Information
- Publication Type: Master Thesis
- Workgroup(s)/Project(s):
- Date: January 2019
- Date (Start): 10. January 2018
- Date (End): 29. January 2019
- Open Access: yes
- First Supervisor: Eduard Gröller
Abstract
Understanding the organization principle of the brain and its function is a continuing quest in neuroscience and psychiatry. Thus, understanding how the brain works, how it is functionally, structurally correlated as well as how the genes are expressed within the brain is one of the most important aims in neuroscience. The Biomedical Image Analysis Group at VRVis developed with the Wulf Haubensak Group at the Institute of Molecular Medicine an interactive framework that allows the real time exploration of large brain connectivity networks on multiple scales. The networks, represented as connectivity matrices, can be up to hundreds of gigabytes, and are too large to hold in current machines’ memory. Moreover, these connectivity matrices are redundant and noisy. A cleansing step to threshold noisy connections and group together similar rows and columns can decrease the required size and thus ease the computations in order to mine the matrices. However, the choice of a good threshold and similarity value is not a trivial task. This document presents a visual guided cleansing tool. The sampling is based on random sampling within the anatomical brain hierarchies on a user-defined global hierarchical level and sampling size ratio. This tool will be a step in the connectivity matrices preprocessing pipeline.Additional Files and Images
Weblinks
BibTeX
@mastersthesis{gutekunst_2019, title = "Guided Data Cleansing of Large Connectivity Matrices", author = "Florence Gutekunst", year = "2019", abstract = "Understanding the organization principle of the brain and its function is a continuing quest in neuroscience and psychiatry. Thus, understanding how the brain works, how it is functionally, structurally correlated as well as how the genes are expressed within the brain is one of the most important aims in neuroscience. The Biomedical Image Analysis Group at VRVis developed with the Wulf Haubensak Group at the Institute of Molecular Medicine an interactive framework that allows the real time exploration of large brain connectivity networks on multiple scales. The networks, represented as connectivity matrices, can be up to hundreds of gigabytes, and are too large to hold in current machines’ memory. Moreover, these connectivity matrices are redundant and noisy. A cleansing step to threshold noisy connections and group together similar rows and columns can decrease the required size and thus ease the computations in order to mine the matrices. However, the choice of a good threshold and similarity value is not a trivial task. This document presents a visual guided cleansing tool. The sampling is based on random sampling within the anatomical brain hierarchies on a user-defined global hierarchical level and sampling size ratio. This tool will be a step in the connectivity matrices preprocessing pipeline. ", month = jan, address = "Favoritenstrasse 9-11/E193-02, A-1040 Vienna, Austria", school = "Research Unit of Computer Graphics, Institute of Visual Computing and Human-Centered Technology, Faculty of Informatics, TU Wien", URL = "https://www.cg.tuwien.ac.at/research/publications/2019/gutekunst_2019/", }