
Transfer Function Widget for
Tri-Modal Volume Exploration

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Lucas da Cunha Melo
Matrikelnummer 01429462

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Univ.-Doz. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Dipl.-Ing. (FH) Dr. Christoph Heinzl

Dipl.-Ing. Johannes Weissenböck, BSc

Wien, 6. November 2018
Lucas da Cunha Melo Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Transfer Function Widget for
Tri-Modal Volume Exploration

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Lucas da Cunha Melo
Registration Number 01429462

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Univ.-Doz. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Dipl.-Ing. (FH) Dr. Christoph Heinzl

Dipl.-Ing. Johannes Weissenböck, BSc

Vienna, 6th November, 2018
Lucas da Cunha Melo Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Lucas da Cunha Melo
Guntherstraße 13/20
1150 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 6. November 2018
Lucas da Cunha Melo

v





Acknowledgements

To the Vienna University of Technology for providing me with a good academic envi-
ronment. To the supervisors of this work for helping me give my best without losing
motivation. Christoph Heinzl for the guidance and lessons throughout the development
of the work presented here. Johannes Weissenböck for all the advice, selflessness and
availability to hear and answer my questions. To all friends whose collaboration made
the past years a much smoother and more exciting experience. Parnia Ardakani for her
love and support, no matter how tough things got. À minha avó Maria José das Neves
Welkovic e, principalmente, aos meus pais Carlos Henrique da Cunha Melo e Welika
Welkovic da Cunha Melo pelo constante amor, apoio e educação ao longo da minha vida,
sem os quais esta experiência sequer teria sido possível.

vii





Kurzfassung

Volumetrische Visualisierung ist ein unverzichtbares Werkzeug in medizinischen Stu-
dien und Materialwissenschaften, da sie die Analyse und Untersuchung der inneren
Struktur von Objekten ermöglicht. Wegen der Einführung neuer Geräten und Techniken
werden die Datensätze zunehmend komplexer, sodass es in der Materialanalyse immer
häufiger wird, mit drei Modalitäten gleichzeitig umzugehen. Beispielsweise kann ein
einzelner industrieller Computertomographiescan eines Objekts Absorptionskontrast-,
Differenzphasenkontrast- und Dunkelfeldkontrastbilder (Modalitäten) ausgeben. Moder-
ne Software-Lösungen kommen jedoch mit diesen Fortschritten ins Hintertreffen, da
immer noch keine Applikationen für die Verwendung dieser neuen Anwendungsfälle
zur Verfügung steht. Ziel dieser Bachelorarbeit ist es, die Machbarkeit einer Benutze-
roberfläche für eine Transferfunktion für tri-modale Datensätze zu testen, wobei der
Fokus auf der Benutzbarkeit liegt und die Anforderungen der Materialanalyse berück-
sichtigt werden. Der Entwicklungsprozess wird von den ersten Konzepten bis hin zu
einem Software-Prototyp beschrieben und die resultierende Softwarelösung vorgestellt.
Diese wurde als Module für open_iA entwickelt, eine Anwendung für visuelle Analyse
und volumetrische Verarbeitung. Das Werkzeug verwendet für jede Modalität die stan-
dardmäßige 1D-Farb-Opazitäts-Transferfunktion zusammen mit einer auf baryzentrische
Koordinaten basierenden Methode, um die drei Modalitäten miteinander zu vermischen.
Für die Modalitäten eines industriellen Computertomographie-Datensatzes (Absorptions-
kontrast, differentieller Phasenkontrast und Dunkelfeldkontrast) kann das Werkzeug die
Volumenexploration erfolgreich beschleunigen und erleichtern.
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Abstract

Volumetric visualization is an essential tool in medical studies and materials science,
as it enables the analysis and exploration of the inner structure of objects. With the
introduction of new equipment and techniques, the datasets become more complex,
making it an increasingly common task in material analysis to handle three modalities
at once. For instance, a single industrial computed-tomography scan of an object can
output absorption contrast, differential phase contrast and dark-field contrast volumes
(modalities). However, modern software is falling behind with these advancements, as they
still do not provide dedicated tools for this use. This thesis aims to test the feasibility of
a transfer function user interface for tri-modal datasets, with a focus on usability, taking
into consideration the needs of material analysis experts. The development process (from
the initial concepts to a software prototype) is described, and the resulting tool, developed
as a module for open_iA (a visual analysis and volumetric processing application), is
presented. It uses the standard 1D color-opacity transfer function for each modality
together with a barycentric coordinates method to blend the three modalities together.
For the modalities of an industrial computed-tomography dataset (absorption contrast,
differential phase contrast and dark-field contrast), the tool can successfully accelerate
and facilitate volume exploration.
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CHAPTER 1
Introduction

Volumetric visualization is an essential tool in medical studies and materials science.
Being able to visualize the inside of structures, dynamically showing what is of interest
(e.g., bones in a computed tomography scan) and hiding the rest (e.g., organs and skin)
makes this kind of visualization a powerful tool for data exploration. Transfer Functions
(TFs) are at the core of this capability, as they allow the user to assign a color and opacity
to a voxel based on its value (be it scalar or multivariate).

As new extraction methods and equipment emerge, more profound analysis of volumetric
data is made possible. For instance, SkyScan 1294 [Sky] uses X-rays to scan objects
and construct three separate volumes (tri-dimensional images): absorption contrast,
differential phase contrast and dark-field contrast.

Each of these volumes (modalities) is sensitive to different features of the scanned
specimen, providing additional information about it. However, despite the available
scanning equipment and techniques, modern visualization software do not provide an
efficient way to explore multimodal volumetric datasets. VGSTUDIO MAX [VGS],
Amira-Avizo [Ami], MeVisLab [MeV], none contain dedicated tools for multimodal
volume exploration.

A scalar (uni-variate) volume contains a single variable per voxel. All three volumes
constructed with SkyScan 1294 [Sky], for instance, are uni-variate. Moreover, there exist
datasets that contain many variables per voxel (multivariate), such as meteorological
datasets, which can have data about, for example, pressure, temperature or wind speed.

There has been scientific effort to design a TF widget for bi-variate [KKH02], tri-variate
[ZSH12] and even n-variate [ZK10] [GXY11] datasets. Ljung et al. [LKG+16] use
dimensionality (among five other aspects) to classify TFs in a state-of-the-art report,
showing that special attention and understanding is required for a proper multidimensional
TF design.
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1. Introduction

However, the dimensionality alone is not sufficient to define a multimodal TF. Methods
that work well for multivariate datasets do not necessarily deliver satisfactory results when
applied to multimodal datasets. Moreover, although TF methods developed explicitly for
multimodal datasets are not a novel idea [BRB+13], to the knowledge of this author, a
tri-modal TF design focusing on data exploration is new territory.

This thesis aims to test the feasibility of such a design, presenting an interface that
combines three TFs using barycentric coordinates, avoiding the need to continually switch
between individual TFs to achieve the desired result. Especial focus is given to the
usability of the tool, taking into consideration the needs of material experts currently
working with tri-modal datasets. The developed design is implemented as a module in
open_iA [ope].

This thesis is structured as follows: in Chapter 2, an overview of the related work is
given, as well as a brief discussion of their applicability to this thesis. In Chapter 3,
the conceptual phase is gone through, where the widget’s design process is discussed.
Next, the prototyping phase of the development is described in Chapter 4, where a
software prototype is presented. In Chapter 5, the implementation of the selected design
in open_iA is described. Chapter 6 presents the results achieved with the developed
interface, including a case study based on a common material analysis scenario, and,
finally, in Chapter 7, a discussion is provided on the findings, the conclusions are drawn,
and the planned future work is described.
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CHAPTER 2
State of the art

An essential aspect to consider when designing a multimodal TF is dimensionality, as the
addition of modalities inherently results in the addition of new dimensions. Ljung et al.
[LKG+16] provide a state-of-the-art report on the research surrounding TFs, covering the
definition and basic concepts, as well as more specific aspects, classified in six categories
(amongst them, dimensionality). The report also stresses that a number of dimensions
higher than two poses challenges concerning the user interface, assuming that the display
medium is limited to two dimensions (e.g., a computer monitor).

For that reason, whenever faced with multivariate datasets, researchers have attempted
to present them in lower dimensions, aiming to provide increased usability of the TF
editor. The standard color-opacity widget (containing a histogram of attribute data
on the background for context) enables precise editing of a 1D TF; however, it already
requires two degrees of freedom (and, consequently, two dimensions) to achieve that.

One attempt of dimension reduction for an user interface is presented by Kniss et al.
[KKH02], where the gradient magnitude of each scalar point is used as a second property,
assigning it to the vertical axis of the TF editor while maintaining the data value on the
horizontal axis, shown in Figure 2.1. The gradient magnitude is indicated by f ′, as it is
the first derivative of the scalar function f . Materials A, B, and C present in the volume
(circulated) have low gradient magnitude values, as they are relatively homogeneous.
Boundaries D, E and F (marked with arches) between materials have higher gradient
magnitude values.

A drawback of this method compared to the classic 1D TF is the lack of precision when
manipulating color and opacity. Whereas the color is set individually per control point
in the 1D TF and the control point’s height defines the opacity, the gradient magnitude
2D TF [KKH02] requires regions (boxes and pyramids) to be defined. The user assigns
the color per region and the opacity is set automatically based on the defined shape.
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2. State of the art

Figure 2.1: By using the gradient magnitufe f ′, homogeneous materials (circles A, B, C)
can be separated from transitional regions (arches D, E, F). Reprinted from [KKH02].

Another concept presented by Ljung et al. [LKG+16] is that of a separable or non-
separable TF. Non-separable 2D TFs, such as the one presented by Kniss et al. [KKH02],
are better at classifying features compared to separable 2D TFs. They also require the
storage or representation of a full 2D function, meaning that keeping track of a 2D array
or texture is usually required [LKG+16], whereas separable 2D TFs are defined by a
combination of two separate 1D TFs.

Stretching the gradient magnitude TF concept to cover even higher dimensions, Zhou et
al. [ZSH12] combine a 2D TF (e.g., scalar × gradient magnitude) with a set of 1D TFs
to enable the definition of a separable 3D TF, capable of making use of three properties.
This separation of the 3D TF admits a loss of classification precision in exchange for
interactivity, as the separated 1D and 2D TFs can be intuitively displayed on a screen
(a 2D display medium), in contrast to the 3D TF. If more than three attributes are
available, a combination is selected prioritizing a high correlation between attributes and
the information each attribute contains. Figure 2.2 shows the presented tool classifying
spheres in a synthetic dataset. The instance shown in Figure 2.2a uses only the 2D TF,
while the one in Figure 2.2b combines it with two 1D TFs, resulting in a more precise
classification.

The interaction is achieved by allowing the user to define regions within the 2D TF with
shapes (ellipses, rectangles) and a lasso tool. Essentially, this results in a selection of
voxels by their primary and secondary attributes (those represented in the 2D TF). For
each defined region, a 1D TF is provided to enabled a further selection of voxels by their
tertiary attribute.

To enable the interaction with TFs of even higher dimensions, researchers have often
resorted to the parallel coordinates plot (PCP) [ZK10] [GXY11]. PCP is an attractive
method to represent multivariate datasets and their relationships, as it can fit a (theoret-
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(a) (b)

Figure 2.2: Features in the synthetic dataset are selected using the 2D and 1D TFs.
Only the 2D TF is used to select features in (a), resulting in the two bottom spheres
belonging to the same class, as well as the top sphere and the shell. Further classifying
the defined regions with an 1D TF allows all regions to be uniquely classified, as shown
in (b). Reprinted from [ZSH12].

ically) unlimited number of dimensions in a 2D representation (practically limited by the
size of the display). However, a disadvantage of this method is that not all links between
the axes are shown, but only those between adjacent axes. Moreover, this loss of context
introduces the necessity to sort the axes in a meaningful order, which also involves the
definition of "meaningfulness" itself.

Zhao et al. [ZK10] tackle these issues by developing a global optimization method to find
the most meaningful order to display the parallel axes, defined based on the number of
polyline aggregations in the PCP. As shown in Figure 2.3, the PCP defined by the user
can highlight internal regions of interest. Additionally, a dimension reduction technique
was employed as an attempt to represent the relationships lost in the PCP representation.
The user is allowed control over two parameters of the dimension reduction technique
(number of neighbors and target embedding space dimension) and the interaction itself is
achieved by assigning a color and opacity to the classified regions, as seen in Figure 2.4,
where a high opacity is assigned to the dark and light blue regions.

Aiming to further simplify the user interaction of a PCP interface, Guo et al. [GXY11]
present a widget that uses parallel coordinates, Multi-Dimensional Scaling (MDS) and
direct volume view interaction to manipulate the TF. The multiple MDS plots, embedded
in the PCP, have adjustable distance metrics, displayed below each MDS plot. , and
both of them provide data clustering and data distribution information. Lasso and magic
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2. State of the art

Figure 2.3: Rendering results generated by a gradient magnitude 2D TF (left) and by
the presented parallel coordinates method (center). The TF design uses four parameters
(right).

Figure 2.4: Rendering result (right) generated by assigning a high opacity to the classes
shown as dark and light blue on the embedded 2D space (left).

(a) (b)

Figure 2.5: The PCP with embedded MDS plots are shown in (a). The regions on the
MDS plots and colored ribbons linking the central points (in the regions and in the
parallel axes) illustrate the TF. The circles below the MDS plots display the weights of
each displayed attribute. The rendering result is shown in (b). Reprinted from [GXY11].

wand tools can be used to select features, providing the TF interaction for the MDS
plots. Each parallel axis has a central point that can be manipulated by changing its
size (height) and vertical position, represented by the colored ribbons (in an illustrative
manner). The result is shown in Figure 2.5. Direct volume view interaction is also
possible via sketching on the desired region.

All methods mentioned present higher dimension solutions for the display and interaction
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of TFs. However, they all focus on multivariate datasets, the majority of them ([KKH02],
[ZSH12] and [ZK10]) extracting the variables from the scalar volume (e.g., gradient
magnitude, variance, skewness). Methods that deliver satisfactory results for multivariate
volumes are not necessarily useful to explore multimodal datasets, and significantly less
scientific work has been done in this direction.

Bramon et al. [BRB+13] present a fully automatic scheme to visualize bi-modal volumetric
data that defines the colors and opacities of a TF, given a predefined 1D TF for each
modality. Using information theory strategies, information maps are created and used
to fuse two input datasets (modalities), selecting the most informative source dataset
for each voxel. The fused color is then determined using the information maps and the
initial 1D TFs, while the opacity is determined using an optimization procedure, followed
by the binning of the intensities and the fusion of the gradients.

Bramon et al. [BRB+13] also argue that transferring the primary decisions when defining
a TF to the user "may introduce errors and also makes the reproducibility of the method
difficult", considering the complexity of such a task, which involves understanding the
structure of the input, their relationship, what has to be visualized, and how. The
proposed framework can function entirely without the user’s intervention, allowing it at
only two points: changing the (initially automatically) chosen reference image for the
color fusion, and proposing the target distribution for the opacity optimization to decide
which features to enhance. The result can be seen in Figure 2.6.

Figure 2.6: Bi-modal visualization (right) of the MR-T1 (left) and MR-T2 (center)
modalities. Reprinted from [BRB+13].
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CHAPTER 3
Concepts

Two main concepts were considered to create a tri-modal TF and its user interface. The
first concept, inspired by parallel coordinates TF approaches [ZK10] [GXY11], is based on
a star chart, while the second one users barycentric coordinates together with a triangle
component in the user interface. Both main concepts are presented in the following
sections, as well as three more concrete ideas that sprouted from the second concept.

3.1 Star chart

A parallel coordinates plot is an attractive method for the representation of multidi-
mensional data due to its easy scalability, accommodating multiple dimensions in a 2D
representation. This advantage, however, comes with considerable drawbacks. Each axis
of a parallel coordinates plot can only be visually linked to a maximum of two other axes.
Additionally, the decision must be made of what axes relate to each other or whether
they relate at all, and in what order to display them. That results in either limiting
the meaningfulness of these correlations or transferring that responsibility to the user,
increasing the domain expertise required to use such a tool.

For those reasons, arranging the axes in polar coordinates (as opposed to side by side,
ultimately becoming a star chart) is a considerable alternative. With the condition that
the number of axes is kept at three, all pairs of axes remain connected. However, because
polar coordinates are used, lines linking low values between two axes become shorter than
lines linking high values, risking the introduction of bias and compromising perception.
Furthermore, this representation only enables the understanding of pairwise connections
between the modalities, requiring the user to keep track of three simultaneous relationships
(for the modalities A, B and C, the relationships AB, AC and BC). Nevertheless, a star
chart approach was considered to develop a tri-modal TF widget.
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3. Concepts

In the conceived idea, each scalar triple a, b, c with corresponding coordinates in modalities
A, B and C of the same size becomes a triangle in the star chart space by plotting the
scalars in the axes and joining the plotted points. In other words, each voxel triple can
be represented by a triangle. The user interacts with the star chart by defining triangles
and assigning a color to them. An example sketch is shown in Figure 3.1, where each
axis represents the range of the modalities A, B and C, the colored triangles are set by
the user, and the black perimeter represents a data point. Such a method would allow
geometric properties (such as the area of the triangles) to be used in the TF definition.

Figure 3.1: A concept of a star chart widget for tri-modal volume exploration. The
axes represent the ranges of modalities A, B and C. The gray lines connect the axes in
the positions 25%, 50% and 75%. The thick outlined triangle in the middle represents
a scalar triple a, b, c with coordinate X in volume space and with a = 0% = A(X),
b = 75% = B(X) and c = 50% = C(X). The colored triangles are defined by the user.

However, it is difficult to determine not only whether such properties create meaningful
results to render a volume, but also whether this concept can produce an intuitive tool
in volume exploration for domain experts. Due to these challenges, this concept was not
further developed.

3.2 Barycentric coordinates
The barycentric coordinates concept is analogous to the standard color-opacity TF, where
the color is defined through control points (by assigning them colors), and the control
point’s height determines the opacity. This concept consists of an equilateral triangle
with each intensity histogram (one for each modality) placed on an edge, as shown in
Figure 3.2. Inside the triangle, the user can manipulate the control points. A point’s
Barycentric coordinates α, β and γ (calculated from its Cartesian coordinates x and
y) control each modality’s influence on the rendered volume, while the point’s height
(Cartesian coordinate z) controls the opacity. Figure 3.2a shows a 3D representation
instance of this concept. Figure 3.2b shows a top-down view of the same instance.

Four concrete ideas branched from this concept. A brief description and discussion of

10



3.2. Barycentric coordinates

(a) (b)

Figure 3.2: An initial concept for a tri-modal TF widget based on barycentric coordinates.
(a) Control points can be added on the triangle and assigned a color, while the opacity is
defined based on a point’s height. (b) The same instance is shown in a top-down view.

each of them are provided in the paragraphs below, together with a comparison of their
pros and cons, shown in Table 3.1.

Barycentric Mapping: Analogous to the color-opacity 1D TF, which defines a 1D
texture mapping scalar values to a color and opacity, the Barycentric Mapping widget
uses control points to define a 2D texture mapping triples of scalar values (one from
each modality) to a color and an opacity. This mapping can be achieved by globally
normalizing each modality (volume) so that all values are in the range [0, 1]. Next, all
voxel triples (α, β, γ) across modalities with same coordinates are again normalized. This
double normalization results in (α, β, γ) satisfying α ≥ 0, β ≥ 0, γ ≥ 0 and α+β+γ = 1,
allowing each voxel triple to be mapped to a position inside a 2D triangle, where the TF
texture is defined. However, since all three modalities influence the new voxel values, it
is not guaranteed that this approach will lead to the results expected by the user. This
mapping also allows frequency points to be plotted on the triangle, providing context
information to help the user set meaningful control points. The TF texture can be edited
with image editing tools, such as brushing. However, to keep the similarity with the 1D
TF, secondary triangles are triangulated using the control points, and the colors of pixels
in between are interpolated, as shown in Figure 3.3a.

Transfer Function Stack: Barycentric coordinates can be used to linearly interpolate
between three values, as they always add up to one. Based on this property, the Transfer
Function Stack widget allows the user to define the position of a single control point
inside a triangle, where the point’s barycentric coordinates are used to interpolate the

11



3. Concepts

values obtained from three separate TFs (one for each modality). This approach makes
possible to use any desired uni-modal TF widget separately for each of the modalities
while providing control over how they are mixed during rendering. These features make
this approach more intuitive for domain experts, as familiar TFs (such as 1D color-opacity
or 2D gradient magnitude [KKH02]) can be used to set the TFs of individual modalities.
However, in contrast to the Barycentric Mapping method, no direct context information
can be provided, as the triangle does not represent a TF texture, but merely controls
a parameter in the underlying separable TF. Figure 3.3b shows this idea using the
color-opacity histogram widget for each of the individual modalities.

Transfer Function Triangle: Using the same approach of the Transfer Function
Stack, the Transfer Function Triangle attempts to better make use of the screen space by
laying out the individual TFs on the edges of the triangle. Additionally, this alternative
improves the intuitiveness of the tool by letting the control point’s weight be defined based
on its proximity to the individual TFs. For instance, modality A’s weight α increases
when the control point is placed near the edge where A’s TF widget is placed. This
layout is shown in Figure 3.3c, where the positioning of the 1D TF widgets is used to
project the histogram frequencies onto the triangle (similar to a simple backprojection)
as an attempt to provide context about the data. A drawback of this approach is that,
for two of the modalities (A and B in Figure 3.3c), their TF widget must be displayed at
an angle, risking a decrease of user accuracy when positioning control points.

(a) (b) (c)

Figure 3.3: The three barycentric-coordinates-based concepts: (a) Barycentric Mapping
with plotted frequency points and colored control points that control the underlying 2D
texture; (b) Transfer Function Stack with a single control point on a triangle, controlling
the weights of individual TFs (here, 1D color-opacity TFs); and (c) Transfer Function
Triangle with an exemplary context information method (here, a simple backprojection
of the histograms)
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3.2. Barycentric coordinates

Concept Pros Cons
Barycentric
Mapping

Context information (frequency
plot) helps directly set control
points

Unfamiliar to domain experts;
ability to deliver expected results
needs verification; imprecise opac-
ity definition (compared to the 1D
TF)

TF Stack Individual TFs can be changed
(customizable, familiar to domain
experts); control point meaning
clear (the closer to a vertex, the
larger the respective modality’s in-
fluence)

No context information that di-
rectly helps position the control
point; occupies larger screen area
in comparison to two other proto-
types; distance between triangle
edges and their respective modal-
ity’s TF requires extra user effort

TF Triangle Control point meaning clear (the
closer to an edge, the larger the re-
spective modality’s influence); in-
dividual TFs’ positioning expands
context information possibilities

No context information that di-
rectly helps position the control
point; individual TFs’ rotation de-
creases user accuracy

Table 3.1: Pros and cons of the conceptual tri-modal TF widgets.
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CHAPTER 4
Prototypes

The three barycentric concepts presented in Section 3.2 were realized in a software
prototype using the Java programming language [Jav] with the bundled Swing GUI
Toolkit. The prototype, shown in Figure 4.1, does not perform volume rendering, but,
instead, uses the defined TF to render a 2D image from three input 2D slices.

The panel on the right (with the label "Image fusion") is dedicated to setting the inputs
required to render the result, while the whole remaining space on the left displays the TF
widget. The three grayscale images (labeled "Modality A," "Modality B" and "Modality
C") are the input slices, imported into the prototype as PNG images and converted to a
normalized grayscale image in the range [0, 1]. The "Transfer function" combo box at
the top-right changes the TF widget of the left panel to one of the prototypical TF and
interface designs. The available options are "Barycentric mapping," "Histogram stack" and
"Histogram triangle." The "Color interpolation" combo box sets the color interpolation
method used through the whole rendering pipeline. The "Replace all modalities" button
allows the user to set new input images dynamically.

4.1 Barycentric mapping

Barycentric coordinates are used in the prototype to represent a triple relationship
visually, as they allow three coordinates α, β and γ to be uniquely defined with only two
degrees of freedom (since α+ β + γ = 1), enabling a 2D visualization of this relationship.
The designed technique uses barycentric coordinates to define a 2D non-separable TF
that uses a preprocessed image (2D, 3D or of any dimension) to map each element (e.g.,
pixel or voxel) to a position in a 2D texture. In this section, a prototype implementing
this technique for 2D images is presented in detail.
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4. Prototypes

Figure 4.1: The basis components for the prototype in the "Image fusion" panel. The
"Transfer function" combo box selects a TF widget, which then appears on the empty area
on the left. The "Color interpolation" combo box controls the color interpolation method
used during the whole pipeline. The prototype uses the three input slices (modalities
A, B, and C) and the selected TF to render the result image. The input images can be
changed with the "Replace all modalities" button and the result’s background can be set
to black or white.

4.1.1 Preprocessing

In the prototype, the three input scalar images A, B and C of equal size s are used
to generate an image R of size s with tri-variate data, representing the barycentric
coordinates α, β and γ. For each pixel of coordinates x, y in the input images, the
resulting barycentric coordinates are defined as the locally-normalized ratio of each image
value a = A[x][y], b = B[x][y] and c = C[x][y]. This means that the values a, b, c at
coordinates (x1, y1) in A, B and C will result in the same α, β, γ values as a · k, b · k, c · k
at (x2, y2).

Note that R can also be bi-variate, as it does not need to contain the γ coordinate since
that can be calculated as 1− α− β. However, not storing γ will require its calculation
for every pixel (or voxel) on every render cycle.

Figure 4.2 shows the generated image R, where the α, β and γ components are coded
to red, green and blue respectively. If the scalar values of A, B and C are not in the
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4.1. Barycentric mapping

range [0, 1], an initial global normalization is also required. Algorithm 4.1 shows this
calculation for tri-dimensional images.

Figure 4.2: The barycentric coordinates image R is calculated from the three Modalities
A, B and C. The resulting image ("Result") illustrates R by coding the coordinates α, β
and γ to red, green and blue respectively.

4.1.2 Transfer function definition

The Barycentric Mapping TF can be defined by the user using the provided widget shown
in Figure 4.3. Control points can be added, moved and removed (except for the vertex
points). All control points can have their color changed by using the sliders in the "Color
selector" panel (the "All colors" slider controls the "Red," "Green" and "Blue" sliders
simultaneously).

The control points are joined using an incremental 2D Delaunay triangulation algorithm
[Die] and the formed triangles are rendered onto the 2D TF texture by interpolating the
vertices’ colors. This method was chosen due to its analogy to the standard color-opacity
TF, where controls points are used as well. However, this concept allows the texture
to be edited using other methods, such as brushing or defining shapes (e.g., circles or
rectangles). Note that control points do not need to be contained within the triangle, as
they serve merely as a painting tool.

Additionally, the prototype can export the control points’ data to a shared MATLAB
[MATa] session. This functionality is made possible by the MATLAB API for Java
[MATb] and facilitates the preview and evaluation of a 3D representation of the TF
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4. Prototypes

Figure 4.3: The developed prototype in "Barycentric mapping" mode. The control points
on the triangle (top-left) define a 2D texture that is used to render the result image
(bottom-right).

widget, where the alpha values of the control points are plotted in a vertical axis, shown
in Figure 4.4.

Figure 4.4a shows the TF defined in the prototype, while Figure 4.4b shows the resulting
MATLAB 3D plot in different angles. The magenta circles represent the control points,
and the red lines are guides to help tell the point’s height relative to the base (at height
zero). However, even with the red guides, this representation remains unintuitive and
makes it difficult to perceive a control point’s position in the 3D space. Additionally, this
approach does not easily allow for the texture to be edited using other methods, such as
brushing. For those reasons, this representation was not further developed.

4.1.3 Context information

The fact that each element in the generated tri-variate image R can be mapped to a
(x, y) position in a triangle (and therefore, in a 2D texture) enables the plotting of data
frequency directly on the TF widget, done once in the widget initialization and every time
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(a) (b)

Figure 4.4: An example TF defined in the prototype (a) has its control points plotted in
3D (b), where the height of a point represents its opacity.

Algorithm 4.1: Barycentric coordinates image preprocessing
Input: Three scalar volumes (modalities) A, B and C of size s
Output: One tri-variate volume of size s where the variables have the values α,

β and γ with α ≥ 0, β ≥ 0, γ ≥ 0 and α+ β + γ = 1
1 R← tri-variate volume of size s;
2 maxA← largest value in A;
3 maxB ← largest value in B;
4 maxC ← largest value in C;
5 foreach voxel in R with coordinates x, y, z do

// global normalization
6 a← A[x][y][z] ÷ maxA;
7 b← B[x][y][z] ÷ maxB;
8 c← C[x][y][z] ÷ maxC;
9 sum← a+ b+ c;

// local normalization
10 if sum = 0 then
11 α← 1÷ 3;
12 β ← 1÷ 3;
13 else
14 α← a÷ sum;
15 β ← b÷ sum;
16 end
17 γ ← 1− α− β;
18 R[x][y][z] ← (α, β, γ);
19 end
20 return R;
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the widget is resized. To achieve this plotting, all elements (α, β, γ) in R are transformed
to Cartesian coordinates (x, y) (using the widget’s triangle vertices), which are then used
to increment a frequency counter for the (x, y) position. Finally, after all voxels are
processed, the counters are used to determine the color of the (x, y) pixel. Algorithm 4.2
shows this calculation for a tri-variate image R.

In the prototype, the color is determined as follows: being min the smallest counter value
greater than zero and max the largest, the counter value at (x, y) is linearly transformed
from the range [min,max] into the range [48, 255], and the resulting value is used as the
red, green and blue components of the pixel at (x, y). The target range starts at 48 to
more clearly differentiate between the empty pixels (where the frequency is zero) and the
non-empty pixels. The resulting plot is shown in Figure 4.3.

Figure 4.3 also shows the effect of hovering the mouse over the result image. This
action highlights, with a red circle, the hovered data point on all images (inputs and
output), and, with a black circle, the corresponding point on the TF texture. The inverse
interaction is also possible, where, by hovering over a frequency point, the multiple
corresponding pixels are highlighted on all images.

Algorithm 4.2: Frequency points plot
Input: One tri-variate volume R where each element has the values α , β and γ

with α ≥ 0, β ≥ 0, γ ≥ 0 and α+ β + γ = 1
Input: One triangle triangle in screen space coordinates
Output: One 2D image with the frequency points plotted

1 bounds← triangle.getBounds();
// triangle’s top-left corner must be in origin (0,0) to

match freq array
2 triangle.translate(−bounds.getLeft(), −bounds.getTop());
3 freq ← 2D integer array of dimensions bounds.getWidth() ×

bounds.getHeight();
4 foreach voxel in R with coordinates x, y, z do

// transform barycentric coordinates into cartesian
5 bary ← R[x][y][z];
6 cart← baryToCart(bary, triangle);
7 freq[cart.x()][cart.y()] ← freq[cart.x()][cart.y()] + 1;
8 end
9 min← smallest value > 0 in freq;

10 max← largest value in freq;
11 I ← empty image of dimensions bounds.getWidth() × bounds.getHeight();
12 foreach pixel in I with coordinates x, y do
13 I[x][y] ← freqToColor(freq[x][y], min, max);
14 end
15 return I;
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4.2. Histogram stack

4.2 Histogram stack
The Barycentric Mapping TF widget, although providing context information on the
texture (directly related to the rendering results), is an unfamiliar method to domain
experts. Its efficiency in providing expected and meaningful results for the user’s
application needs thorough studying. For this reason, a second prototype was implemented
exploring the Transfer Function Stack concept. Figure 4.5 shows the first implemented
user interface variant that supports this method, called "Histogram stack" in the prototype.

Figure 4.5: The developed prototype in "Histogram stack" mode. The single control point
in the triangle (bottom-left) sets the weights of the modalities’ individual TFs (top-left),
used to render the result image (bottom-right) from the three input images (modalities
A, B, and C). The individual TFs plot a histogram of the frequency of scalar values as
context information and is used in the prototype to render each modality. The colors of
the control points can be set using the "Red," "Green," "Blue" and "All colors" sliders,
while their opacity is based on the control point’s height. Interacting with any histogram,
as well as with the triangle’s control point, results in an immediate re-rendering of the
result image.

In this variant, the TF widgets for the individual modalities are laid out on top of each
other and displayed on the top-left. The prototype uses the standard 1D TF showing a
histogram (with the frequency of the scalar values in an image), as it is the most common
form of TF [LKG+16]. Its control points can be moved, where their height represent the
opacity, and their color can be changed, controlling an underlying 1D TF. Any change
in the individual TFs triggers an immediate re-rendering of their respective local image
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and the "Result" image (see figure 4.5). However, other TFs work just as well in theory,
the only limiting factor in practice being the available screen space. To the right of each
histogram, the renderings of their respective individual modality are shown. The control
points’ colors can be changed using the four color sliders, in the same way as in the
Barycentric Mapping prototype presented in Section 4.1.

On the bottom-left, a triangle with a single control point is displayed. By clicking
or dragging anywhere inside of the triangle, the control point’s position is set to that
location, the barycentric coordinates recalculated, and the result image is immediately
re-rendered. The lines in the triangle meet on the barycenter, where α = β = γ = 1

3 .

The final blended result is shown on the bottom-right. If the triangle’s control point is
set to one of the vertices (labeled A, B, and C), the final result does not produce the
exact same image as the corresponding local result of an individual modality and its TF,
as the blending interpolates only the colors and sets the alpha value to 255. Choosing to
interpolate the alpha, while consistent with the in-between renderings, produces images
that are more difficult to read, as the selected features become less opaque.

4.3 Histogram triangle
A second layout was implemented for the same rendering method used in the Transfer
Function Stack as an attempt to better use the screen space and enable the testing of
alternative data context displaying techniques. The Transfer Function Triangle, called
"Histogram triangle" in the prototype, is shown in Figure 4.6.

All components function the same as the "Histogram stack" prototype, only differing in
the layout and the triangle’s orientation (rotated by 60°clockwise). A modality’s influence
(weight) in the final rendering is defined based on the control point’s proximity to the
modality local rendering (next to its histogram), unlike the concept discussed in Section
3.2, which defined the influence based on the proximity to the histogram.

Additionally, a conceptual method of showing context information was tested. The idea
is to project the histogram values onto the triangle, analogous to a simple backprojection.
This technique was, however, rejected, as it neither contributes with information about
the data nor it helps with the placement of the control point. Figure 4.6 shows the
results.

4.4 Discussion and evaluation of the prototypes
All three implemented prototypes were tested and evaluated using color combinations
suggested in ColorBrewer’s [CBr] "qualitative" palette. The TFs and rendered results
are shown in Figures 4.3, 4.5 and 4.6. The images used are slices extracted from a
carbon-fiber-reinforced polymer with impact damage dataset scanned with Skyscan
1294 [Sky], which produces three complementary (perfectly registered) modalities in
one scan. To evaluate the efficacy of the prototype, the task of highlighting features of
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Figure 4.6: The developed prototype on "Histogram triangle" mode. The single control
point in the triangle (left) sets the weights of the modalities’ individual TFs (on the
triangle’s edges), used to render the result image (bottom-right). The texture in the
triangle is a projection of the histogram’s values, similar to a simple backprojection; an
attempt to show context information.

interest to domain experts (e.g., cracks or pores) was set. These features are emphasized
differently in each modality and, therefore, perceived differently as well. The provided
prototypes allowed the use and investigation of all the information of the three modalities
simultaneously in one visualization.

The "Barycentric mapping" technique, although offering a non-separable TF that allows
for direct manipulation, was considered less intuitive than the barycentric blending
technique used in the "Histogram stack" and "Histogram triangle" alternatives. Requiring
the opacity to be set per control point does not decrease the precision of the tool,
confirming the idea that a 3D representation is not necessary. Additionally, the method
appeals more at first due to the direct linking between TF and the input/result images,
but still requires trial-and-error to achieve the desired results.

The "Histogram stack" and "Histogram triangle" tools demonstrated to enable a quicker
highlighting of the desired features. The domain experts also considered it to be a more
intuitive tool, as it contains more familiar concepts, such as the standard color-opacity
TF. However, the drawback, when comparing this tool with the "Barycentric mapping"
alternative, is the lack of context information about the data.
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Another rejected design decision regarding the "Histogram triangle" is the rotation of
the modalities’ TF local rendering (next to each histogram), as it decreases the control
point positioning precision. It was also considered unintuitive that the weights of the
modalities in the final rendering are set based on the control point’s proximity to the
triangle vertex when basing them on the proximity to a modality’s histogram (triangle’s
edge) is the expected behavior.

Regarding scalability, none of the methods naturally support it. In order to add a fourth
modality, both TFs would need to be represented in three dimensions (with a pyramid
instead of a triangle), with the control point also lying in the 3D space. Each added
modality further increases the dimensionality by one, requiring a k-simplex to represent
a (k + 1)-modal dataset.

Scaling them down is, however, possible. The "Barycentric mapping" can be represented
in two dimensions by a histogram, using a pre-processed bi-variate volume containing the
interpolation values α and β for every voxel to render the result (or one value α, since
α+ β = 1). The "Histogram stack" and "Histogram triangle" can blend two modalities
by having two interpolation values α and β, which can be represented by, for instance, a
slider (instead of a control point in a triangle).

24



CHAPTER 5
Implementation

open_iA is an open-source tool for scientific visualization, analysis, and processing of
volumetric datasets, developed and maintained by the Computed Tomography Research
Group at the University of Applied Sciences Upper Austria, Campus Wels [CTR]. In-
tended as a framework for research prototypes and tools, open_iA is built using Qt [Qt]
(a cross-platform GUI SDK) the Visualization Toolkit (VTK) [VTK] (an open-source
toolkit for 3D visualization) and the Insight Segmentation and Registration Toolkit (ITK)
[ITK] (an open-source toolkit for image analysis.

The core of open_iA provides, amongst other widgets, a 3D volume renderer, three 2D
slicers for each of the volume’s axes, a histogram (used to manipulate the TF of the
renderer and the slicers) and a data modalities dialog, where the loaded datasets are
listed. Extensions to the core can be developed in the form of modules.

The tri-modal TF widget was implemented in C++ as an open_iA module, making use of
the available core widgets to render the modalities with the defined TF. Both "Histogram
stack" and "Histogram triangle" variants from the prototype were implemented.

5.1 Functionality

The widget can be initialized regardless of how many modalities (iAModality) are
loaded. However, if there are less than three modalities available, the inner components
are not initialized until it is detected that a third modality is added. If a modality is
removed so that there are less than three modalities available, the widget is disabled.

Figure 5.1 shows the enabled widget in "stack" mode on the bottom-right corner, out-
lined in red. It contains three histograms, three slicers and one triangle control, of
classes iADiagramFctWidget, iASlicer and iABarycentricTriangleWidget
respectively.
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Figure 5.1: The implemented tri-modal TF widget in "stack" mode (outlined in red),
where the individual TFs, their respective slicers, and the triangle are shown. The red
arrow points to the control point. Above the histogram stack, a combo box allows the
user to select the slicing axis of the local slicers, while a slider controls the current slice
number. On the top, the three main slicers are shown, zoomed-in to clearly show the
features (fibers and pores). On the left, the volume view uses the TFs defined in the
developed widget to render the volume.

The first step of the widget’s initialization is to set up open_iA’s main renderer so that
it can use three volumes simultaneously. That is achieved by first creating an append
filter (with vtkImageAppendComponents) and adding the volumes (vtkImageData)
of all three iAModality instances. A vtkVolumeProperty must be created as well,
where the color and opacity functions (vtkColorTransferFunction and vtkPiece-
wiseFunction respectively) are set. Then, a vtkSmartVolumeMapper is created, its
blend mode set to "composite", and its input data set to the previously defined append
filter (with its vtkImageAlgorithm::GetOutput() method). A vtkVolume must
then be initialized, setting its property to the created vtkVolumeProperty and its
mapper to the created vtkSmartVolumeMapper. Finally, a vtkRenderer is created
(adding the created vtkVolume to it) and added to the main renderer (iARenderer).
This set-up enables VTK to do the color mixing of the three TFs without changing lower
level components, such as the shader program generated by VTK.

The weighting of each modality in the final rendering does not require modifying the shader
either. That is done by manipulating the control points of the modalities’ individual
TFs, limiting their opacity value based on the α, β and γ values, which are set using the
triangle’s control point. The functionality and drawing of the triangle are contained in
the class iABarycentricTriangleWidget. This class also keeps track of the control
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point’s coordinates and emits a signal [QtS] when they change.

The class iATripleModalityWidget, responsible for managing the widgets and their
interconnections, receives this signal from iABarycentricTriangleWidget and uses
the barycentric coordinates α, β and γ of the control point to modify the TFs of the
modalities A, B and C by changing the range of the control points’ opacity. For instance,
for an original opacity range of [0, 1] and α = 0.25, the range of A’s TF opacity is changed
to [0, 0.25].

This range change does affect the appearance of iADiagramFctWidget, where the
control points’ heights are limited by the α, β or γ values, decreasing the precision of
when adding and moving control points, or completely preventing interactions for values
close to zero. To avoid that, a second iADiagramFctWidget is created, where the
control points’ opacity always remains in the range [0, 1]. The user interacts with this
proxy TF, while, on the background, the effective TF is manipulated to keep the opacity
within the barycentric-coordinates-defined range.

To calculate and draw the frequency points in the triangle, Algorithm 4.2 was used
in the same way as described in Section 4.1.3. The pixels on the screen are colored
by transforming a value in the frequency array from the range [min,max] to [48, 255],
similarly to the prototype. The frequency points must also be recalculated every time
the triangle size changes (i.e., when the widget is resized).

5.2 Layout and interaction

While iATripleModalityWidget provides the functionality and the managing and
wiring of all components, the layout is handled externally. The Stack and Triangle layouts
are implemented in the classes iAHistogramStack and iAHistogramTriangle
respectively. The former is shown in Figure 5.1, and the latter, in Figure 5.2.

In both layouts, the slicers have zooming and panning interactions, similar to the main
(core-provided) slicers. A mouse click or drag on any position inside the triangle sets
the control point’s coordinates to that position. Additionally, hovering the mouse over
the modality labels "A," "B" and "C" highlights them to indicate that a click is possible.
When clicked, they set the corresponding modality’s weight to 1 and, consequentially,
the remaining two other weights to 0.

The slicers’ axis and slice number are linked with the main slicer views. In open_iA,
there are three main slicers XY, XZ, and YZ (one for each axis) that provide scrollbars,
used to change the current slice number. By pressing a scrollbar or changing its position,
their respective slice axis and number is applied to the TripleHistogramTF’s slicers, as
well as TripleHistogramTF’s slicer mode combo box and slice number slider. Moreover,
interacting with the slicer mode combo box, as well as the slice number slider, has a
reverse effect, automatically changing the main slicer corresponding to the combo box’s
selected value.
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Figure 5.2: The implemented tri-modal TF widget in "triangle" mode (bottom-right).
The individual TFs are laid out on the edges of the triangle, while their respective slicers
are cut to fit in a triangular shape, placed opposite to their histogram. The red arrow
points to the control point. The main slicers (top) are not zoomed in, which makes
features difficult or impossible to spot (see Figure 5.1 for a zoomed-in instance).

The layout in iAHistogramStack is achieved through Qt-provided layout classes. A
QSplitter separates the left part (histograms, slicers, combo box, and slider) from the
right part (triangle control), allowing the user to manually resize them if desired.

iAHistogramTriangle does not follow the layout approach provided by Qt, as no lay-
out class is used. Instead, each widgets is manually resized with QWidget::resize(co-
nst QSize &) and manually rendered to the screen. To determine the position and
rotation of the widgets, a QTransform is created and applied to the QPainter
before rendering a widget. The histograms are rendered with the method QWid-
get::render(QPainter*), and the slicers, with the method QGLWidget::grab-
FrameBuffer(), accessible through iASlicer’s friend class iASlicerWidget. Ad-
ditionally, the mouse event must be manually forwarded to the widgets. That is done
by checking if the mouse event’s point is contained inside a specific widget. If it is, this
widget’s QTransform is used to transform this point to the widget’s space, the mouse
event’s point is set to the transformed point, and the event is sent with QApplica-
tion::sendEvent(QObject*, QEvent*).

Furthermore, in this layout, the triangle is rotated in such a way that, when a control
point is set, its proximity to a histogram directly relates to the corresponding modality’s
weight in the final rendering. For instance, if the control point is on the vertex touching
the histogram of modality A, then α = 1.

The empty spaces on the left, top and right corners of the original triangle utilized to
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display slicers, each corresponding to the histogram opposite to it in the triangle. The
drawback with this solution is that the rectangular slices do not efficiently fit in the
triangular area, which is compensated for by enabling zooming and panning interactions.
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CHAPTER 6
Results and evaluation

Both proposed TF widgets "Histogram stack" and "Histogram triangle" were applied to
tri-modal datasets to evaluate their efficacy in performing a frequent task in material
analysis. The volume used is from a Carbon Fiber Reinforced Polymer (CFRP) laminate
specimen scanned with SkyScan 1294 [Sky], producing an ABSorption contrast (ABS),
a Differential Phase-Contrast (DPC) and a Dark-Field Contrast (DFC) modalities. A
typical use case for the analysis of this kind of material is identifying individual features
(e.g., fibers, pores). It is also useful for domain experts to be able to compare features
(and their proportions) of two or more modalities.

Figures 6.1, 6.2 and 6.3 show the result of the individual TFs, achieved by setting the
control point on the triangle vertices. These results are equivalent to having only one
modality loaded, with only one TF. The colors were chosen with the help of ColorBrewer
[CBr]. In Figure 6.1, the fiber bundles are highlighted in orange from the ABS modality
(A). In Figure 6.2, fiber bundles parallel to the Z-axis are highlighted in cyan from
the DFC modality (B). In Figure 6.3, pores are highlighted in magenta from the DPC
modality (C). The hull of the CFRP is also visible in magenta, due to the nature of the
DPC scanning technique, which precisely detects faces of structures.

The triangle’s control point is set at the barycenter in Figure 6.4, which sets the weights
of modalities A, B and C to α = β = γ = 1

3 respectively. With all modalities equally
weighted, it is possible to see features of each of them in their specified colors.

Figure 6.5 shows fiber bundles from modality B in cyan and pores from modality C
in magenta, while the rest of the volume is transparent. That was done by setting the
triangle’s control point as distant from modality A’s histogram as possible and exactly
between B and C, resulting in α = 0%, β = 50% and γ = 50% for modalities A, B and
C respectively.

The "Histogram triangle" widget alternative showed itself to be more intuitive when
interacting with the triangle’s control point. With the "Histogram stack," it is necessary
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Figure 6.1: Rendering results with α = 100%, β = 0% and γ = 0%. Only modality A is
visible.

Figure 6.2: Rendering results with α = 0%, β = 100% and γ = 0%. Only modality B is
visible.
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Figure 6.3: Rendering results with α = 0%, β = 0% and γ = 100%. Only modality C is
visible.

Figure 6.4: Rendering results with α = 33%, β = 33% and γ = 34%. All modalities are
visible.
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Figure 6.5: Rendering results with α = 0%, β = 50% and γ = 50%. Only modalities B
and C are visible.

to keep track of what vertex of the triangle relates to what modality, leading to a constant
attention switch between the top part (histograms and slicers) and the triangle. The
triangular layout also results in a more efficient use of the screen space.

However, there are trade-offs for this compactness. Visualizing the desired features on
the slicers may require the user to pan and zoom constantly. Although possible to fit the
slice in a triangle in such a way that it is completely visible, it becomes smaller, and the
initial issue of unused space arises again.

The plotted frequency points do not directly help to set the weights of the modalities. In
other words, setting the triangle’s control point on darker or lighter areas does not result
in more or less meaningful results. This context information only gives insight on the
voxel-level relationship between the modalities. On Figures 6.1 through 6.5, for instance,
the darker regions closer to modality C’s histogram indicate that the majority of voxels
in the barycentric-combined volume has a higher γ value. The white region close to
modality A’s histogram indicate that no voxels have a higher α value than β and γ.

The widget was implemented and tested on an Intel® Core™ i7-6500U CPU at 2.50GHz,
8 GB RAM, and an AMD Radeon™ R5 M330 GPU with Microsoft Visual Studio
Enterprise 2015© [Vis] integrated development environment. In this set-up, manipulating
the slicers (setting axis or current slice number) runs smoothly, editing control points
in the individual TFs has a slight delay, and moving the triangle’s control point has a
considerable delay (over one second). Other interactions (such as panning, rotating and
zooming the 3D view, the main slicers and the local slicers) run smoothly.

Tests were also performed on an Intel™ i7-3770 at 3.4GHz, 32 GB RAM, and an Nvidia™
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Geforce® GTX 1080 GPU. In this set-up, only moving the triangle’s control point has a
slight delay, and all other interactions run smoothly.
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CHAPTER 7
Conclusion

In this thesis, the feasibility of a tri-modal TF widget is tested. First, two conceptual ideas
are presented and discussed, one of which evolves into two concrete methods, implemented
in a prototype application. Next, this prototype is explained in detail, including the
algorithms used and layout decisions, and then evaluated. The implementation of the
refined prototyped methods and layouts in open_iA is described, followed by an evaluation
based on real scenarios of domain experts in material analysis, finishing with a comparison
of the two implemented layouts.

The presented tool demonstrates that it is feasible to design usable TF interfaces focusing
on volume exploration. The introduction of a simple weighting component (a triangle) is
sufficient to accelerate and facilitate the highlighting of features across modalities. The
widget will be available as a module of open_iA under the name "TripleHistogramTF."

Switching UI components is also possible, if necessary to better meet the specific needs of
an application. For example, the color-opacity TFs (as used in open_iA) can be replaced
by other TFs, such as the 2D gradient magnitude [KKH02]. The slicers inside the triangle
can also be replaced, as they serve only to guide the user.

Improvements in the development method and on the widget are planned to be explored
in future work. For instance, user studies are necessary to verify the conclusions and more
precisely compare the implemented representations (stack and triangle). Moreover, more
meaningful ways to show context information could be explored, aiming to help the user
more directly choose an appropriate control point position. The visibility of the main
slicers, as shown in Figures 5.1 and 5.1, also needs improvement to achieve similar clarity
to that seen in the prototype, shown in Figures 4.5 and 4.6. Performance improvements
are also planned (e.g., GPU implementations), along with the ability to switch between
the "stack" and "triangle" layouts (currently only possible programmatically).

The Barycentric Mapping idea presented in Section 4.1 is also planned to be further
explored. User studies can be carried out to precisely evaluate its meaningfulness, as
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well as test alternative interaction possibilities, such as brushing. Furthermore, this work
hopes to initiate a more widespread availability of multimodal volume exploration tools,
a lacking feature in current visualization software, as discussed in Chapter 1.
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the weights of each displayed attribute. The rendering result is shown in (b).
Reprinted from [GXY11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.6 Bi-modal visualization (right) of the MR-T1 (left) and MR-T2 (center) modal-
ities. Reprinted from [BRB+13]. . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 A concept of a star chart widget for tri-modal volume exploration. The axes
represent the ranges of modalities A, B and C. The gray lines connect the
axes in the positions 25%, 50% and 75%. The thick outlined triangle in the
middle represents a scalar triple a, b, c with coordinate X in volume space and
with a = 0% = A(X), b = 75% = B(X) and c = 50% = C(X). The colored
triangles are defined by the user. . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 An initial concept for a tri-modal TF widget based on barycentric coordinates.
(a) Control points can be added on the triangle and assigned a color, while
the opacity is defined based on a point’s height. (b) The same instance is
shown in a top-down view. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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3.3 The three barycentric-coordinates-based concepts: (a) Barycentric Mapping
with plotted frequency points and colored control points that control the
underlying 2D texture; (b) Transfer Function Stack with a single control
point on a triangle, controlling the weights of individual TFs (here, 1D color-
opacity TFs); and (c) Transfer Function Triangle with an exemplary context
information method (here, a simple backprojection of the histograms) . . 12

4.1 The basis components for the prototype in the "Image fusion" panel. The
"Transfer function" combo box selects a TF widget, which then appears on
the empty area on the left. The "Color interpolation" combo box controls the
color interpolation method used during the whole pipeline. The prototype
uses the three input slices (modalities A, B, and C) and the selected TF to
render the result image. The input images can be changed with the "Replace
all modalities" button and the result’s background can be set to black or white.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 The barycentric coordinates image R is calculated from the three Modalities A,
B and C. The resulting image ("Result") illustrates R by coding the coordinates
α, β and γ to red, green and blue respectively. . . . . . . . . . . . . . . . 17

4.3 The developed prototype in "Barycentric mapping" mode. The control points
on the triangle (top-left) define a 2D texture that is used to render the result
image (bottom-right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 An example TF defined in the prototype (a) has its control points plotted in
3D (b), where the height of a point represents its opacity. . . . . . . . . . 19

4.5 The developed prototype in "Histogram stack" mode. The single control point
in the triangle (bottom-left) sets the weights of the modalities’ individual TFs
(top-left), used to render the result image (bottom-right) from the three input
images (modalities A, B, and C). The individual TFs plot a histogram of the
frequency of scalar values as context information and is used in the prototype
to render each modality. The colors of the control points can be set using the
"Red," "Green," "Blue" and "All colors" sliders, while their opacity is based on
the control point’s height. Interacting with any histogram, as well as with
the triangle’s control point, results in an immediate re-rendering of the result
image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.6 The developed prototype on "Histogram triangle" mode. The single control
point in the triangle (left) sets the weights of the modalities’ individual TFs
(on the triangle’s edges), used to render the result image (bottom-right). The
texture in the triangle is a projection of the histogram’s values, similar to a
simple backprojection; an attempt to show context information. . . . . . . 23
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5.1 The implemented tri-modal TF widget in "stack" mode (outlined in red),
where the individual TFs, their respective slicers, and the triangle are shown.
The red arrow points to the control point. Above the histogram stack, a
combo box allows the user to select the slicing axis of the local slicers, while
a slider controls the current slice number. On the top, the three main slicers
are shown, zoomed-in to clearly show the features (fibers and pores). On the
left, the volume view uses the TFs defined in the developed widget to render
the volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 The implemented tri-modal TF widget in "triangle" mode (bottom-right). The
individual TFs are laid out on the edges of the triangle, while their respective
slicers are cut to fit in a triangular shape, placed opposite to their histogram.
The red arrow points to the control point. The main slicers (top) are not
zoomed in, which makes features difficult or impossible to spot (see Figure
5.1 for a zoomed-in instance). . . . . . . . . . . . . . . . . . . . . . . . . 28

6.1 Rendering results with α = 100%, β = 0% and γ = 0%. Only modality A is
visible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Rendering results with α = 0%, β = 100% and γ = 0%. Only modality B is
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6.5 Rendering results with α = 0%, β = 50% and γ = 50%. Only modalities B
and C are visible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

41





List of Tables

3.1 Pros and cons of the conceptual tri-modal TF widgets. . . . . . . . . . . . 13

43





List of Algorithms

4.1 Barycentric coordinates image preprocessing . . . . . . . . . . . . . . . 19

4.2 Frequency points plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

45





Bibliography

[Ami] Amira-Avizo. https://www.fei.com/software/amira-avizo. Accessed:
25.09.2018.

[BRB+13] R. Bramon, M. Ruiz, A. Bardera, I. Boada, M. Feixas, and M. Sbert. Infor-
mation theory-based automatic multimodal transfer function design. IEEE
Journal of Biomedical and Health Informatics, 17(4):870–880, jul 2013.

[CBr] ColorBrewer. http://colorbrewer2.org/#type=qualitative&scheme=Dark2&n=3.
Accessed: 23.09.2018.

[CTR] CT Group at the University of Applied Sciences Upper Austria. www.3dct.at/.
Accessed: 24.09.2018.

[Die] Johannes Diemke. Incremental 2D Delaunay triangulation algorithm.
https://github.com/jdiemke/delaunay-triangulator. Accessed: 22.09.2018.

[GXY11] Hanqi Guo, He Xiao, and Xiaoru Yuan. Multi-dimensional transfer function
design based on flexible dimension projection embedded in parallel coordinates.
In 2011 IEEE Pacific Visualization Symposium. IEEE, mar 2011.

[ITK] ITK. https://itk.org/. Accessed: 24.09.2018.

[Jav] Java. https://www.java.com. Accessed: 24.09.2018.

[KKH02] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer functions
for interactive volume rendering. IEEE Transactions on Visualization and
Computer Graphics, 8(3):270–285, jul 2002.

[LKG+16] Patric Ljung, Jens Krüger, Eduard Gröller, Markus Hadwiger, Charles D.
Hansen, and Anders Ynnerman. State of the art in transfer functions for
direct volume rendering. Computer Graphics Forum, 35(3):669–691, jun 2016.

[MATa] MATLAB. https://mathworks.com. Accessed: 25.09.2018.

[MATb] MATLAB API for Java. https://de.mathworks.com/help/matlab/matlab-
engine-api-for-java.html. Accessed: 22.09.2018.

47



[MeV] MeVisLab. https://www.mevislab.de. Accessed: 25.09.2018.

[ope] open_iA. https://github.com/3dct/open_iA. Accessed: 24.09.2018.

[Qt] Qt. https://www.qt.io/. Accessed: 24.09.2018.

[QtS] Qt Signals & Slots. http://doc.qt.io/archives/qt-4.8/signalsandslots.html.
Accessed: 25.09.2018.

[Sky] SkyScan 1294 overview. https://www.bruker.com/products/microtomography/in-
vivo-micro/skyscan-1294/overview.html. Accessed: 22.09.2018.

[VGS] VGSTUDIO MAX. https://www.volumegraphics.com/products/vgstudio-
max.html. Accessed: 25.09.2018.

[Vis] Visual studio. http://microsoft.visualstudio.com/. Accessed on 29.10.2018.

[VTK] VTK. https://www.vtk.org/. Accessed: 24.09.2018.

[ZK10] Xin Zhao and Arie Kaufman. Multi-dimensional reduction and transfer
function design using parallel coordinates, 2010.

[ZSH12] Liang Zhou, Mathias Schott, and Charles Hansen. Transfer function combina-
tions. Computers & Graphics, 36(6):596–606, oct 2012.

48


	Kurzfassung
	Abstract
	Contents
	Introduction
	State of the art
	Concepts
	Star chart
	Barycentric coordinates

	Prototypes
	Barycentric mapping
	Histogram stack
	Histogram triangle
	Discussion and evaluation of the prototypes

	Implementation
	Functionality
	Layout and interaction

	Results and evaluation
	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

