Information
- Publication Type: Journal Paper with Conference Talk
- Workgroup(s)/Project(s):
- Date: December 2014
- Journal: IEEE Transactions on Visualization and Computer Graphics
- Volume: 20
- Number: 12
- Location: Paris, France
- Lecturer: Manuela Waldner
- Event: IEEE VIS 2014
- Conference date: 9. November 2014 – 14. November 2014
- Pages: 2456 – 2465
- Keywords: Narrative Visualization, Flicker, Visual Attention
Abstract
Focus+context techniques provide visual guidance in visualizations by giving strong visual prominence to elements of interest while the context is suppressed. However, finding a visual feature to enhance for the focus to pop out from its context in a large dynamic scene, while leading to minimal visual deformation and subjective disturbance, is challenging. This paper proposes Attractive Flicker, a novel technique for visual guidance in dynamic narrative visualizations. We first show that flicker is a strong visual attractor in the entire visual field, without distorting, suppressing, or adding any scene elements. The novel aspect of our Attractive Flicker technique is that it consists of two signal stages: The first “orientation stage” is a short but intensive flicker stimulus to attract the attention to elements of interest. Subsequently, the intensive flicker is reduced to a minimally disturbing luminance oscillation (“engagement stage”) as visual support to keep track of the focus elements. To find a good trade-off between attraction effectiveness and subjective annoyance caused by flicker, we conducted two perceptual studies to find suitable signal parameters. We showcase Attractive Flicker with the parameters obtained from the perceptual statistics in a study of molecular interactions. With Attractive Flicker, users were able to easily follow the narrative of the visualization on a large display, while the flickering of focus elements was not disturbing when observing the context.Additional Files and Images
Additional images and videos
molecularScene:
Screenshot of the large molecular scene used in the final experiment
Additional files
Weblinks
BibTeX
@article{waldner-2014-af, title = " Attractive Flicker: Guiding Attention in Dynamic Narrative Visualizations", author = "Manuela Waldner and Mathieu Le Muzic and Matthias Bernhard and Werner Purgathofer and Ivan Viola", year = "2014", abstract = "Focus+context techniques provide visual guidance in visualizations by giving strong visual prominence to elements of interest while the context is suppressed. However, finding a visual feature to enhance for the focus to pop out from its context in a large dynamic scene, while leading to minimal visual deformation and subjective disturbance, is challenging. This paper proposes Attractive Flicker, a novel technique for visual guidance in dynamic narrative visualizations. We first show that flicker is a strong visual attractor in the entire visual field, without distorting, suppressing, or adding any scene elements. The novel aspect of our Attractive Flicker technique is that it consists of two signal stages: The first “orientation stage” is a short but intensive flicker stimulus to attract the attention to elements of interest. Subsequently, the intensive flicker is reduced to a minimally disturbing luminance oscillation (“engagement stage”) as visual support to keep track of the focus elements. To find a good trade-off between attraction effectiveness and subjective annoyance caused by flicker, we conducted two perceptual studies to find suitable signal parameters. We showcase Attractive Flicker with the parameters obtained from the perceptual statistics in a study of molecular interactions. With Attractive Flicker, users were able to easily follow the narrative of the visualization on a large display, while the flickering of focus elements was not disturbing when observing the context.", month = dec, journal = "IEEE Transactions on Visualization and Computer Graphics", volume = "20", number = "12", pages = "2456--2465", keywords = "Narrative Visualization, Flicker, Visual Attention", URL = "https://www.cg.tuwien.ac.at/research/publications/2014/waldner-2014-af/", }