
Rendering Point Clouds with Compute Shaders
Markus Schütz

TU Wien
Vienna, Austria

mschuetz@cg.tuwien.ac.at

Michael Wimmer
TU Wien

Vienna, Austria
wimmer@cg.tuwien.ac.at

(a) Regular OpenGL z-fighting (b) 40 bit integer depth buffer (c) Regular Rasterization (d) High-Quality Splatting

Figure 1: Point-based rendering via compute shaders. (b) Higher depth-precision. (c) Up to ten times faster than OpenGL
rasterizer with regular quality. (d) Two to three times faster with high-quality splatting.

ABSTRACT
We propose a compute shader based point cloud rasterizer with up
to 10 times higher performance than classic point-based rendering
with the GL_POINT primitive. In addition to that, our rasterizer
offers 5 byte depth-buffer precision with uniform or customizable
distribution, and we show that it is possible to implement a high-
quality splatting method that blends together overlapping frag-
ments while still maintaining higher frame-rates than the tradi-
tional approach.

CCS CONCEPTS
• Computing methodologies→ Rasterization.

KEYWORDS
point-based rendering, point cloud, LIDAR, GPGPU, compute shader
ACM Reference Format:
Markus Schütz and Michael Wimmer. 2019. Rendering Point Clouds with
Compute Shaders. In Proceedings of SA ’19 Posters. ACM, New York, NY,
USA, 2 pages.

1 INTRODUCTION
Traditionally, point clouds in OpenGL are rendered with the gl-
DrawArrays(GL_POINT, ...) command, which passes point primi-
tives through the OpenGL rendering pipeline. While many parts
are programmable nowadays, others remain fixed. An appealing
quality of GPGPU is that it gives developers the possibility to write
their own rendering pipeline [Kenzel et al. 2018]. Günther et al.
[Günther et al. 2013] proposed an OpenCL-based point-cloud ren-
derer back in 2013, but were limited to 32-bit atomic operations
at the time. Instead of using atomicMin, they implemented a busy

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SA ’19 Posters, November 17-20, 2019, Brisbane, QLD, Australia
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6943-5/19/11.

loop with an early-out optimization to achieve major performance
improvements over OpenGL.

In many cases, especially triangle rendering, the regular ren-
dering pipeline remains faster than GPGPU rasterizers. However,
GPGPU allows implementing features that may not be possible
in the regular pipeline, such as improved depth buffers. The clas-
sic OpenGL projection matrices map nearby depth values over
most of the available depth-buffer range, while leaving only little
precision to farther parts of the scene. To make thing worse, ver-
tex transformations and resulting depth values are processed with
floating-point numbers, which have a higher precision close to zero.
A well-known trick to improve the precision is to reverse the depth
buffer and map the near-clip plane to 1, and the far-clip plane to
0, so that distant depth values are sampled at a higher precision.
Further information can be found in NVIDIA’s "Depth Precision
Visualized" article [Reed 2015]. Nonetheless, depth precision is in-
evitably lost during the vertex transformation, and the subsequent
storage of the result in a single-precision floating-point vector. Our
approach improves depth precision by computing the depth with
double precision, and storing the result in a 40-bit integer buffer.

2 METHOD
We developed two approaches to draw point clouds with com-
pute shaders instead of the classic rendering pipeline. The first
method uses atomicMin to write the closest point into a custom
framebuffer. The second method implements high-quality surface
splatting [Botsch et al. 2005] based on the first method.

2.1 Rasterization via AtomicMin
This approach encodes color and depth into a single 64-bit integer
and uses atomicMin to write the closest fragment into a shader
storage buffer that acts as our framebuffer. RGB values are stored in
the least significant, and the depth in the most significant bits. Due
to this, atomicMin primarily takes the depth into account when it
writes the value into the framebuffer, except when two fragments
have exactly the same depth. In the latter case, the fragment with
the smaller color value is picked.



SA ’19 Posters, November 17-20, 2019, Brisbane, QLD, Australia Trovato and Tobin, et al.

Table 1: Rendering times for Heidentor (26M points), Retz
(145M points on 2080 TI, 100M on 1060 GTX) and Morro Bay
(117M points).

Model GPU AtomicMin Splatting GL_POINT

Heidentor 2080 TI 1.64 ms 3.37 ms 5.71 ms
1060 GTX 4.88 ms 11.75 ms 13.60 ms

Retz 2080 TI 6.41 ms 12.95 ms 34.04 ms
1060 GTX 14.89 ms 31.78 ms 58.82 ms

Morro Bay 2080 TI 5.83 ms 15.48 ms 60.26 ms

Our approach gives developers control over a 40-bit integer
depth value with a uniform or customizable and easily predictable
precision over the whole range. 40 bit are sufficient to represent 1
trillion different values. Assuming millimeter precision, we end up
with 1 trillion mm = 1 million km, which means we can represent
the depth value of any object on earth and as far away as the moon
in millimeter precision. To obtain millimeter precision in a scene
that is represented in meters, we compute the depth in double
precision, multiply it by 1 000, and store the integer part in an
int64_t type value. It is also possible to split the full range of depth
into sub-ranges with different precision, if higher precision near the
camera is required without sacrificing view distance. A progression
with, for example, half the precision at double the distance may be
a reasonable choice, but functions such as log and pow do not work
on double values at this time. Instead, developers can manually map
depth ranges to different precisions, e.g., [0m, 10m] to nanometers,
[10m, 10km] to micrometers and [10km, 10 000km] to millimeters.
Each of these ranges occupy at most 10 billion integer values for a
total of 30 billion out of 1 trillion available values.

Depth and colors are then encoded into a single 64-bit integer.
The depth value is shifted 24 bits to the left, reducing its available
range to 40 bits, and the color value is stored in the rightmost 24
bits. AtomicMin is then used to write this 64 bit integer into the
SSBO. The atomic min operation stores new fragments only if the
encoded depth value is smaller than previously written fragments.

In the second step, another compute shader that runs on each
pixel reads the values from our custom framebuffer and stores the
color values in an actual OpenGL texture. The shader also clears
our framebuffer at the end by setting each value to 0xffffffffff000000.
The first five bytes are the depth component which are reset to the
maximum value, and the last three bytes are the RGB component
which act as the background color. If set to zero, the background
will be black.

2.2 High-Quality Splatting
The second approach is an implementation of High-Quality Surface
Splatting on Today’s GPUs [Botsch et al. 2005] with compute shaders.
It achieves anti-aliasing by computing an average of the closest
fragments within a pixel. Many of the points in a pixel are samples
of the same front-most surface and therefore all of them should
contribute to the pixel. In basic rendering approaches, however,
only the closest fragment is drawn.

Our compute-based version works as follows. The first pass
creates a depth-buffer using the atomicMin approach from the
previous section. The second pass sums up the RGB values of all

fragments whose linear depth values are at most 1% larger than
the corresponding depth buffer value. Using a percentage makes
this method work at arbitrary distances. Each fragment that passes
the depth-test also increments the fragment counter for that pixel.
In the third pass, the final color value of a pixel is computed by
dividing the sum of fragment colors by the number of fragments.
The result is an image where each pixel contains the average of
overlapping points within a certain depth range, rather than only
the closest point.

3 PERFORMANCE
Table 1 compares rendering times of our two compute based meth-
ods against the traditional GL_POINT method. Retz on a 2080 TI
renders 5.3 times faster, and Morro bay renders 10 times faster with
atomicMin than GL_POINTs. The high-quality splatting method
renders 2.6 times and 3.9 times faster for the respective data sets.
We would like to note that the results vary greatly depending on
the order of points and the selected viewpoint. Shuffling points
reduces the efficiency of our compute based method. More detailed
benchmarking will be part of future work.

4 CONCLUSIONS AND FUTUREWORK
We have shown that in the context of point clouds, compute shaders
are not only a viable, but possibly advantageous alternative to the
traditional OpenGL rendering pipeline, with speed-ups of up to 10
times. However, at this time all work was done and evaluated on
point sizes of one pixel. Initial tests have shown that our current
compute shader implementation scales roughly linearly with the
number of pixels per point, wheres the OpenGL rasterizer scales
better than that. Our approach is therefore ideal for point sizes of 1
pixel, but less suited for sizes larger than 2 pixels.

We believe that compute based point rasterizers will be useful
for web-based rendering with the upcoming WebGPU API. On
MicrosoftWindows,WebGL is translated to DirectX, which does not
support sized point sprites. The GL_POINT primitive is therefore
emulated, which results in a significant loss of performance. With
WebGPU, developers may be able to benefit from the improved
performance and quality of our compute shader method.

ACKNOWLEDGMENTS
The authors would like to thank the Ludwig Boltzmann Institute for
Archaeological Prospection and Virtual Archaeology for the Heiden-
tor data set, Riegl for the data set of the town of Retz, and PG&E and
Open Topography for providing and hosting the Morro Bay data set.

REFERENCES
M. Botsch, A. Hornung,M. Zwicker, and L. Kobbelt. 2005. High-quality surface splatting

on today’s GPUs. In Proceedings Eurographics/IEEE VGTC Symposium Point-Based
Graphics, 2005. 17–141. https://doi.org/10.1109/PBG.2005.194059

Christian M Günther, Thomas Kanzok, Lars Linsen, and Paul Rosenthal. 2013. A
GPGPU-based Pipeline for Accelerated Rendering of Point Clouds. Journal of
WSCG 21 (2013), 153–161.

Michael Kenzel, Bernhard Kerbl, Dieter Schmalstieg, and Markus Steinberger. 2018.
A High-performance Software Graphics Pipeline Architecture for the GPU. ACM
Trans. Graph. 37, 4, Article 140 (July 2018), 15 pages. https://doi.org/10.1145/3197517.
3201374

Nathan Reed. 2015. Depth Precision Visualized. (July 2015). Retrieved May 8, 2018
from https://developer.nvidia.com/content/depth-precision-visualized

https://doi.org/10.1109/PBG.2005.194059
https://doi.org/10.1145/3197517.3201374
https://doi.org/10.1145/3197517.3201374
https://developer.nvidia.com/content/depth-precision-visualized

	Abstract
	1 Introduction
	2 Method
	2.1 Rasterization via AtomicMin
	2.2 High-Quality Splatting

	3 Performance
	4 Conclusions and Future Work
	Acknowledgments
	References

