opposite direction. These values provide

an indication whether a material boundary occurs at a given location and which

kind of material exists on each side of the boundary for better extraction. Bruckner

and Gröller [2007] extend this approach by additionally providing a variety of non-

photorealistic shading styles. A new concept of style transfer functions is presented,

where not only color and opacity are assigned, but additional lighting models are

used to combine a multitude of different shading styles interactively in a single

transfer function (Figure 2.6). Hladuvka et al. [2000] introduce a (semi)automatic

transfer function in the domain of principal curvature magnitudes with the main

goal to distinguish among different shape classes. It also provides a smooth color

and/or opacity transition within thick surfaces or solid objects. Kindlmann et

al. [2003] advance the use of curvature information in 2D TFs by combining

an implicit formulation of curvature with a convolution-based reconstruction of

the field. The curvature-based TFs are used with different kinds of derivatives

(Figure 2.7) and applied for non-photorealistic rendering, surface smoothing via

anisotropic diffusion, and visualization of isosurface uncertainty. To overcome

the problem that the intensity range of vessels is very small and often overlaps

with other tissue classes, Chan et al. [2006] use a 2D transfer function including

a filtering response as second dimension besides the density. For this purpose

a filter for curvilinear structures and a line filter are applied to extract a clear

image revealing the vessel structures which are finally used for the 2D TF. Another

22

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 23

approach for better tissue separation is provided by Lundström et al. [2005]. They

propose a fuzzy classification based on local histograms as second TF dimension.

Additional partial range histograms in an automatic tissue detection scheme are

provided in conjunction with adaptive trapezoids to support efficient TF design.

Takahashi et al. [2004] extract the topological structure of a volume dataset resulting

in a volume skeleton tree, which consists of volumetric critical points and their

connectivity. The resultant graph provides critical field values whose color and

opacity are accentuated in the automatic design of transfer functions for direct

volume rendering. This approach constitutes a 3D extension of traditional computer-

aided design, where a variety of design-oriented edges (e.g., highlights and outlines)

are devised for parameterizing the design quality of surfaces.

Another task, mainly used in medical applications, incorporates distance infor-

mation into the transfer function space, for example, to estimate the condition

and environment of tumors. In Zhou et al. [2004] the user has to define the focal

center point of interest to which the Euclidean distance of all sample positions

is pre-calculated. When the focal region center changes a recalculation has to

occur. This distance information is combined with the information of the original

volume to finally assign optical properties. In Tappenbeck et al. [2005] the distance

calculations are restricted to a pre-segmented object of reference. For this object

the user can define optical properties according to different distance ranges and

intensity values. The main problem for many non-expert users, as for example

medical staff, is that it is very difficult and time consuming to achieve satisfactory

visual results even when a pre-knowledge of the underlying data exists. To ease

the use of transfer functions, Rezk-Salama et al. [2006] provide interfaces with

semantic information. The semantic models are designed from reference datasets

Figure 2.7: Four different curvature measures. Left to right: first principal curvature,
second principal curvature, mean curvature and Gaussian curvature. Magenta indicates
negative, green positive curvature. Zero curvature is in blue, all other iso-curvature contours
in black. Images by courtesy of Kindlmann et al. [2003].

23

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 24

Figure 2.8: Semantic models allow to extract the relevant structures (from left: skin, bone,
brain tissue and blood vessels). Images by courtesy of Rezk-Salama et al. [2006].

containing the relevant structures as shown in Figure 2.8, which are represented

by one or more TF primitives. To create the final semantic parameters the set of

vectors containing the TF information for each reference data is analyzed by using

principal component analysis.

The above mentioned transfer function applications are restricted to two dimensions,

but there also exist approaches trying to provide an interface to handle an almost

arbitrary number of dimensions. Bordignon et al. [2006] for example, use the

concept of star coordinates first proposed by Kandogan [2001] for user interface

design to realize an n-dimensional transfer function by painting and scaling the

axis on a two dimensional circle. A completely interactive multi-dimensional

classification approach is proposed by Tzeng et al. [2003] allowing the user to

define the regions of interest by painting directly on sample slices of the volume.

The user applies different colors to estimate every part of the volume she or he

wants to extract, and another color to disable the regions she does not want to see.

This information is used by artificial neural networks which uses the painted data as

training data, where the user can iteratively refine the results.

2.5 3D Visualization of Industrial CT Data

Non-destructive testing of objects is a key aspect of present day engineering and

development, which leaves the structural integrity of the object being tested intact.

Items such as engines, minerals, and other construction and industrial pieces, require

critical inspection before they are assembled into a finished product in order to

ensure safety, stability, and usefulness of the final object. Although it is extremely

important to know the status and structural integrity of elements before they are

assembled into a finished product, research towards visualization and quantification

24

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 25

of industrial CT data is mainly restricted to business applications. A widely-used

NDT application is VGStudio Max [2008]. The primary objective of this application

is to process the huge amount of data resulting from CT scans in reasonable amounts

of time, described in Reinhard et al. [2004]. It offers a broad range of different

functionalities, however, with suboptimal volume rendering qualities.

Huang et al. [2003] have developed a set of visualization techniques for feature

extraction and modeling, generated from high resolution industrial CT data for

NDT. This semi-automatic approach is based on a region growing algorithm which

uses the extracted features to mark other features with the same properties in a

2D transfer function. So the main idea is that full region growing is generally not

needed. The user has to place a few seeds into a representative region. These seeds

grow the region as long as the defined cost functions are satisfied. Additionally,

information about the seed voxels and its surrounding voxels are presented in the

transfer function. When a voxel is selected, it is highlighted together with its 26

neighbors. So the corresponding density value (x-axis) and gradient magnitude

(y-axis) can be easily identified. A red rectangle shows the standard deviation of the

density values and the gradient magnitude as shown in Figure 2.9(a). The blue box

shows the standard deviation of the density values and gradient magnitudes. If there

are multiple regions of interest to visualize, a 2D transfer function can be derived

based on the partial results of the feature extraction. In Figure 2.9(b; left) a screw

is extracted using seeded region growing and the derived transfer function is then

(a) Additional information dis-
played in the transfer function.

(b) Region growing results.

Figure 2.9: (a) Additional information is displayed on the 2D histogram to facilitate seed
selection. (b) The screw extracted using partial region growing (left) is used to derive a
transfer function for capturing the other screws (right). Images by courtesy of Huang et
al. [2003].

25

CHAPTER 2. FUNDAMENTALS AND STATE OF THE ART 26

applied to the whole volume (Figure 2.9(b; right)).

Other techniques like in Heinzl et al. [2007] use the different X-Ray modalities

from a dual energy CT to extract different features of high density materials within

the case of low density materials. With this approach features of different densities

can be extracted and afterwards registered to each other to finally construct a surface

model of the fused dataset.

26

Chapter 3

Pre-Computation

Although exploration seems to be the conceptually most important part of the

pipeline, the basis for interactivity during exploration is a complex pre-computation

stage, whose components are described in this chapter. Just minimal user-input

is required for this stage. Still, it is technically complex and time consuming but

completely decoupled from the exploration. The main goal for pre-computing

additional information is to enable exploration of different classes of features with

different parameters in such a way that, e.g., the main parameter used to steer region

growing (e.g., maximum variance) can be changed interactively after actual region

growing has been performed. In order to allow this, region growing is performed

in multiple passes and the progress is tracked for each voxel, which is recorded in

feature-size curves.

3.1 Parameter-Settings

To allow exploration over the parameter space, a few parameters (which are used for

the pre-computation stage) need to be specified beforehand . This includes the range

for the minimum- and maximum feature size described in Section 3.5.2, as well as

the range for the minimum- and maximum variance value and the number of desired

calculation steps, which together define the step size for each region growing pass,

described in Section 3.2. Additionally, the user can select between two different

region growing methods which, each on their part, allow different combination

27

CHAPTER 3. PRE-COMPUTATION 28

possibilities (e.g., with or without boundary growing or the number of neighbor

voxels used), described in detail in Section 3.6. To improve segmentation results for

some datasets or for performance reasons an additional windowing function can be

used described in Section 3.5.1.

These parameter settings are cached together with the data emerging from the region

growing process described below, in order to reconstruct the different stages without

recalculation.

3.2 Feature-Size Curves

In order to allow interactive exploration of region growing with different parameter

settings, which would not be possible to change interactively (e.g., different variance

thresholds), the result of region growing is tracked and recorded along the parameter

axis in the pre-computation stage. That is, instead of using a single parameter value,

we track features over an entire parameter range. In order to make the following

description more general, we denote this parameter as “time” t, which is stepped

from a start time t0 to a maximum time tmax in a specified number of steps b. In this

work parameter t is used for the entire variance range, from the minimum interesting

variance t0 to the maximum interesting variance tmax. So, t tracks the region growing

parameter ε or k depending on the method used, described in detail in Section 3.6,

and is increased progressively by passing from one iteration step to the next. That

is, the time (parameter) axis is sampled into b bins, e.g., b = 256, which allows the

tracked curves to be stored in arrays with b entries, resulting in the third dimension

of the 3D TF described in Section 4.1.2. For each voxel, the size of the feature

(region) it belongs to is recorded, resulting in a feature-size curve for each voxel x
along the time axis t: fs(x, t).

Figure 3.1 illustrates the scheme of emerging feature size curves on the basis of

four different example voxels. Voxel 0 (red) is the seed voxel of a feature that starts

at time t0 with a size of 30 voxels and grows in size several times as t increases.

Voxel 3 (purple) is another voxel in this feature, but only becomes a part of it at

time t2. This happens when the actual variance parameter is compatible with the

density value for this voxel. Voxel 2 (green) emerges at time step t1 and belongs to a

separate feature, growing several times before it merges with the feature containing

28

CHAPTER 3. PRE-COMPUTATION 29

Figure 3.1: Feature size curves of four example voxels. Seed voxels belong to a feature
from the timestep where it is created (voxels 0 and 1; t0 and voxel 2; t1), whereas other
voxels may join a feature at a later time (voxel 3; t2). Features may merge over time (t3),
which implies that the feature size curves of all contained voxels are the same after the
merge (voxels 0, 2, and 3) (Hadwiger et al. [2008]).

voxels 0 and 3 at time t3. Whenever a voxel joins a feature, or two features merge,

their curves are identical from then on, which allows to store them very efficiently.

Voxel 1 (blue) belongs to a feature with a size of 15 voxels, which stays at this size

over time, i.e., does not grow any further after the first time step. This often occurs

in case of air or gas inclusions within iron or similar dense material. In this case the

difference between the inclusion and the environmental material is big enough to

ensure a stable boundary which in most cases stops region growing after the first

iteration.

Storing Feature-Size Curves:

The major observation for storing feature size curves fs(x, t) with a manageable

amount of memory is that all voxels in a feature exhibit the same curve from the

time, at which they have joined it.

Most of the features start growing at the beginning (time t0), and may possibly grow

in further time steps. For the voxels that do not belong to any feature fs(x, t0) = 0

applies. Seed voxels that start a new feature at time ti record the entire growth curve

of this feature. In each pass, additional voxels may become a part of this feature,

and when a voxel does so at time t j, it from then on shares the feature-size curve

with the curve of the original seed voxel. Before a voxel becomes part of a feature,

29

CHAPTER 3. PRE-COMPUTATION 30

Figure 3.2: A feature volume stores only the per-voxel information that is necessary in order
to reconstruct the feature-size curve of each voxel using the per-feature growth information
stored in the feature growth table, where each row corresponds to one feature (Hadwiger et
al. [2008]).

its “voxel-local” feature size is zero. That is:

fs(x, t) =

{
0 t < t j

fs(xs, t) t ≥ t j
(3.1)

for a voxel x that at time t j becomes a part of a feature whose original seed voxel is

xs. This fact makes it possible to store only a single feature-size curve per feature

in full. However, for each voxel, the feature ID that it will become a part of at time

t j must be stored, as well as storing t j itself. This per voxel information is stored

in a 3D feature volume (Section 3.3), whereas the curves themselves are stored

in a 2D feature-growth table (Section 3.4). Figure 3.2 illustrates the relationship

between the feature volume, the feature-growth table, and feature-size curves, which

is described in detail below. The IDbirth from the feature volume determines the

appropriate row in the feature-growth table where the whole feature curve is stored.

To get the characteristics of this feature at a specific moment j in time, tj is used

to index the column. There the current feature ID (which may change over time

because of merging) and the current feature size at time j are stored. Consequently

the whole curve for that voxel can be found in row IDbirth from column tbirth until

tmax.

3.3 Feature Volume

The purpose of the feature volume is to store all per-voxel information that is needed

to reconstruct full feature-size curves at run-time. As explained in the previous

30

CHAPTER 3. PRE-COMPUTATION 31

chapter, it is sufficient to store only two values per voxel x: (IDbirth(x), tbirth(x)).
The first value yields a feature ID that this voxel belongs to. However, when features

merge over time, feature IDs can change. In order to avoid storing these changing

IDs per voxel, the ID stored in the feature volume is the feature birth ID (IDbirth),
which is the ID of the first feature this voxel belongs to. The actual ID of the voxel

at a specific time step can be discovered with a simple lookup in the feature growth

table described below 3.4. The second value determines the time at which this voxel

becomes part of the feature with the corresponding feature birth ID, i.e., its feature

birth time (tbirth).

Storing the Feature Volume:

The feature volume is stored in a 16-bit two-channel 3D texture, e.g., a Luminance-

Alpha texture in OpenGL [2005]. During rendering, a single texture fetch from this

3D feature texture yields everything needed to reconstruct the voxel’s feature-size

curve via the feature-growth table stored in a 2D texture, as described below.

3.4 Feature-Growth Table

As described in the previous chapters, the feature volume itself does not store actual

feature-size curves. Instead, we store one representative curve for each feature,

which is the feature-size curve of the feature’s seed voxel xs, in a 2D feature-growth

table. The feature-growth table contains one row per feature and b columns, where b

is the number of bins for sampling the parameter t. This table is indexed with the

feature birth ID and feature-birth time, obtained from the lookup in the feature

volume, as row and column indexes, respectively. Each entry in this table is a

(fs(xs, t), ID(t)) pair, which collectively represents the sampled growth curve of the

feature over time t: fs(xs, t), as well as mapping time to current feature ID: ID(t).
The latter is necessary in order to be able to handle the merging of features over

time, where feature birth ID and current feature ID are not necessarily the same,

because the ID can change when a feature merges into another one. The handling

of merging features is described below. The feature-size curve for a given voxel x
can be reconstructed for any time ti by using Equation 3.1 with t j = tbirth(x), and

indexing the feature growth table in row IDbirth(x) and the column corresponding

to the bin of ti, to obtain fs(xs, ti) when ti ≥ t j. This is a very simple and efficient

31

CHAPTER 3. PRE-COMPUTATION 32

Figure 3.3: The feature-growth table is stored in a 2D texture array where the different
features are color coded for visualization. The number of texture layers (z-axis) depends on
the number of features and the maximum allowed dimension of the 2D texture (y-axis). The
x-axis is the number of time steps. If a feature changes its ID (because of merging) the line
is continued with another color that corresponds to its new ID.

scheme, which can be evaluated in a GPU fragment shader during ray-casting,

illustrated by the pseudo code in Section 4.3.

3.4.1 Storing the Feature-Growth Table

In principle, the feature growth table is stored in a 16-bit two-channel 2D texture,

e.g., a Luminance-Alpha texture in OpenGL. However, this texture has to contain

one row per feature and the number of features can reach into the thousands.

Therefore, hardware texture dimension constraints make it impossible in the majority

of cases to use a single 2D texture for this purpose. If the hardware supports 2D

texture arrays (e.g., NVIDIA GeForce 8800), we split up the feature growth table

into a texture array with texmax rows and dnfeatures/texmaxe layers, where texmax

is the maximum allowed dimension of a 2D texture as reported by the hardware,

and nfeatures is the number of features. Figure 3.3 illustrates a feature growth table

with five layers. The last layer is mostly never entirely used. If texture arrays are

not supported, the feature growth table is split up in a similar way, but layers are

stored in the depth dimension of a 3D texture, which is functionally almost identical.

However, accessing a 3D texture is slower than accessing a 2D texture array, and it

might be necessary to pad the depth dimension to a power-of-two.

32

CHAPTER 3. PRE-COMPUTATION 33

3.4.2 Merging Features

Features can merge as the parameter t increases, e.g., when two small disjoint but

close features grow in size over t until they finally touch while conforming to the

homogeneity criterion. When this happens at time tk, they are treated as a single

feature for all t ≥ tk. In order to do so, we assign a new current feature ID to the

entire merged feature, using the numerically smallest ID of the features that have

merged as shown in Figure 3.4.

Figure 3.4: Merged features are all assigned the smallest ID of all features included in the
current merge operation. At the beginning all features hold their own ID (t0). When some
of them merge at a later timestep (t1), they are treated as one feature with the numerically
smallest ID from that time on . For each feature a mergelist exists, holding all IDs of the
features involved in the new merged feature. When compound features (i.e., features that
have been combined already at an earlier timestep) merge (t2), also the corresponding
mergelists need to be merged.

Additionally a mergelist is tracked for each feature containing all feature IDs of

which the actual feature is composed. A mergelist is attached to a feature when it

merges for the first time and updated after each merge operation. For two features

that merge also the mergelists have to be combined as illustrated in Figure 3.4.

Tracking a mergelist for each feature is necessary to calculate the statistical feature

properties described in Section 3.7. During rendering, the feature ID that is current

at time ti needs to be determined for a given voxel (sample). Thus, we also store the

feature ID corresponding to each ti (ID(ti)) in the feature growth table, as explained

above. Every row in this table corresponds to a feature birth ID, i.e., the ID that was

assigned on feature creation, whereas the current feature ID is retrieved from the

ID entry in column ti. Thus, the IDs stored in the feature volume are feature birth

IDs instead of current IDs. The big advantage of this approach is that it allows the

IDs stored in the feature volume to be left untouched by merging of features. It is

33

CHAPTER 3. PRE-COMPUTATION 34

Figure 3.5: Region growing is performed in multiple passes. In each pass, new features
can be created, previously existing features may grow (except in the first pass), and features
may merge. Optionally, background voxels can be culled in order to improve pre-processing
performance (Hadwiger et al. [2008]).

sufficient to know the feature birth ID for each voxel, i.e., the feature the voxel first

belonged to. Everything else can be obtained from the feature growth table, i.e., for

any ti, the current ID and current size of the feature are retrieved from the feature

growth table in row feature birth ID and column ti.

3.5 Multi-pass Region Growing and Seed Selection

This chapter describes how both the feature volume and the feature growth table are

computed using region growing in multiple passes, where each pass corresponds

to a specific time step ti. Figure 3.5 illustrates the overall region growing process

for three consecutive time steps. The resulting feature-size curves over time and

the feature volume and feature growth table used to store them are illustrated in

Figures 3.1 and 3.2, respectively.

Instead of selecting specific seed voxels either manually or automatically, we

consider every voxel in the volume as potential seed for growing a region. This way,

no seeds for potential features can be missed, and the user is not required to specify

seeds at all. Nevertheless, we allow optionally culling away the background or other

undesired regions as performance optimization.

34

CHAPTER 3. PRE-COMPUTATION 35

3.5.1 Culling

In industrial CT parts a significant number of voxels are usually part of the back-

ground, i.e., air. In order to speed up the pre-computation stage, it is worthwhile to

remove these parts of the volume from the potential seed candidates. This is done

by allowing the user to specify a 1D opacity transfer function, which is used to cull

small sub-blocks of the volume. Figure 3.6 shows an example with a part of a cast

housing. The simplest transfer function for culling is a simple windowing function.

However, the default setting is a window covering the entire density range, which

disables culling. This is shown in Figure 3.6(a) where the whole dataset, displayed

with DVR, is enclosed by a red rectangle. In this case obviously more than half of

the dataset consists of air, which can be excluded from rendering by using a simple

1D transfer function (Figure 3.6(b)). Therefore, also the region growing process is

limited to either the green (323) or the blue (83) sub-blocks shown in Figure 3.6(c).

When the analysis of just a part of a component is desired, clipping planes can be

used to cull sub-blocks along the x-, y-, and/or z-axis respectively. An example

for such a region of interest (ROI) is shown in Figure 4.8, where region growing is

performed only for the remaining part of the volume.

(a) The whole dataset. (b) Using a 1D opacity TF. (c) Sub-blocks.

Figure 3.6: Culling is used to exclude unwanted parts, i.e., air from region growing.
(a) Shaded DVR of the whole dataset including the surrounding air. (b) Shaded DVR using
a 1D opacity transfer function (bottom left) which excludes the air from rendering. (c) Only
the green(323) or the blue (83) sub-blocks are used for region growing respectively.

An additional method allows not only to disable whole blocks of the volume but

also groups of voxels according to their density. Therefore the 1D transfer function

is used as a simple windowing function to “turn off” voxels by setting their opacity

to zero. This can be useful to extract features of a specific density if there are

many different structures of different materials, like in minerals. Figure 3.7 presents

35

CHAPTER 3. PRE-COMPUTATION 36

a typical case where such an application might be useful. Here the windowing

function (Figure 3.8) is used to extract just the phases of different sizes from the

surrounding sand material in the industrial ceramics. The black areas inside the

data in Figure 3.8(a) are finally used as seeds for region growing. The results (Fig-

ure 3.9(a)) are distinguished using the 3D transfer function shown in Figure 3.9(b)

which is described in detail in Section 4.1.2.

(a) Slice view of an industrial ceramic. (b) A 1D opacity transfer function for
material visualization.

Figure 3.7: An industrial ceramic (a), using a 1D opacity transfer function to get an
impression of different materials in the dataset (b).

(a) Slice view of an industrial ceramic. (b) The windowing Function.

Figure 3.8: An industrial ceramic (a), where with the windowing function in (b) the opacity
of the sand material is set to zero and therefore excluded from region growing. This means,
only the voxels having density values in the light blue part of the TF are used as seeds for
region growing.

Generally, culling determines an active block list, and the voxels contained in active

blocks are considered as potential seeds. If additionally the option for the alpha

36

CHAPTER 3. PRE-COMPUTATION 37

(a) Slice view of an industrial ceramic. (b) The resulting 3D TF is used to
extract different phase features.

Figure 3.9: After region growing the phase features can be explored using the 3D TF
(density, featuresize, time) shown in (b).

values is used, the density value of the seed is checked against the transfer function

and only further processed if alpha is greater than zero.

3.5.2 Region Growing

Given the active block list determined by culling (which might contain the entire

volume), selection of seed candidates for region growing proceeds by processing

block after block, considering each contained voxel in turn and optionally checking

against the 1D transfer function, as already described in the previous Section 3.5.1.

In each pass, for each seed candidate, a region is grown as far as possible given

the current parameter ti. The pseudo code in Figure 3.10 gives an overview of the

different stages in the growing process which are described in detail below.

In order for a region to become a feature, its size must be both larger than a given

minimum (min featuresize) and smaller than a given maximum (max featuresize).

These restrictions are added to avoid spurious features of only a few voxels due to

noise, and turning entire structures such as intended holes, in e.g. a casting part,

into features. If a region satisfies these two criteria, a new feature is created from

it. All voxels comprising this feature will subsequently not be considered as seed

candidates. Region growing then continues by considering the next seed candidate.

Furthermore, in all passes after the first one, in addition to starting completely new

37

CHAPTER 3. PRE-COMPUTATION 38

generateFeatureSizeVolumeAndHistogram()
{
clear feature volume and checked mask;
grow the encapsulating air;

for each timestep t_i {

clear visited mask;
calculate variance value depending on t_i;

first pass: grow homogeneous areas;
second pass: grow boundaries;
calculate geometrical properties (surface,...);
calculate histogram;

}
}

Figure 3.10: Pseudo code for the whole region growing process.

features, existing features have to be grown further if allowed by the increased

region growing parameter ti+1. The distinction between first and subsequent passes,

as well as handling multi-pass region growing efficiently, is described below.

Before growing of the features starts, the air which corresponds to the dataset and

encloses the scanned component is grown. This is necessary for the statistical calcu-

lations described in the next chapter. In the first pass, i = 0, with a corresponding

region growing parameter ti = t0, every voxel that is not yet part of any feature is

considered as seed candidate for starting a completely new feature. The pseudo

code in Figure 3.11 demonstrates the process of how a potential seed voxel may

grow a feature. Note that since seed candidates are considered sequentially, even in

the first pass many voxels may already have been assigned to features when a given

candidate is processed. In the next pass, i+1, and all subsequent passes, there are

three possibilities for a potential seed-voxel candidate:

1. Unassigned voxels are considered as new seed candidates, possibly starting a

new feature at time ti+1.

2. Already existing features are grown further from their boundary voxels, if

possible, given the new region growing parameter ti+1. If an existing feature

grows further at time ti+1, its feature size increases, i.e., fs(x, ti+1) > fs(x, ti),
see Figures 3.1 and 3.2.

38

CHAPTER 3. PRE-COMPUTATION 39

3. Already existing features are grown further from their boundary voxels and

merge with other features as already described in Section 3.4.2.

growNewRegion()
{
push seedvoxel into region_queue;

while region_queue is not empty {

for the six neighbor voxels {

check if valid position in volume;
check against visited- and checked mask;
optional: check against alpha value in 1D TF;
check the homogeneity criterion;

//when voxel is still valid...
if region < MAX_FEATURESIZE {

push voxel into region_queue;
tag visited mask;
add voxel to region;
add ID and t_i to feature volume;

}
else {

mark voxel as TOOBIG in the feature volume;
tag checked mask;

}
}

}
if new feature > MIN_FEATURESIZE

add to feature growth table;
}

Figure 3.11: Pseudo code for growing a homogeneous region from a new seed voxel.

This is illustrated in the pseudo code in Figure 3.12. The following approach allows

handling all cases efficiently and treating the first and all subsequent passes as

uniformly as possible.

We maintain two bit masks with one bit per voxel for tagging and thus removing

voxels from further consideration for either growing a new feature or extending

an existing feature. A voxel is considered tagged when its bit is set in either one

of the two masks (or both). The goal of the checked mask is to remove voxels

from consideration for growing a new feature (where it would be a seed voxel), or

extending an existing feature (where it would be a voxel in the feature’s boundary),

39

CHAPTER 3. PRE-COMPUTATION 40

both in the current and all subsequent passes. This mask is cleared only before the

first pass and then updated from pass to pass. A bit in the checked mask is set when

either:

a) the voxel is inside a feature, i.e., all its neighboring voxels also belong to the

feature (e.g., using the 26-neighborhood); or

b) because the voxel is part of a region that became bigger than the max featuresize.

growAndMergeFeatures()
{
push actual voxel into queue;

while queue is not empty {

for the six neighbor voxels {

check if valid position in volume;
check against visited- and checked mask;

//when voxel is still valid there are three
//possibilities:
//FIRST POSSIBILITY:
if voxel belongs not yet to a region {

do all steps for growing a new region;
}
else if voxel belongs already to a region {

//SECOND POSSIBILITY:
if voxel belongs to current region {

check for completely enclosed voxels to tag bit
in checked mask;

}
//THIRD POSSIBILITY:
else voxel belongs to another feature {

check the homogeneity criterion for both regions;
merge the mergelists;
merge the regions;
update feature growth table for current timestep;

}
}
tag visited mask;

}
}

}

Figure 3.12: Pseudo code for the second and all subsequent region growing passes.

40

CHAPTER 3. PRE-COMPUTATION 41

In contrast, the goal of the visited mask is to avoid considering the same voxel twice

in the same region growing pass (for either growing a new feature or extending an

existing feature). As such, it is cleared before each pass. A bit in the visited mask is

set when:

a) a voxel is added to a feature in the current pass, irrespective of whether to a

new or already existing feature; or

b) it has already been a seed candidate in this pass, irrespective of whether a

feature has actually been grown from it or not.

During region growing, a voxel is a candidate for either growing a new feature

or growing an already existing feature further when neither its bit in the checked

mask nor in the visited mask is set. The distinction between these two cases is

done according to the corresponding entry in the feature volume. This entry either

contains the birth feature ID of the voxel if it already belongs to a feature (i.e., it

is a candidate for growing the feature further), or an invalid ID and thus does not

yet belong to a feature (i.e., it is a seed candidate for growing a completely new

feature). Whereas setting a bit in the visited mask excludes a voxel just for the

current growing pass, setting a bit in the checked mask excludes a voxel from the

entire region growing process until the end. Therefore, the voxels checked in the

visited mask have the chance to grow further in a following pass.

In addition to the feature volume and feature growth table, which are converted to

textures for rendering, further information is stored for quantification and statistical

views which are described in Section 3.7 below.

3.6 Region Growing Criteria

Our approach is mostly independent of the actual region growing method that is

used, and works well as long as a single parameter t suffices to characterize the

main variation of the growing process. The two region growing methods outlined

below are used as a proof-of-concept for this interactive approach. However, other

region growing or feature detection methods could be adapted as well to work in

the context of this framework.

41

CHAPTER 3. PRE-COMPUTATION 42

3.6.1 Region growing method A

This is a variant of seeded region growing described in Adams and Bischof [1994]

that is also able to include a region’s boundary. Region growing is performed in two

distinct phases:

1. Grow the homogeneous “core” of a region. A voxel is added to the region

when the difference of its density to the average density of the whole region

is below a given threshold ε:

|v− vr|< ε,

where v is a voxel’s density value, and vr is the current region’s average

density. After a new voxel is added, vr is updated accordingly.

2. Expand the region by including its boundary. For every voxel adjacent to

the region, we either check a gradient magnitude criterion in order to decide

whether this voxel should be included in the region, or not. This step is

optional but enabled by default.

The time parameter t determines homogeneous growing: t = ε . Further, it is possible

to select whether the feature should grow with the boundary or without.

3.6.2 Region growing method B

Huang et al. [2003] are using a combination of region growing based on density

variance and gradient magnitude standard deviation. They determine both variances

for a fixed neighborhood of a seed voxel. The main parameter is a scale factor k > 0:

fca =
|v− vs|

kσv
, (3.2)

fcb =
|g−gs|

kσg
, (3.3)

fcc(p) = p fca +(1− p) fcb, (3.4)

42

CHAPTER 3. PRE-COMPUTATION 43

where v is a voxel’s density value, vs the density of the seed, g a voxel’s gradi-

ent magnitude value, gs the gradient magnitude of the seed, and σv and σg the

corresponding variances in the seed neighborhood, respectively. The size of the

neighborhood can be selected between six, eighteen or twenty-six voxels. The factor

p can be set to a constant value but is set by default to p = σg
σv+σg

. We employ these

region growing criteria in our framework by setting t = k for tracking the main

parameter k. The possibilities to apply these equations are the following:

1. Only fca to just grow the homogeneous core of a region,

2. fca in combination with fcb such that fcb is additionally used for boundary

growing and

3. fcc where also a combination of the other two methods is used together with

the weighting parameter p.

3.7 Statistical Feature Properties

The calculation of the following statistical properties have to be executed after

each growing pass because features may change over time and therefore also the

statistical parameters have to be adapted.

The columns within the statistics table are:

• Feature ID: The ID of the feature which indicates the growing order and

merging events.

• Volume in voxels: The volume of the feature in voxels.

• Volume in mm3: The volume of the feature in mm3 considering the resolution

of the dataset. The size of the feature voxels in percent to the whole volume

of the component (excluding the air surrounding the object), can be estimated

using the 2.5D widgets explained in Section 4.1.2.

• x, y, z: This is the position of the original seed-voxel from where the region

starts its propagation, shown in Figure 3.13(a). This entry does not change

over time.

43

CHAPTER 3. PRE-COMPUTATION 44

• Surface: The number of voxels on the surface of the feature.

• sx, sy, sz: The size of the smallest possible bounding box encapsulating the

whole feature, as shown in Figure 3.13(b).

• px, py, pz: The surface area of the feature’s shape projected onto the x-, y-

and z-plane, illustrated in Figure 3.13(c).

All values (except the position of the seed voxel) are constrained to the currently

given timestep which is adjustable in the 3D TF as explained in Section 4.1.2.

Storing the minimum and maximum density of a feature allows efficient highlighting

of the picked feature in the transfer function domain.

Figure 3.13: (a) The x-, y-, and z position of the seed-voxel in the data volume. (b) The
dimensions of the smallest possible bounding box enclosing the feature. (c) The surface
area of the feature’s shape projected onto the three planes of the volume.

44

Chapter 4

Exploration

This chapter describes the feature exploration stage of the pipeline. For the user,

this stage is the most important and visible one. The complexities from the previous

pre-computation stage are hidden to a large extent. In order to explore and classify

features and feature classes, the corresponding regions in the volume can be mapped

to color and opacity using one of two different means:

1. via a 3D transfer function in the (density, feature size, time) domain, described

in Section 4.1 (Figure 4.2(a)), which maps entire feature classes; or

2. directly via picking individual features in either one of three orthogonal slice

views, in the feature table, (Figure 4.9(a)) or in the graphical feature view

(Figure 4.6), both described in Section 4.2.

The graphical feature view allows the user to pick features, inspect their feature

size curves, and set their color and opacity individually. It can also be used for

disabling features that stem from CT artifacts by setting their opacity to zero. Also

some attributes like ID, size and picked time step are shown immediately. When a

location is picked in a slice view, the corresponding feature (if any) is also selected

in the graphical feature view. During exploration, the current classification is shown

in real-time in a 3D volume view (Section 4.3; Figure 4.6)) and three slice views

(Figure 4.7). Picked features are immediately highlighted in all of these views.

45

CHAPTER 4. EXPLORATION 46

Figure 4.1: Transfer function with 2.5D widgets in the 3D (density, feature size, time)
domain. A stack of 2D (density, feature size) histograms, one for each time step, helps
with transfer function specification. The widgets are valid over a user-specified timerange
(Hadwiger et al. [2008]).

An important concept during exploration is the handling of the time axis t. Showing

all time steps simultaneously is only supported by the graphical feature view. It

allows to inspect feature size curves along the time axis in a function plot, where the

dense color-coding of feature IDs shows their evolution over time (due to creation

and merging of features). The feature size curves constitute the main part of the

view (Figure 4.5(b)). All other views, i.e., the 3D volume view, the three orthogonal

2D slice views, the feature tables and also the transfer function panel depict only a

single time step. This current time step tcur is specified globally for exploration and

can be modified by the user at any time via a simple slider.

4.1 Exploring Feature Classes

The main goal of classification is to explore feature classes, instead of requiring

the user to inspect individual features. Features are classified by specifying a

transfer function in the 3D domain of density (from the CT volume), feature size

(retrieved from feature size curves, described above in Section 3.2), and time (the

changes of features according to the main region growing parameter). Although

this is a 3D domain, we use a 2.5D metaphor to make the manual specification of

transfer functions manageable. The 2D (density, feature size) subdomain can be

viewed in its entirety for any given time tcur in the transfer function panel. This

corresponds to choosing a specific time of interest via a slider and then exploring

46

CHAPTER 4. EXPLORATION 47

Figure 4.2: Apart from inspecting individual features, the feature classification space
can be explored through a stack of 2D histograms spanning the 3D domain of (density,
feature size, time). (a) 2D slice through the domain with histogram and transfer function
widgets which define the different feature classes (x axis: density, y axis: feature size). See
also Table 5.9. (b) Volume view generated with GPU-based real-time ray-casting;

features according to their size and density distribution. Figure 4.1 illustrates the 3D

TF domain, highlighting two selected 2D subdomains and the widgets intersecting

them.

4.1.1 Feature Histograms

Figure 4.2(a) shows a 2D histogram plotting voxel density (x-axis) against feature

size (y-axis) (Figure 4.5(a) shows such a histogram without classification widgets).

The number of voxels with a given (density, feature size) combination is color-

coded (red corresponding to a large number of voxels). For each time step ti, a

corresponding 2D histogram is computed, which are maintained as a stack of 2D

histograms that collectively span the entire 3D domain. In order to gain insight into

the distribution of feature sizes, densities, and their occurrence in time, the time axis

is explored using the slider for tcur, which specifies the current time of interest. This

enables the user to specify the appropriate time step, or even a whole time range for

each feature class.

47

CHAPTER 4. EXPLORATION 48

Figure 4.3: The 2D transfer function widgets are expanded to 3D by specifying a valid
time range for each. We use completely solid widgets (a), tent widgets with adjustable
peak position and width (b) and (c), gauss blobs (d) and boxes where color and opacity is
variable for each corner respectively (e). An application example for widget (e) is shown in
Figure 4.6 where it is used to apply a color gradient from small to large features.

4.1.2 3D Transfer Functions and 2.5D Widgets

The 3D transfer function in the (density, feature size, time) domain is specified

using 2.5D widgets, which result from extending some of the well-known regular

2D transfer function widgets. Figure 4.3 illustrates the widgets such as boxes, tents,

or Gauss blobs as used in Kniss et al. [2001]. They are expanded into the third

dimension by assigning a time range [ta, tb] to each widget using a range slider. This

range determines for which time steps this widget is active, i.e., 2D widgets are

extruded into 3D from time ta to time tb. The actual widget shape is 2D, e.g., a Gauss

blob is extruded into a cylindrical shape in 3D. The reason for this is that opacity

ramps are very useful in the (density,size) subdomain, but gradually changing the

opacity classification over time is not meaningful because the time axis is in fact

not continuous (it is not only sampled, but also corresponds to the impact of fixed

increments in the main region growing parameter on the evolution of regions, not

actual time). Thus, a widget is either fully present at a time ti with ta ≤ ti ≤ tb, or

not present at time ti at all. In many cases, in order to determine a specific feature

class the user explores the time domain until a time step is found that depicts the

features of this class well. In this case, widgets for this class are set to be active only

in this particular time step, i.e., ta = tb. Example transfer functions are shown in the

result Section 5.2. Widgets can also be used to get information about the selected

feature classes. The user can get the following information for an active widget

(Figure 4.2(a), marked by a red frame), by clicking on it:

• The feature size range of the widget (extent along the y-axis).

• The density range of the widget (extent along the x-axis).

48

CHAPTER 4. EXPLORATION 49

Figure 4.4: The size of the explored features are adjustable via the length of the widgets. So
the growing process of individual features can be retracked by tracking the widget’s length
from left to right - from the seed-voxel to the whole feature including the boundary. For
example, in Figure (a) the widget covers 494 voxels of the feature, in Figure (b) 999 voxels
and in Figure (c) 1862 voxels of the same feature at the same time step.

• The number of features the widget covers.

• The number of feature voxels the widget covers.

• The size of the covered feature voxels in percent with respect to the whole

volume of the object (excluding the air surrounding it).

The quantification result tables in Section 5.2 follow from this information.

Also the size of the individual features is adjustable via the TF. Because the x-

axis of the histogram depicts the density range of the features, each line in the

histogram reaches the voxels from the inner homogeneous part of the feature till the

boundary. Therefore, by varying the length of the widget, the size of the features in

the according feature class are tunable as shown in Figure 4.4. Therefore, beside

the time domain, the user has a second possibility to explore the size of the features.

4.2 Exploring Individual Features

In addition to exploring whole classes of features, it is important to allow the user

to also pick and inspect individual features. Features can be picked with the mouse

49

CHAPTER 4. EXPLORATION 50

in either:

• one of three orthogonal slice views (Figure 4.7), which retrieves the current

feature ID at the picked location;

• in the feature tables according to their ID, where the individual features are

listed; or

• in the graphical feature view.

The graphical feature view has two main components, a visualization of all fea-

tures with their feature IDs color-coded and depicted over time (Figure 4.5(b)),

and a plot of the representative feature size curve of the currently picked feature

(Figure 4.5(c)). The former visualization contains one row for each feature, with

the vertical coordinate corresponding to the feature ID (increasing from bottom

to top). The horizontal axis is time t, where horizontal changes in color indicate

the merging of features and thus a change in feature ID. The staircase pattern in

Figure 3.3 (bottom right) emerges from features that are only created at later time

steps, i.e., who have no feature ID before their feature birth time. This view shows

the feature growth table described in Section 3.4, depicting a color-coding of the

ID(t) channel from the (fs(xs, t), ID(t)) pairs stored in the table. As such, it is a

visual representation of the behavior of all features over time with respect to their

creation and merging with other features. When features merge, their IDs change

(except for the feature that has the numerically smallest ID of the merging features,

which is kept, see Section 3.4). This shows up as color changes within a row in

this view. This color-coded view does not allow detailed analysis but provides a

Figure 4.5: When a position in the graphical feature view (b) is picked, the corresponding
feature curve (c) shows up and the location of the picked feature in the histogram of the 2D
TF is highlighted at the indicated timestep (a).

50

CHAPTER 4. EXPLORATION 51

(a) Reduced-Pressure-Test Sample (RPTS). (b) Feature 1547 (green).

Figure 4.6: Lower densities are the interior of pores (red-blue), higher densities their
boundaries (yellow). The feature size is mapped with a color gradient from red (small) to
blue (large). Very large features are set to transparent. (a) The picked feature is highlighted
in green. For the other features the TF at the bottom right is used. (b) Feature 1547 (green)
consists of 13997 voxels which are 17,145mm3 at a resolution of 0.106996mm.

good overview at a glance whether a lot of features are merging or not, and at what

time steps a lot of merges occur. Detailed inspection is then possible by picking

a feature (row), and looking at the corresponding plot that shows all details of

the feature’s size curve. This curve exactly reveals at which timestep the feature

has grown and how much. High leaps in the curve often denote that a merging of

two or more features occurred. When a feature is picked in the graphical feature

view, the global current time tcur is updated automatically to correspond to the

column where the picking has occurred. This concerns the 2D transfer function

where the appropriate timestep shows up, as well as the 3D volume view, the three

orthogonal 2D slice views, and the feature tables. If enabled, the related location

of the feature is highlighted in the histogram of the 2D TF (Figure 4.5(a)) which

makes the exploration of similar features easier.

4.2.1 Feature Picking

When a feature is picked, a specific individual color and opacity can be specified,

which is then stored per feature by overriding the corresponding entry in the 1D

color ramp transfer function described in the next paragraph. Picking in the slice

51

CHAPTER 4. EXPLORATION 52

views is implemented by looking at the value in the feature volume and mapping

it to a feature ID via the feature growth table. The picked feature is also shown

in the transfer function domain (see Figure 4.5(a)). In order to do this efficiently,

the minimum and maximum density over all voxels in the feature are recorded

for each time step during region growing. Showing the picked feature’s footprint

in the transfer function domain is very helpful for transfer function specification.

Knowing the location of one feature belonging to a specific feature class, helps the

user to find features with similar density and size properties. For rendering, the ID

of the picked feature is supplied to the corresponding GPU fragment shader, which

compares the picked ID with the current feature ID of the sample to be rendered.

This is illustrated by the pseudo code in Section 4.3.

Figure 4.7: Picking can also be achieved in the slice viewer. The picked feature (green) is
highlighted in the same color as in the volume rendering of Figure 4.6.

4.2.2 Feature Color Coding

All features can automatically be shown in different colors, by mapping feature IDs

to colors and opacity via a 1D transfer function, which is filled with a color ramp by

default. This is the same color ramp used in the graphical feature view (Figure 4.8

(b) and (f)). Figure 4.8 ((a) and (e)) shows this color mapping applied in the 3D

volume view, which is useful to gain a quick overview before transfer functions are

specified. Similarly to storing the feature growth table (Section 3.4.1), limitations

in hardware texture dimensions often require this 1D table to be stored as several

52

CHAPTER 4. EXPLORATION 53

packed rows in a 2D texture.

4.2.3 Removal of Artifacts

Picking features is especially useful for removing erroneous features that in fact are

artifacts from the scanning process, such as reconstruction/Feldkamp artifacts or

center/circular artifacts. When an artifact is picked, its individual opacity can be

set to zero, which removes it from both rendering and quantification. Figure 4.8

demonstrates such a process. Here just a part of the reduced-pressure-test sample

(RPTS) is used for demonstration purposes (the clipping planes along the z-direction

are shown in blue). After the region growing process, the opacities of single

unwanted features are set to zero. Hence a single widget is sufficient to extract all

desired features without paying attention to erroneous features. This avoids, that the

user has to apply more widgets in the transfer function just to eliminate unwanted

features from classification.

4.2.4 Feature Table

The feature tables described here are a mixture between the exploration of whole

feature classes and individual features since, even though feature classes may be

explored, individual information is provided. They contain all the geometrical

attributes described in Section 3.7 for the current timestep ti and can be written to a

.csv file if desired. There are two different feature tables:

1. The feature table of all features defined in the graphical feature view.

2. The feature table of the features defined by the feature classes in the 2D

transfer function.

For the first table optionally the same color coding as in the graphical feature view

is used. However, features may be listed more often because of merging (all features

that merge get the same ID from that time on but stay as separate entries in the

table). The second feature table allows to get all attributes of the features contained

in the feature classes defined via the 2D transfer function (Figure 4.9). The color

53

CHAPTER 4. EXPLORATION 54

Figure 4.8: Color coding as described in Section 4.2.2 is useful to get a first impression of
all grown features (Figures (a), (b), (c) and (d)). To remove unwanted features, the opacity
for the appropriate features in the color ramp are set to zero (in this case emphasized by
the white lines in Figure (f)) (Figures (e), (f)). When a 2D feature size transfer function is
applied additionally (Figure (d)), the affected features are excluded from rendering and
evaluation (Figure (g)).

54

CHAPTER 4. EXPLORATION 55

(a) The feature table. (b) The volume view.

Figure 4.9: The aluminum tensile test sample has two different types of defects: gas pores
and shrinkages, similar to the RPTS (Figure 4.6). (a) The features in the feature table are
defined via the classification widgets in the 2D TF (Figure 4.9(b) top left) and color coded
respectively. (b) The defined features are highlighted in the volume view generated with
GPU-based real-time ray-casting.

coding in the table (Figure 4.9(a)) is equivalent to the color of the features defined

in the 2D transfer function and used for rendering (Figure 4.9(b)).

Picking in the tables is possible and linked with the renderer, slice viewer, and the

graphical feature view as described in Section 4.2.1.

4.2.5 Optional Slice Plane

Figure 4.10 shows a comparison of slice images classified and rendered with our

pipeline (Figure 4.10(b)) and images acquired via microscope (Olympus BX-51)

from slices cut from the actual aluminum RPTS part (Figure 4.10(a)). To achieve

the exact copy of the microscope image with our application it is necessary to

tilt the z-plane horizontally as well as vertically for arbitrary degrees, because

the electron microscope slice images do not lie exactly in the z-direction of our

application. The registration occurs manually with one respective slider for each

direction. Figure 4.10(c) shows the optional z-plane positioned in the 3D space.

55

CHAPTER 4. EXPLORATION 56

(a) Comparison of slice images. (b) The tilted z-plane.

Figure 4.10: For comparing the measurements of our application with the manual measure-
ments, we need to register the two slice planes. (a) A slice image of a RPTS pictured with an
electron microscope (left) versus a slice image of our application (right). (b) It is necessary
to tilt the slice plane along the z-direction to get the electron microscope’s perspective.

4.3 Volume Rendering

The size of volumetric datasets like industrial CT data are quite large and still

increasing at a rapid rate. Although today’s graphics hardware offers 1GB and more

of onboard memory, which allows ray casting algorithms on the graphics processing

unit (GPU) to achieve real-time frame rates, the general amount of texture memory

is limited. Due to the additional texture memory used for the feature volume

(Section 3.3) and the feature growth table (Section 3.4) in this application, more

than three times the size of the density volume itself is used. Therefore bricking

(described in Hadwiger et al. [2005]) is employed, for keeping only the visible

subset of the entire volume in GPU memory, which is described in the following

Section 4.3.1. Volume rendering is performed by using ray-casting in the fragment

shader as described in Stegmaier et al. [2005], where the shader modifications for

the feature rendering are explained in Section 4.3.2.

4.3.1 Brick Caching

As already mentioned, the problem at hand is the limited amount of texture memory

in GPUs. Beside the 16-bit one-channel 3D texture of the original density volume

itself, this application needs also a second 16-bit two-channel 3D texture for the

feature volume (Section 3.3) and a two-channel 2D texture array for the feature

56

CHAPTER 4. EXPLORATION 57

Figure 4.11: Only non-empty bricks are stored in an arbitrary sequence in the 3D cache
texture. During rendering, translation between virtual volume space and physical cache
texture coordinates is performed via texture fetches in a small 3D layout texture described
in Beyer et al. [2008].

growth table, where the final size depends on the number of timesteps t and features

resulting from region growing (Section 3.4.1). So it is obvious that we need a

compression method for high-resolution industrial CT data to handle such amounts

of data while sustaining an acceptable frame rate.

First, the user defines the final texture cache size depending on the memory capacity

of the GPU and the data size, that later stores the active part of the volume. Then,

the volume is subdivided into equally sized bricks of size n3 (n has to be a power

of two) in a pre-processing step. These bricks are stored in the central processing

unit (CPU) memory. A brick is stored with the size (n+2)3 because the voxels at

brick boundaries need to be duplicated for texture filtering. During this process, the

minimum and maximum density values of each brick are stored for culling at run

time.

Culling (Section 3.5.1) determines a list of active bricks that are packed into a single

3D brick cache texture which is loaded into the GPU memory. This is also the

volume used for the region growing process and, therefore, determines the size

of the feature volume. Certainly bricks in this texture cache have to be updated

whenever the transfer function changes. Especially in industrial CT data the amount

of air surrounding the scanned object is very high and culling often leads to less of

half the volume size as demonstrated in Figure 3.6. Hence, not only the amount

of texture memory is reduced but also the computation time for region growing is

reduced. Because the cache has a different size than the volume itself, the bricks are

57

CHAPTER 4. EXPLORATION 58

stored in an arbitrary sequence in memory (Figure 4.11). During rendering, a low

resolution 3D layout texture with one texel per brick saves the offset of each position

for each brick from virtual volume space to physical cache texture coordinates. This

address translation is shown in Figure 4.11 where the layout texture encodes (x,y,z)
address translation information in the RGB channels. Beyer et al. [2008] introduce

the following formulation for the address translation of a volume space coordinate

xx,y,z ∈ [0,1]3 to cache texture coordinates x′x,y,z ∈ [0,1]3:

x′x,y,z = xx,y,z ·bscalex,y,z + tx,y,z, (4.1)

where tx,y,z is the RGB-tuple from the layout texture corresponding to volume

coordinate xx,y,z, and bscale is a constant scale factor for matching the different

coordinate spaces of the volume and the cache. When filling the layout texture, the

former is computed as:

tx,y,z =
(
b′x,y,z ·bres′x,y,z−ox,y,z

)
/csizex,y,z (4.2)

where b′ is the position of the brick in the cache, bres′ is the storage resolution of

the brick, and csize is the cache texture size in texels to produce texture coordinates

in the [0,1] range. The offset ox,y,z is computed as:

ox,y,z = bx,y,z ·bresx,y,z (4.3)

where b is the position of the brick in the volume, and bres is the brick resolution.

The global scale factor bscale is computed as:

bscalex,y,z = vsizex,y,z/csizex,y,z, (4.4)

where vsize is the size of the volume in voxels.

4.3.2 Rendering

For the remaining volume in the 3D cache texture, rendering is done via ray-casting

in the fragment shader. During rendering, a single texture fetch from the 3D feature

texture yields everything needed to reconstruct the voxels feature size curve via the

feature growth table stored in a 2D texture. The pseudo-code (similar to GLSL)

in Figure 4.12 illustrates the main steps that need to be done in order to determine

58

CHAPTER 4. EXPLORATION 59

the color and opacity (without shading) of a sample as RGBA tuple in the variable

out, which can then be composited during ray-casting, or simply displayed in an

orthogonal slice view.

float density = texture3D(density_volume, sample_coord3);
vec2 feat_vox = texture3D(feature_volume, sample_coord3);
float birthID = feat_vox.x;
float birthTime = feat_vox.y;

if ((birthID == ID_NONE) || (birthTime > T_CUR)) {
out = texture1D(tf1D, density);

} else {
vec2 fsmap = texture2D(growth2D, vec2(T_CUR, birthID));
float curSize = fsmap.x;
float curID = fsmap.y;

if (curId == PICKED_ID) {
out = pickingColor;

} else {
out = texture1D(selection1D, curID);
if ((out.a > 0.0) && !use_color_ramp_1D)

out = texture3D(tf3D, vec3(density, curSize, T_CUR));
if (out.a == 0.0)

out = texture1D(tf1D, density);
}

}

Figure 4.12: Pseudo code for the main steps to determine the color and opacity of a feature
voxel in the fragment shader. If the voxel does not belong to a feature the 1D opacity
transfer function is used.

The volume is rendered for a specific time step, i.e., the global current time tcur,

which is denoted as T CUR in the code. For a sample with volume coordinates

sample coord3, the density volume (density volume) and the feature vol-

ume (feature volume) are sampled at that position, which yields the density,

the feature birth ID (birthID) and the birth time (birthTime). If no feature

is present at a specified location given the current classification, it indicates that

either, no feature exists there at all (ID NONE), or the feature does not exist yet at

time tcur, or it is mapped to zero opacity in the feature transfer function (tf3D).

If no feature is present, the regular 1D density transfer function is applied to the

sample (tf1D). However, it is also easily possible to use a 2D instead of a 1D

transfer function, such as density/gradient-magnitude (Kniss et al. [2001]), or LH

(Šereda et al. [2006]). For color-coding features or using individual colors and opac-

ity (see Section 4.2.2), a 1D table is used (selection1D), which overrides the

59

CHAPTER 4. EXPLORATION 60

feature transfer function when use color ramp 1D is set. For picked features

an additional pickingColor can be specified (see Section 4.2.1).

60

Chapter 5

Quantification and Results

In order to assess the quality of materials or the whole casting process itself, it is

necessary to quantify the features contained in a data set, e.g., their number, volume,

surface area, as well as global statistical measures such as average volume or area.

The quantitative information displayed by our system is separated into information

that has already been computed in the pre-computation stage (Chapter 3), and

additional information obtained during exploration by using the 3D transfer function

(Section 4.1) and individual feature exploration (Section 4.2).

5.1 Feature Quantification

In contrast to rendering during exploration, quantification does not primarily con-

sider individual voxels (samples), but whole features with all their voxels. Therefore,

quantification does not need the feature volume, but most of all the feature growth

table (Section 3.4). The feature growth table contains the representative feature size

curves for every feature, as well as information computed during region growing that

was not needed for rendering (i.e., lists of voxels comprising individual features).

For a feature fi, the representative feature size curve fs(x, t) is the feature size curve

of the feature’s seed voxel fs(xs, t), because this voxel belongs to the feature from

the beginning, see Section 3.2. All other voxel have the same curve from the time

they start joining the feature. The size of the feature in voxels at time ti can be

61

CHAPTER 5. QUANTIFICATION AND RESULTS 62

determined directly from this representative feature size curve, which is stored in

the feature growth table. Not only the size at time ti is available, but also all the

relevant feature parameters like the position, surface area, etc. (see Section 3.7).

However, this considers only the region growing process itself, not the classification

done via the transfer function which can exclude features and whole feature classes

from quantification. During the region growing process (Section 3.5.2), a list of

contained voxels is incrementally constructed for each feature. In order to quantify

a feature, these voxels have to be visited, and their density, together with the fea-

ture’s size at time ti, must be used to perform a lookup in the 3D feature transfer

function. The resulting opacity determines whether this voxel should be included

in the quantification or not. In addition to using the opacity, feature classes can be

quantified individually (i.e., quantifying each widget’s classification separately),

or combining the classification of several widgets to collectively classify a single

feature class.

We compute the most common measures such as the volume of features in voxels,

the volume in cubic millimeters via the reference size of a single voxel in x,y,z, the

surface area of a feature, the size of the bounding box encapsulating the feature,

the surface area of the features shape projected onto one of the three axial planes,

density average and standard deviation, as well as global statistical measures such

as average feature size and standard deviation. Additional measures can be added

easily. However, the focus of our system is to provide the basis for interactively

specifying what should be quantified. Including other measured quantities is the

subject of future work. Examples of quantification results from the statistical

calculations described in Section 3.7 are shown in Table 5.1 (Section 5.2.1) and

Table 5.10 (Section 5.2.8), resulting from the feature table described in Section 4.2.4

(Figure 4.9(a)).

5.2 Results

This chapter describes results generated with our system for real-world industrial

CT data. The tables provided for each sample give quantification results for different

void sizes (feature classes) contained in the respective data set, including the number

of features in each class, their average volume in voxels, and the percentage of

voxels in the class with respect to the number of voxels in the whole part (excluding

62

CHAPTER 5. QUANTIFICATION AND RESULTS 63

Figure 5.1: In the RPTS two kinds of features with different origin exists: gas pores (a)
and shrinkage cavities (b) both colored in purple. The measurements of both are listed in
Table 5.1.

the surrounding air). The values in the tables can be immediately obtained by

clicking on the desired widget and adjusted by simply changing the size and/or the

position of the widget. During widget movement the quantification results as well

as the visual results in the volume renderer are kept consistent. Additionally, for

better orientation in the feature size/density domain, the feature size and density

range the widget covers is displayed, as already described in Section 4.1.2.

5.2.1 Reduced-Pressure-Test Sample

Figure 4.6 shows a “reduced-pressure-test sample” (RPTS), which is used in the

casting industry to evaluate the gas content of an aluminum or copper melt. There-

fore about 30cm3 (1.83in3) of the melt is solidified at a pressure of 8000 Pa (1.16

psi), which causes the gas in the melt to form pores in the metallic volume. Further-

more, the shrinkage of the metal during solidification causes shrinkage cavities to

be formed in the center of the upper regions of the sample. Therefore, these samples

are ideal test pieces for the evaluation of feature detection, as they are virtually full

of different pore sizes (Figure 5.1(a)) and shrinkage cavities (Figure 5.1(b)). The

evaluation of these basic types of features is of great relevance to the casting indus-

try as they are the most common defects in metallic cast parts beside non-metallic

inclusions. Especially the distinction between these defects is of interest for the

casting expert, as they are both voids but have a completely different origin, and

therefore have to be treated differently in the casting process. Table 5.1 shows a

63

CHAPTER 5. QUANTIFICATION AND RESULTS 64

quantification example at the time step tc for the measures of the two features shown

in Figure 5.1 respectively:

feature ID size [voxels] size [mm3] x/y/z pos. surface sx/sy/sz px/py/pz
148 24464 29.966 199/63/371 3723 42/35/53 1144/1222/923

(Fig. 5.1(a))
35 4441 5.440 155/254/304 3357 45/50/52 723/745/838

(Fig. 5.1(b))

Table 5.1: This table represents a quantification example for the two features from Fig-
ure 5.1, resulting from the feature table described in Section 4.2.4.

The highlighted feature (magenta) in Figure 5.1(a) illustrates that interconnected

gas pores also merge in the pre-processing step, and are therefore handled as one

single feature. This is also valid for the measurements shown in Table 5.1 (Feature

148). For this application, the time step tc in our system was chosen interactively,

such that the rendered features comply with the actual position and size of the

different defects. In this case, a (2D) feature transfer function for the time step tc
was sufficient in order to classify the gas pores and the shrinkage cavities according

to their size and density. In cases where the separation of features of different origin

is not directly possible with the 2D feature transfer function, picking can be used

to quantify single features. Table 5.2 shows the quantification results according to

the feature size transfer function from Figure 4.6, where the classification occurs

by separating the boundary of the features and the shrinkages (orange widget).

Shrinkages correspond to the high densities whereas the interior of the voids (color

gradient from red to blue) correspond to the low density values. The quantification

results are presented for the appropriate colors in Table 5.2:

Data set class feature count avg.vol. [voxels] % of part vol.
RPTS left 830 6280.5 8.765

right 2008 3879.5 13.099

Table 5.2: The classification occurs due to the density values shown in the transfer function
from Figure 4.6, and separates the boundary and shrinkage voxels (orange) from the interior
of the voids (red).

5.2.2 Asphalt Core

The asphalt core depicted in Figure 5.2 with a diameter of 100mm (3.9in) is used

to characterize the quality of the asphalt. It is composed of three main phases:

64

CHAPTER 5. QUANTIFICATION AND RESULTS 65

Figure 5.2: Asphalt core with different material components. Region growing yields
features of two clearly distinguishable density ranges. The higher density range (purple
widget in right column (b), (d) and (f)) corresponds to mineral components of higher density
that are incorporated in the coarse fraction of the asphalt, which in this case are undesired
features. Mapping them to completely transparent (left column (a), (c) and (e)) removes
them. The phases between the coarse mineral components of lower density can be further
distinguished according to their feature size, giving different constituents of the fines: small
features (yellow), medium-sized features (orange), and large features (turquoise).

65

CHAPTER 5. QUANTIFICATION AND RESULTS 66

the mineral phase, the bitumen binding phase, and pores. The mineral phase can

be composed of different minerals in different grain sizes. The knowledge of the

composition and distribution of the single phases is of great importance for the

quality of the material. For example, the total volume of the pores is limited in order

to prevent ruts on the street. It is also of interest if the pores are connected to the

surface, to characterize the drainage of the asphalt. This highly complex composition

concerning density profile and size of the inclusions makes a reliable evaluation

especially difficult. Such samples ideally show the advantages of interactive feature

detection. Due to the fundamentally different behavior and composition of the

employed phases, a 3D transfer function can be used to separately characterize

the different phases. Figure 5.2 shows two different feature transfer functions at a

specific time tc where the quantification of the classification is shown in Table 5.3:

Data set class feature count avg.vol. [voxels] % of part vol.
Asphalt small 6068 277.6 2.158

Core med. 243 5735.9 1.785

large 40 19542.4 1.001

right 12345 170.5 2.696

Table 5.3: Quantification results for the transfer function widgets in Figure 5.2.

5.2.3 Golf Ball

Figure 5.3 shows a 2-piece construction golf ball. The inner piece is reinforced with

dense particles. To evaluate the quality of these reinforcements, their distribution

and size were checked using industrial CT. An inhomogeneous distribution of the

particles may result in a deviation of the center of mass compared to the geometric

center of the ball which causes a gyration during rolling of the ball. The two

different time steps in Figure 5.3 clearly show the influence of the region growing

parameter (here, k of region growing method B) on the quantification result at the

end of the pipeline. A 3D transfer function was used to obtain an optimal result for

the complex structure of the sample. Table 5.4 contrasts the quantification results

of two selected time steps. The user visually determined that the earlier time step

(values in parentheses) corresponded to incomplete results, whereas the later one

resulted in a plausibly complete detection of features. For example, the particle

indicated in Figure 5.3 corresponds to an agglomeration of smaller particles during

the production of the golf ball. It also appears in the quantification as a singular

66

CHAPTER 5. QUANTIFICATION AND RESULTS 67

particle of large size (last row of Table 5.4).

Data set class feature count avg.vol. [voxels] % of part vol.
Golf small 6131 (4375) 70.2 (83.5) 0.044 (0.037)
Ball med. 1875 (948) 209.1 (224.2) 0.040 (0.022)

large 78 (26) 1152.2 (1029.8) 0.092 (0.027)

XL 1 (1) 9472 (3441) 0.0097 (0.0035)

Table 5.4: Quantification results for Figure 5.3. The results for the golf ball are for the time
step selected by the user as the “complete” one (Figure 5.3(b)), and an earlier, “incomplete”
time step in parentheses (Figure 5.3(a)).

Figure 5.3: A golf ball, reinforced with dense particles. Two different time steps and the
corresponding 2D section of the 3D TF are shown. In the earlier time step (a), the indicated
particle is still small because the region growing parameter has not advanced far enough
yet. In the later time step (b), it has become a big feature that does not grow further since it
has reached its maximum (actual) size. See also Table 5.4.

5.2.4 Laser Build-up Welding

The welding of high alloyed steel was built-up using a high power laser. The sample

exhibits pores and inclusions of higher density and is therefore an ideal test phantom

67

CHAPTER 5. QUANTIFICATION AND RESULTS 68

for the computed tomography. The geometry with two parallel shoulders which

are prone to scatter under radioscopic measurement is especially interesting for

testing CT equipment and visualization. This workpart is also very interesting for

our application because it shows that it is possible to distinguish the inclusions by

means of their different densities. As shown in the transfer function in Figure 5.4

(bottom right), three main density classes are well defined which brings out the

different kinds of inclusions. Table 5.5 shows the quantification results for these

feature classes:

Data set class feature count avg.vol. [voxels] % of part vol.
Laser left 720 348.9 0.137

Build-up mid. 2984 240.9 0.391

Welding right 2329 573.5 0.726

Table 5.5: The quantification results of the three feature classes defined in the transfer
function in Figure 5.4 (bottom right).

Figure 5.4: The inclusions of the welding of alloyed steel are of different consistency
and therefore can be well differentiated by their densities. The sizes of the features are
additionally encoded with a color gradient along the y-direction in each widget.

68

CHAPTER 5. QUANTIFICATION AND RESULTS 69

5.2.5 Refractory Material

The model shown in Figure 5.5 depicts a sample of a refractory material that is

used for the lining of metallurgical aggregates, where metallic melt is processed, for

isolation and protection purposes. For the quality of such materials the distribution

and size of the mineral phases is important as well as the porosity contained. These

properties influence the mechanical behavior of the material at high temperatures

as well as the elongation under thermal load. The feature size transfer function

allows to evaluate the different fractions of particles and their distribution as shown

in Table 5.6:

Data set class feature count avg.vol. [voxels] % of part vol.
Refractory small 20288 246.8 0.513

Material med.-
XL

633 7024.9 0.455

Table 5.6: The quantification results for the refractory material sample in Figure 5.5 .

Figure 5.5: Visualization of different mineral phases in an industrial ceramic according
to their size by using the 2D feature size transfer function (bottom right). For comparison
a part of the industrial ceramic is shown in the upper right, DVR shaded, without feature
classification.

The sample in Figure 5.5 was pre-computed using the previously described 1D

69

CHAPTER 5. QUANTIFICATION AND RESULTS 70

transfer function culling option from Section 3.5.1. The slice images and the

appropriate windowing and transfer functions in Figure 3.7, 3.8 and 3.9 demonstrate

the transfer function settings used in this example.

5.2.6 Isolation Material

The isolation material shown in Figure 5.6 is used in the construction industry to

isolate buildings where moisture may emerge. Therefore, the polystyrene component

is covered by a ceramic layer. The features in Figure 5.6 colored in dark gray mark

areas where the ceramic agglomerates the plastics phase. The agglomeration rate

has influence on the thermal properties of the product and, therefore, has to be

checked. The results in Table 5.7 show that the agglomerated features are relatively

big (i.e., the medium (green) and large (gray) feature classes) and cover nearly the

same part of the volume than the small (orange) features:

Data set class feature count avg.vol. [voxels] % of part vol.
Isolation small 8911 328.3 8.573
Material med. 321 3554.9 3.383

large 85 12970.5 3.230

Table 5.7: The quantification results of the isolation material shown in Figure 5.6.

Figure 5.6: The isolation material is used in the construction industry to avoid dampness.
Because the agglomeration rate has influence on the thermal properties, visualization and
quantification is of great interest.

70

CHAPTER 5. QUANTIFICATION AND RESULTS 71

5.2.7 Aluminum Tensile Test Sample

The aluminum tensile test sample is used to characterize the static mechanical

properties of the aluminum alloy at hand. In the tensile test, the sample is loaded with

an increasing static load until the the sample fractures. The load and elongation at

which the fracture occurs are important characteristics of the mechanical properties

of the material. When using samples of parts coming out of production, the samples

normally exhibit defects that influence the measurement results. Depending on type

and size of the defect this influence may vary greatly. Therefore, it is interesting for

the materials expert to characterize the defects in advance of the measurement to be

able to better predict the possible disturbance.

Figure 5.7: In Figure (a) a lot of small features are shown (orange). The right Figure (b)
shows some bigger features which are color coded with a color gradient from turquoise to
yellow.

The sample shown in Figure 5.7 has two different types of defects. The round gas

pores have a significantly different impact on the mechanical properties compared

to the mushy shrinkage defects, as already described in Section 5.2.1 and shown

in Figure 5.1. The correlation of the measured properties of the sample to the

defects detected is part of ongoing research in this field. Figure 5.7 shows two

different exploration examples with their respective transfer functions. The related

quantification is presented in Table 5.8.

71

CHAPTER 5. QUANTIFICATION AND RESULTS 72

Data set class feature count avg.vol. [voxels] % of part vol.
Aluminum Tensile small 1348 202.9 0.303

Test Sample (ATTS) med. 20 3282.4 0.073

(Fig. 5.7; left) large 13 7318.7 0.105

ATTS med. 70 1796.3 0.142

(Fig. 5.7; right) large 25 6646.2 0.184

Table 5.8: The quantification of two possible classification examples in Figure 5.7 .

5.2.8 Cast Housing I

Figure 4.2 depicts a part of a cast housing for the automotive industry. The part

is an AlSi-type alloy produced in a die-casting process. As it carries fluids during

operation, impermeability of the housing is one point of specification. Therefore, a

characterization of voids in the casting has to be performed. Other requirements

are the mechanical properties of the casting as well as the mechanical properties

of specific parts of it. Volume defects such as gas pores or shrinkage porosity have

a great influence on these properties. Not only the total volume of these voids

influences the part’s strength but also their distribution. Small, finely distributed

pores will weaken the casting less than one large shrinkage pore of the same volume.

Moreover, the casting has to fulfill different quality levels at different sections. For

example no defects may be allowed on a visible surface of the part, while they

are irrelevant on the surfaces of inner structures. The quantification results for

Figure 4.2 as well as for Figure 5.8 are shown in Table 5.9:

Data set class feature count avg.vol. [voxels] % of part vol.
Cast small 337 158.1 0.041

Housing I med. 16 717.2 0.088

(Fig. 4.2) large 6 1629.7 0.075

XL 6 5181.3 0.024
XXL 3 10678.7 0.026

Cast small 359 236.2 0.200
Housing I med. 10 3671.4 0.087

(Fig. 5.8) large 4 12933.5 0.122

Table 5.9: Two example quantifications for the cast housing which contains five different
feature classes in Figure 4.2 and just three feature classes in Figure 5.8.

The housing in Figure 5.8 shows four big shrinkage pores (classified with the orange

widget in the transfer function; bottom left). We focus on the pore between the main

wall of the housing and a drilled hole (Figure 5.8(a)). For the impermeability of the

housing it is important that this void builds no connection between the inner and

outer part of the housing, which is the case in our example. By contrast the other

72

CHAPTER 5. QUANTIFICATION AND RESULTS 73

Figure 5.8: An application example for a defect analysis of a cast housing. To ensure the
closeness of different parts of the housing, it is important that voids do not connect them (a).
Otherwise they must not exceed a certain size (b), (d) and (e), or frequency (c) to keep the
part’s strength.

pore between the two aggregate sections in the center of the part (Figure 5.8(b)),

has no relevant influence on the part’s strength in this section and can be accepted.

73

CHAPTER 5. QUANTIFICATION AND RESULTS 74

The small finely distributed gas pores (the blue ones in Figure 5.8(c)) in that part

can also be accepted, as they do not reach the surface, where the fluids flow. The

measurements for the four orange features are shown in Table 5.10. These measure-

ments result from the feature table described in Section 4.2.4 which calculates the

values due to the classification in the feature size transfer function:

feature ID size [voxels] size [mm3] x/y/z pos. surface sx/sy/sz px/py/pz
45 4191 4191 159/314/149 4171 50/125/86 216/361/63

(Fig. 5.8(a))
386 4441 4441 380/214/263 4395 51/125/86 266/381/65

(Fig. 5.8(b))
86 3932 3932 223/182/175 3913 50/124/86 216/349/63

(Fig. 5.8(d))
1448 6411 6411 543/230/432 6141 53/125/86 437/935/81

(Fig. 5.8(e))

Table 5.10: The measurements for the four features classified by the orange widget in
Figure 5.8 are a quantification example following from the feature table described in
Section 4.2.4.

5.2.9 Cast Housing II

Figure 5.9 illustrates a part of another cast housing. For this casting the same rules

for specification must be fulfilled as already described in the previous Section 5.2.8.

In contrast to the cast housing from Figure 5.8, the classified voids have no signifi-

cant impact on the quality of the housing. Their quantification results are shown in

Figure 5.9: Another part of a cast housing where two feature size classes are visualized,
shown in the transfer function (top right).

74

CHAPTER 5. QUANTIFICATION AND RESULTS 75

Table 5.11:

Data set class feature count avg.vol. [voxels] % of part vol.
Cast small 103 233.5 0.019

Housing II med. 4 9429 0.028

Table 5.11: Quantification of the two selected feature classes of the casting in Figure 5.9.

5.3 Performance and Memory Usage

The following tables give an overview of the pre-computation times as well as frame

rates, memory size, and number of features for some example datasets described

in the previous sections. The performance has been measured using the following

system:

• Single processor PC, AMD Athlon 64 2.4GHz, 4GB

• GeForce 8800 GTX, 768MB

• Windows XP64

The first region growing step always consumes the most time.

Additional data needs to be computed (e.g., the standard deviation of the seed voxel

neighborhood), most voxels are considered as seeds, and regions are grown and

discarded if they become bigger than max featuresize. Consequently, all subsequent

time steps are much faster. Table 5.12 gives typical numbers for pre-computation

times, comparing the two region growing methods described in Section 3.6 for some

example data sets:

The bit masks maintained during region growing, described in Section 3.5.2, ensure

that many voxels are visited only once over time, which implies that the multi-pass

region growing performance of our approach is not much worse than computing

only a single region growing pass, even for many time steps.

Table 5.12 shows that region growing time not only depends on the size of the

data, but also on the number and character of the features grown. When comparing

75

CHAPTER 5. QUANTIFICATION AND RESULTS 76

Data Set Pre-comp. (1st, 2nd, 3rd..nth time step, overall for 16 steps), Method A||B
Cast Housing I 600 s 8.7 s 7-8 s 12.1 min 421 s 0.84 s 0.5-0.9 s 7.2 min

Golf Ball 198 s 3.8 s 3-4 s 4.2 min 447 s 7.2 s 5-6 s 8.9 min
RPTS 280 s 64.6 s 45-66 s 20.5 min 260 s 146 s 29-85 s 15.1 min

Asphalt Core 253 s 27.4 s 17-21 s 9.4 min 450 s 24 s 10-15 s 10.9 min

Table 5.12: Some example datasets, with typical pre-computation times (first and second
time step, range for 3rd+; and overall time for 16 time steps). The left four columns of pre-
processing use region growing method A, and the right four columns method B (Section 3.6).
The first step is the most expensive one; after the second step, computation times decrease
rapidly.

(a) Region Growing method A. (b) Region Growing method B.

Figure 5.10: Visualization of the pre-processing time for the example data sets from
Table 5.12. Region Growing method A was better applicable to the Cast Housing and the
RPTS. Region Growing method B led to better results for the Golf Ball and the Asphalt
Core.

the data sizes in Table 5.14 with the number of features in Table 5.13 and the

pre-computation time of the 3rd+ time steps in Table 5.12 we see that the duration

of the first time step strongly depends on the data size, while all following steps are

related to the actual number and shape of features. On the one hand this derives

from the boundary growing process which is done as a second pass at each time

step for each feature (described in Section 3.5.2) -consequently the computation

time increases with the number of features. On the other hand this derives from the

number of bits left unset in the checked mask (see Section 3.5.2) which depends

on the shape of the features. For example, although the cast housing dataset is

bigger, the overall pre-computation process for the RPTS takes nearly twice the

time. Figure 5.10 illustrates the impact of the two different region growing criteria

in Section 3.6. Whereas the cast housing and the RPTS (Figure 5.10(a)) need

the most pre-processing time using region growing method A, the Golf Ball and

the Asphalt Core have a higher pre-processing time when using region growing

76

CHAPTER 5. QUANTIFICATION AND RESULTS 77

method B (Figure 5.10(b)). These are also the region growing methods used for

the final visualization and quantification results above. The higher pre-processing

time denotes that the particular region growing criteria were able to identify more

features and were therefore better suitable for the respective dataset. To handle

different kinds of industry constructs, as shown in Section 5.2, it is important to

have the choice between two or more different region growing algorithms. It turned

out that region growing method B was better suitable for materials where inclusions

of a broad range of different density values occur. The Laser Build-up Welding

(described in Section 5.2.4) for example, contains different density classes among

their inclusions (shown in the transfer function in Figure 5.4). Whereas the region

growing method A was only able to classify features of the blue feature class, the

algorithm of method B detects all inclusions. Also for the Asphalt Core and the

Golf Ball, method B was much more suitable. On the other hand, region growing

method A yields generally better results for castings.

Table 5.13 lists the numbers of features for the respective pre-computation steps for

region growing method A (Section 3.6.1) for some example data sets.

Data Set Num. features (1st, 2nd, 3rd, and 16th time step)
Cast Housing I 1936 1953 1968 2646

Golf Ball 1177 1212 1243 1608
RPTS 2620 2633 2640 3238

Asphalt Core 20874 20889 20900 20914

Table 5.13: Some example datasets, with the number of features resulting from region
growing method A at each time step respectively.

Volume rendering is fast, as only a few additional operations compared to regu-

lar volume rendering have to be executed per fragment (see the pseudo code in

Section 4.3). Table 5.14 also lists the memory usage of the major additional data

structures computed, i.e., the feature volume (first value) and the feature growth

table for 16 time steps (second value):

Data Set Resolution Feat.-Mem. Rendering
Cast Housing 667x465x512 606MB+128KB 16-22 fps

Golf Ball 512x512x256 256MB+128KB 22-28 fps
RPTS 373x377x512 275MB+192KB 20-23 fps

Asphalt Core 512x512x256 256MB+1.3MB 20-40 fps

Table 5.14: The example data sets used above, with typical volume rendering frame rates
(viewport 512x512) and the amount of memory used in the GPU.

77

CHAPTER 5. QUANTIFICATION AND RESULTS 78

For rendering, only a subset of the entire feature volume needs to be in GPU

memory due to texture bricking (see Section 4.3.1), whereas the feature growth

table is always resident in texture memory in its entirety. The size of the feature

growth table is dependent of the total number of features after the whole growing

process (Table 5.13; right column).

78

Chapter 6

Conclusion and Future Work

This chapter draws the conclusions from the main contributions of this thesis.

Furthermore it presents some suggestions for future work, like the additional em-

ployment of morphological operations, involvement of 3D measurement tools or

extensions to the existing region growing methods.

6.1 Conclusion

This thesis presented an approach for interactive exploration of features in industrial

CT volumes that helps to bridge the gap between visualization and feature detection.

Given the complexity of feature and defect detection, and the wide variety of data

and material properties, we do not claim that our approach solves all challenges in

this area. However, it enables a powerful interactive workflow that tightly couples

visualization and feature detection, by building on region growing, and allows

for a full exploration of the volume with no or almost no beforehand parameter

specification. The result of the exploration process is a classification of all feature

classes of interest using transfer functions, which can immediately be used to

quantify the corresponding features. This implies that subsequent quantification

is visualization-driven as well, i.e., quantification is performed exactly on the

region of interest the user has chosen to visualize. This empowers users who are

experienced domain experts to decide on their own and make informed decisions for

quantification, instead of relying on the result of a given set of parameters, which is

79

CHAPTER 6. CONCLUSION AND FUTURE WORK 80

the approach employed by systems currently used in practice.

Chapter 5 demonstrates that this implementation is applicable for varying data

originating from industry. We believe that the concept presented in this thesis is very

powerful, but it is also only one step towards driving defect and feature detection by

visualization and bringing visualization methods and segmentation closer together.

There are many possibilities that can be explored in the future, some of them are

introduced below. We are also planning to extend the possibilities for quantification,

specifically with respect to global measures such as porosity. We would like to

investigate adaptive sampling schemes of the parameter (time) domain, as well as

semi-automatic TF generation in our new 3D TF domain. Additionally, investigating

how the quality of different region growing approaches is affected by choosing

different parameters for time parameter t, would be worthwile.

6.2 Future Work

The application presented in this thesis constitutes the basis for enhancements in

many directions. On one hand the feature size transfer function provides a couple

of new combination possibilities, where, for example, morphological operations

can be applied on the already segmented features for better exploration possibilities.

On the other hand, the quantification is still in its infancy and we are planning to

extend it, specifically with respect to global measures such as porosity or different

measurement tools.

Morphological Operations

Mathematical morphology is based on algebra of non-linear operators, operating on

object shape with point sets of any dimensions as described in Castleman [1996]. It

is not a segmentation method itself but might help to classify pre-segmented objects

by putting them through a sequence of set transformations. This is useful when

features of the same density but, e.g., with different shape, should be quantified

separately. Soroushian and Elzafraney [2005] propose a couple of morphological

operations to identify cracks and voids in concrete, for 2D as well as for 3D

microstructural images captured by environmental scanning electron and fluorescent

microscopy. Some of these operations in combination with our feature size approach

may offer new possibilities for multi-dimensional transfer functions.

80

CHAPTER 6. CONCLUSION AND FUTURE WORK 81

Adaptive sampling of the Time Domain

As already explained in Section 3.5.2 the result of region growing is tracked and

recorded along an entire parameter range. Therefore, the time parameter t is stepped

from a start time t0 to a maximum time tmax in a specific number of equidistant

steps where the region growing is recalculated no matter how many modifications

take place. Therefore, we want to employ adaptive sampling of the time domain

where we first “scan” the entire parameter space with just a few time steps to obtain

the “important” sections in time where many changes occur. In such sections we

adaptively refine the stepsize for further pre-processing iterations whereas we can

avoid nonessential calculations in ranges where no changes take place. Thus, we

can improve the pre-processing time while a better exploration of feature classes is

possible.

Advanced Rendering over Time

For the results shown above (Section 5.2) one specific timestep was sufficient to

derive the desired classification. But with a wider parameter range, using adaptive

sampling, the graduation in time becomes finer in places and features of different

density may appear at completely different timesteps. Consequently, a single

timestep tx is no longer sufficient for all kind of feature classes. Therefore, we

need to expand the feature rendering over the whole 3D feature size TF range. A

semi-automatic TF generation would help to improve exploration.

Integration of Measurement Tools

As already explained in Section 5.2.8, the shape, size, orientation, and amount of

inclusions have different influence on the quality of the castings. Therefore, espe-

cially in critical regions measurements of their, e.g., geometric behavior, distance

to each other, orientation, etc., is of great interest. Preim et al. [2002] propose a

number of tools for direct-manipulative measurements where special attention is

paid on the optimal legibility of the parameters and providing enough depth cues

for interaction in 3D. The following measurement tools are described in design and

implementation for 3D volumes in combination with the 2D views of a slice viewer:

• Distance Lines: Distance lines are used to measure distances between objects

and extents of objects. When segmented objects are available, snapping can

be enabled to attract the endpoint by the surface of an object for easier

81

CHAPTER 6. CONCLUSION AND FUTURE WORK 82

positioning.

• Interactive Rulers: Rulers are also useful for estimating distances, but rather

to roughly approximate the magnitude of structures, like a scale as used in

maps.

• Angular Measurements: Angular measurements are not only useful in

medical applications to define angles between anatomical structures but also

suitable in NDT applications. To ease the assessment of the size of the angles,

a portion of a circle is used as orientation aid and to communicate the extent

of the angle.

• Volume Approximation: Volumes of interest are enclosed by a simple geo-

metric shape, so the computation of voxels is restricted to a bounding volume.

The structures inside this bounding volume which are not relevant for the size

measurement are then suppressed by a special transfer function.

• Automatic Definition of Object Extents: To calculate the extent of an object

principal component analysis (PCA) is used. Subsequently it can be visualized

with three orthogonal distance lines derived from the PCA.

• Automatic Definition of Angles between Objects: For the automatic calcu-

lation of an angle between two elongated objects also PCA is used. Therefore,

it is sufficient to know the eigenvector of the largest eigenvalue of both

objects.

Aditionally, an automatic 3D measurement approach for already segmented objects

is proposed, which could be applied to the result of the pre-computed region growing

(see Section 3.5.2) to obtain better quantification results.

Region Growing

Our application offers two different simple region growing methods as a proof-

of-concept implementation for its interactive approach. We would like to explore

improved region growing options (see Section 2.3) in the future.

82

Acknowledgments

This work has been carried out at the VRVis Research Center for Virtual Reality

and Visualization in Vienna (http://www.vrvis.at), and was funded by the FFG.

Thanks to the VRVis for providing me a workplace and for the really nice working

atmosphere.

I would like to thank everyone who made this work possible. First and foremost, I

would like to thank my supervisor Markus Hadwiger for supporting me and for so

many things I can’t all mention here – so thank you for everything! Most of all I

want to thank him for the possibility to continue my work by offering me a PhD

position.

I want to thank Meister Eduard Gröller for his helpful advices and proof reading

this thesis.

I want to thank Georg Geier and Daniel Habe, our project partners from the ÖGI, for

the great cooperation, for providing such cool data sets, the interesting discussions

and the productive workshops ;-). Special thanks to Georg who helped me with the

description and analysis of the data.

I also want to thank Johanna Beyer and Florian Schulze for all helpful advices and

especially for the nice time. Thanks Johanna for proof reading this thesis.

I want to thank my family, for their financial aid and mental support during the

whole studies, and last but not least Peter for always supporting me and everything

else.

So, thank you everybody and now let’s go for a beer :-)!

i

References

ADAMS, R., AND BISCHOF, L. 1994. Seeded region growing. IEEE Trans. Pattern

Anal. Mach. Intell. 16, 6, 641–647.

BAJAJ, C., PASCUCCI, V., AND SCHIKORE, D. 1997. The contour spectrum. In

Proceedings of IEEE Visualization, 167–173.

BEYER, J., HADWIGER, M., MÖLLER, T., AND FRITZ, L. 2008. Smooth

mixed-resolution gpu-based raycasting. In IEEE/EG Symposium on Volume and

Point-Based Graphics 2008, 163–170.

BLINN, J. F. 1982. Light reflection functions for simulation of clouds and dusty

surfaces. In SIGGRAPH ’82: Proceedings of the 9th annual conference on

Computer graphics and interactive techniques, ACM Press, New York, NY, USA,

21–29.

BORDIGNON, A. L., CASTRO, R., LOPES, H., LEWINER, T., AND TAVARES, G.

2006. Exploratory visualization based on multidimensional transfer functions

and star coordinates. In SIBGRAPI, 273–280.

BRUCKNER, S., AND GRÖLLER, M. E. 2007. Style transfer functions for illustra-

tive volume rendering. Computer Graphics Forum 26, 3, 715–724.

CASTLEMAN, K. R. 1996. Digital Image Processing. Prentice Hall Press.

CHAN, M.-Y., WU, Y., QU, H., CHUNG, A. C. S., AND WONG, W. C. K.

2006. Mip-guided vascular image visualization with multi-dimensional transfer

function. In Computer Graphics International, Springer, T. Nishita, Q. Peng, and

H.-P. Seidel, Eds., vol. 4035 of Lecture Notes in Computer Science, 372–384.

COHEN, M. F., PAINTER, J., MEHTA, M., AND MA, K.-L. 1992. Volume

seedlings. In Proc. ACM Symp. on Interactive 3D Graphics, 139–145.

COPTY, N., RANKA, S., FOX, G., AND SHANKAR, R. V. 1994. A data parallel

algorithm for solving the region growing problem on the connection machine.

Journal of Parallel and Distributed Computing 21, 1, 160–168.

ENGEL, K., KRAUS, M., AND ERTL, T. 2001. High-quality pre-integrated volume

rendering using hardware-accelerated pixel shading. In HWWS ’01: Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware,

ACM Press, New York, NY, USA, 9–16.

ENGEL, K., HADWIGER, M., KNISS, J. M., LEFOHN, A. E., SALAMA, C. R.,

AND WEISKOPF, D. 2004. Real-time volume graphics. Course Notes for Course

#28 at SIGGRAPH 2004. SIGGRAPH 2004.

ENGEL, K., HADWIGER, M., KNISS, J. M., REZK-SALAMA, C., AND WEISKOPF,

D. 2006. Real-Time Volume Graphics. A K Peters, Wellesley, Mass.

FIORENTINI, S., LARRABIDE, I., AND VNERE, M. J. 2003. A simple 3d image

segmentation technique over medical data. In simposio de informaica y salud,

Buenos Aires Argentina, 21–26.

GEIER, G., HADWIGER, M., HÖLLT, T., FRITZ, L., AND PABEL, T. 2008. Inter-

aktive Exploration und Quantifizierung von Ungänzen in komplexen Bauteilen.

In Proceedings of Industrielle Computertomografie (CT Tagung Wels), 103–108.

GEIER, G., PABEL, T., HADWIGER, M., HÖLLT, T., AND FRITZ, L. 2008.

Interaktive Exploration von multiphasigen, mineralischen Werkstoffen mittels

Computertomographie. In Proceedings of DACH-Tagung Deutsche Gesellschaft

fuer Zerstörungsfreie Prüfung.

GUTHE, S., WAND, M., GONSER, J., AND STRASSER, W. 2002. Interactive

Rendering of Large Volume Data Sets. In Proceedings of IEEE Visualization,

53–60.

HADWIGER, M., SIGG, C., SCHARSACH, H., BÜHLER, K., AND GROSS, M. 2005.

Real-time ray-casting and advanced shading of discrete isosurfaces. Computer

Graphics Forum 24, 3, 303–312.

HADWIGER, M., FRITZ, L., REZK-SALAMA, C., HÖLLT, T., GEIER, G., AND

PABEL, T. 2008. Interactive volume exploration for feature detection and

quantification in industrial ct data. IEEE Transactions on Visualization and

Computer Graphics 14, 5.

HEINZL, C., KASTNER, J., AND GRÖLLER, E. 2007. Surface extraction from

multi-material components for metrology using dual energy ct. IEEE Transactions

on Visualization and Computer Graphics 13, 6, 1520–1527.

HLADUVKA, J., KONIG, A., AND GRÖLLER, E. 2000. Curvature-based transfer

functions for direct volume rendering. In Proceedings of Spring Conference on

Computer Graphics and its Applications(SCCG), 58–65.

HÖLLT, T. 2007. GPU-Based Direct Volume Rendering of Industrial CT Data.

Tech. rep., VRVis Research Center und Universität Koblenz-Landau.

HOROWITZ, S., AND PAVLIDIS, T. 1974. Picture segmentation by a directed

split-and-merge procedure. In Proc. Pattern Recognition, 424–433.

HUANG, R., AND MA, K.-L. 2003. Rgvis: Region growing based techniques

for volume visualization. In Proceedings of Pacific Graphics 2003 Conference,

355–363.

HUANG, R., MA, K.-L., MCCORMICK, P. S., AND WARD, W. 2003. Visualizing

industrial ct volume data for nondestructive testing applications. In Proceedings

of IEEE Visualization, 547–554.

KANDOGAN, E. 2001. Visualizing multi-dimensional clusters, trends, and outliers

using star coordinates. In Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining, 107–116.

KETCHAM, R. A., AND CARLSON, W. D. 2001. Acquisition, optimization

and interpretation of x-ray computed tomographic imagery: applications to the

geosciences. In Computers and Geosciences, 381–400.

KHAN, G. N., AND GILLIES, D. F. 1992. Parallel-hierarchical image partitioning

and region extraction. In Computer Vision and Image Processing, 123–140.

KINDLMANN, G., AND DURKIN, J. W. 1998. Semi-automatic generation of

transfer functions for direct volume rendering. In VolVis98, 79–86.

KINDLMANN, G., WHITAKER, R., TASDIZEN, T., AND MOLLER, T. 2003.

Curvature-based transfer functions for direct volume rendering: methods and

applications. In Proceedings of IEEE Visualization, 513–520.

KNISS, J., KINDLMANN, G., AND HANSEN, C. 2001. Interactive volume rendering

using multi-dimensional transfer functions and direct manipulation widgets. In

Proceedings of IEEE Visualization, 255–262.

KRÜGER, J., AND WESTERMANN, R. 2003. Acceleration techniques for GPU-

based volume rendering. In Proceedings of IEEE Visualization, 287–292.

LEILA, D., NACER, K., AND MOHAMED, B. 2008. Image segmentation by

self-organised region growing. Computer Information Systems and Industrial

Management Applications, 171–176.

LEVOY, M. 1988. Display of surfaces from volume data. IEEE Computer Graphics

and Applications 8, 3, 29–37.

LIN, Z., JIN, J. S., AND TALBOT, H. 2001. Unseeded region growing for 3d image

segmentation. In Selected papers from Pan-Sydney Area Workshop on Visual

Information Processing (VIP2000), ACS, Sydney, Australia, P. Eades and J. Jin,

Eds., vol. 2 of CRPIT, 31–37.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes: A high resolution

3d surface construction algorithm. In SIGGRAPH ’87: Proceedings of the 14th

annual conference on Computer graphics and interactive techniques, ACM Press,

New York, NY, USA, 163–169.

LUM, E. B., AND MA, K.-L. 2004. Lighting transfer functions using gradient

aligned sampling. In Proceedings of IEEE Visualization, 289–296.

LUM, E. B., MA, K. L., AND CLYNE, J. 2001. Texture Hardware Assisted

Rendering of Time-Varying Volume Data. In Proceedings of IEEE Visualization,

263–270.

LUNDSTRÖM, C., LJUNG, P., AND YNNERMAN, A. 2005. Extending and

simplifying transfer function design in medical volume rendering using local

histograms. In Proceedings of EuroVis, 263–270.

MAX, N. L. 1995. Optical Models for Direct Volume Rendering. IEEE Transac-

tions on Visualization and Computer Graphics 1, 2, 99–108.

NIER, E., AND ROTH, H. 2003. Innere Strukturen sichtbar machen. Tech. rep.,

Phoenix-xray.

ÖGI, 2008. The austrian foundry research institute. http://www.ogi.at/

index_en.html.

PFISTER, H., HARDENBERGH, J., KNITTEL, J., LAUER, H., AND SEILER, L.

1999. The VolumePro real-time ray-casting system. In SIGGRAPH ’99: Pro-

ceedings of the 26th annual conference on Computer graphics and interactive

techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,

251–260.

PFISTER, H., LORENSEN, W. E., BAJAJ, C. L., KINDLMANN, G. L.,

SCHROEDER, W. J., AVILA, L. S., MARTIN, K., MACHIRAJU, R., AND LEE, J.

http://www.ogi.at/index_en.html
http://www.ogi.at/index_en.html

2001. The transfer function bake-off. IEEE Computer Graphics and Applications

21, 3, 16–22.

PHONG, B. T. 1975. Illumination for computer generated pictures. Commun. ACM

18, 6, 311–317.

POHLE, R., AND TOENNIES, K. D. 2001. A new approach for model-based

adaptive region growing in medical image analysis. Lecture Notes in Computer

Science 2124, 238–246.

PREIM, B., TIETJEN, C., SPINDLER, W., AND PEITGEN, H. O. 2002. Integration

of measurement tools in medical 3d visualizations. In VIS ’02: Proceedings of

the conference on Visualization ’02, IEEE Computer Society, Washington, DC,

USA, 21–28.

REINHARD, C., POLIWODA, C., GUENTER, T., ROEMER, W., MAASS, S., AND

GOSCH, C. 2004. Modern voxel based data and geometry analysis software tools

for industrial ct. Tech. rep., Volume Graphics GmbH, Heidelberg, Germany.

REZK-SALAMA, A., ENGEL, K., BAUER, M., GREINER, G., AND ERTL, T.

2000. Interactive volume rendering on standard pc graphics hardware using multi-

textures and multi-stage rasterization. In Proceedings Eurographics/SIGGRAPH

Workshop on Graphics Hardware 2000 (HWWS00). Best Paper Award.

REZK-SALAMA, C., KELLER, M., AND KOHLMANN, P. 2006. High-level user

interfaces for transfer function design with semantics. IEEE Transactions on

Visualization and Computer Graphics 12, 5, 1021–1028.

ROETTGER, S., GUTHE, S., WEISKOPF, D., ERTL, T., AND STRASSER, W., 2003.

Smart hardware-accelerated volume rendering.

SCHARSACH, H., HADWIGER, M., NEUBAUER, A., WOLFSBERGER, S., AND

BÜHLER, K. 2006. Perspective isosurface and direct volume rendering for virtual

endoscopy applications. In EuroVis, 315–322.

SELLE, D., PREIM, B., SCHENK, A., AND PEITGEN, H. 2002. Analysis of

vasculature for liver surgical planning. In IEEE Transactions on Medical Imaging,

vol. 21, 1344–1357.

ŠEREDA, P., BARTROLI, A. V., SERLIE, I. W., AND GERRITSEN, F. A. 2006.

Visualization of boundaries in volumetric data sets using LH histograms. IEEE

Transactions on Visualization and Computer Graphics 12, 2, 208–218.

ŠEREDA, P., 2004. The transfer function design for volume data rendering.

SHREINER, D., WOO, M., NEIDER, J., AND DAVIS, T. 2005. OpenGL pro-

gramming guide: the official guide to learning OpenGL, version 2, fifth ed.

Addison-Wesley, Reading, MA, USA.

SMITH, S. W. 1997. The scientist and engineer’s guide to digital signal processing.

California Technical Publishing, San Diego, CA, USA.

SONKA, M., HLAVAC, V., AND BOYLE, R. 1993. Image Processing, Analysis,

and Machine Vision. Chapman and Hall Computing.

SOROUSHIAN, P., AND ELZAFRANEY, M. 2005. Morphological operations, planar

mathematical formulations, and stereological interpretations for automated image

analysis of concrete microstructure. Cement and concrete composites 27, 7,

823–833.

STEGMAIER, S., STRENGERT, M., KLEIN, T., AND ERTL, T. 2005. A simple and

flexible volume rendering framework for graphics-hardware-based raycasting. In

Volume Graphics, 187–195.

TAKAHASHI, S., TAKESHIMA, Y., AND FUJISHIRO, I. 2004. Topological volume

skeletonization and its application to transfer function design. Graph. Models 66,

1, 24–49.

TAPPENBECK, A., PREIM, B., AND DICKEN, V. 2005. Distanzabhängige Trans-

ferfunktionen für die medizinische Volumenvisualisierung. In Bildverarbeitung

für die Medizin, 307–311.

TENGINAKAI, S., LEE, J., AND MACHIRAJU, R. 2001. Salient iso-surface

detection with model-independent statistical signatures. In Proceedings of IEEE

Visualization, 231–238.

THÉVENAZ, P., AND UNSER, M. 2003. Precision isosurface rendering of 3-D

image data. IEEE Transactions on Image Processing 12, 7 (July), 764–775.

TZENG, F.-Y., LUM, E. B., AND MA, K.-L. 2003. A novel interface for higher-

dimensional classification of volume data. In Proceedings of IEEE Visualization,

66–73.

VAN KREVELD, M., VAN OOSTRUM, R., BAJAJ, C., PASCUCCI, V., AND

SCHIKORE, D. 1997. Contour trees and small seed sets for isosurface traversal.

In Proc. ACM Symp. on Computational Geometry, 212–220.

VGSTUDIOMAX, 2008. Volume graphics–vgstudio max. http://www.

volumegraphics.com.

WILLEBEEK-LEMAIR, M., AND REEVES, A. 1990. Solving nonuniform problems

on simd computers: Case study on region growing. Journal of Parallel Distributed

Computing 8, 135–149.

WILSON, O., GELDER, A. V., AND WILHELMS, J. 1994. Direct Volume Rendering

via 3D-textures. Tech. Rep. UCSC-CRL-94-19, UCSC.

ZHOU, F. J., DÖRING, A., AND TÖNNIES, K. D. 2004. Distance transfer function

based rendering. Tech. rep., International Telegraph and Telephone Consultative

Committee.

ZHU, S. C., AND YUILLE, A. 1996. Region competition: Unifying snakes, region

growing, and bayes/mdl for multiband image segmentation. IEEE Transactions

on Pattern Analysis and Machine Intelligence 18, 884–900.

ZUCKER, S. 1976. Region growing: Childhood and adolescence. Computer

Graphics and Image Processing 5, 382–399.

http://www.volumegraphics.com
http://www.volumegraphics.com

	Introduction
	Motivation
	Problem Statement and Objectives
	Organization and Pipeline Overview

	Fundamentals and State of the Art
	Industrial CT
	GPU-Based Direct Volume Rendering
	Region Growing
	Multi-Dimensional Transfer Functions
	3D Visualization of Industrial CT Data

	Pre-Computation
	Parameter-Settings
	Feature-Size Curves
	Feature Volume
	Feature-Growth Table
	Storing the Feature-Growth Table
	Merging Features

	Multi-pass Region Growing and Seed Selection
	Culling
	Region Growing

	Region Growing Criteria
	Region growing method A
	Region growing method B

	Statistical Feature Properties

	Exploration
	Exploring Feature Classes
	Feature Histograms
	3D Transfer Functions and 2.5D Widgets

	Exploring Individual Features
	Feature Picking
	Feature Color Coding
	Removal of Artifacts
	Feature Table
	Optional Slice Plane

	Volume Rendering
	Brick Caching
	Rendering

	Quantification and Results
	Feature Quantification
	Results
	Reduced-Pressure-Test Sample
	Asphalt Core
	Golf Ball
	Laser Build-up Welding
	Refractory Material
	Isolation Material
	Aluminum Tensile Test Sample
	Cast Housing I
	Cast Housing II

	Performance and Memory Usage

	Conclusion and Future Work
	Conclusion
	Future Work

	Acknowledgments
	Bibliography

