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Kurzfassung

Um die Rendering-Effizienz von großen und komplexen Szenen zu verbessern, erkennen
Verdeckungsalgorithmen Objekte, die von anderen vollständig verdeckt sind und daher
nicht gerendert werden müssen (occlusion culling). Diese Methoden verfolgen allerdings
oft ein Alles-oder-nichts-Prinzip, da sie die Geometrie entweder vollständig entfernen
oder diese in voller Ausführung zeichnen. Bei dieser Vorgehensweise wird eine wichtige
Unterkategorie des Sichtbarkeitsproblems nicht berücksichtigt: das Erkennen von Ob-
jekten, welche kaum sichtbar sind, da sie von anderen teilweise verdeckt werden und
daher weniger detailliert gerendert werden können, ohne wahrnehmbare optische Fehler
zu erzeugen. In dieser Arbeit wird der Grad der Sichtbarkeit solcher Objekte bestimmt,
indem eine hierarchische Verdeckungskarte berechnet und ihre Struktur anhand der
Frequenz der Verdecker analysiert wird. Mit Hilfe dieser Analyse kann ein Parameter
berechnet werden , welcher dann den Detailgrad (level of detail (LOD)) dieser Objekte
bestimmt. Die in dieser Arbeit angewandte Methode erzielt gute Resultate, selbst in
Szenen, wo nur spärliche und räumlich weit verteilte Verdecker vorhanden sind. Sie hat
außerdem noch viel Potential für weitere Verbesserungen.
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Abstract

To increase rendering efficiency of large and complex scenes, occlusion culling algorithms
detect objects which are completely hidden by others and therefore do not need to be
rendered. However, these methods often follow an all-or-nothing principle, either culling
the geometry entirely or drawing it at full detail. This approach disregards an important
subcategory of the visibility problem: detecting objects that are hardly visible because
they are partly occluded and which can therefore be rendered at a lower level of detail
without generating noticeable artifacts. In this thesis we assess the level of visibility of
such objects by computing a hierarchical occlusion map and analysing its structure based
on the frequencies of the occluders. This analysis results in a parameter that controls
the level of detail (LOD) in which the geometry is rendered. The algorithm performs
well even in scenes with sparse occlusion, surpassing the standard hierarchical occlusion
map algorithm, with still a lot of potential for even further improvements.
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CHAPTER 1
Introduction

Modern large-scale applications such as video games or walkthrough programs need to
render complex scenes consisting of millions of polygons in real-time. Naively drawing
every object is impossible because of the immense number of polygons that need to
be processed every frame. Therefore, methods to reduce the scenes complexity were
developed over the last two decades.
One of the most common ideas is to remove primitives that have no influence on the final
image, because they are invisible. The process of finding and removing them is called
visibility culling and is one of the oldest problems in the field of computer graphics. In
a way, to computer graphics engineers who want to achieve peak performance in their
applications, invisible triangles have actually become much more important than visible
ones. There are three different approaches that are often combined to achieve optimal
results:

• Back-face culling

• Frustum culling

• Occlusion culling

Back-face culling describes the process of identifying and removing polygons that are
facing away from the viewpoint. It is easy to implement, integrated into hardware and
often already cuts the number of polygons in half.
The second method is called view frustum or simply frustum culling. The view frustum
is the part of a scene that is situated within the current field of view of the observing
camera. Consequently, frustum culling is removing objects which are entirely outside of
the view frustum.
Finally, occlusion culling is the method of removing objects from the rendering pipeline
that are completely hidden behind other objects and are therefore not visible [PT02].
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1. Introduction

Figure 1.1: Examples of frustum, back-face and occlusion culling. The dotted lines are
the geometry that is removed.

Figure 1.1 illustrates the three different culling techniques.
Back-face and frustum culling are trivial, and there exist straightforward implementa-
tions for both. On the contrary, occlusion culling in 3D scenes is extremely complex.
There is extensive literature on different occlusion culling methods, each coming with
their own benefits and disadvantages. However, those methods mostly focus on objects
either being completely visible or completely occluded. In the worst case, regarding the
rendering efficiency, this leads to an object being drawn at full resolution even if it is only
contributing a few visible pixels to the final image. This all-or-nothing approach ignores
an important subcategory of the visibility problem which can further improve rendering
efficiency: detecting objects that are only partly occluded and which can therefore be
rendered at a lower level of detail, without generating any noticeable errors. An example
for such a situation can be seen in Figure 1.2, where the leaves and branches of a tree
are covering the facades of buildings behind it. Above the first floor, only small regions
of the facades are visible, and it is difficult to distinguish any details.
In this thesis we expand on the hierarchical occlusion map culling algorithm by Zhang
et al. [ZMHH97]. First, we utilise the presented occlusion culling method to identify all
partly occluded objects. In the next step, we introduce a novel concept of an occluder
frequency analysis to estimate the level of visibility of the occluded objects. To do so, we
utilise the discrete cosine transformation. Finally, we use the results of this transformation
to control the level of geometric complexity in which each object is drawn. Our method
is an efficient occlusion culling algorithm that can render large and complex scenes in
real-time, even if only sparse occlusion is present.
In the following section we will give an overview of the most important occlusion culling
methods as well as techniques that reduce the geometric complexity of models. We
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Figure 1.2: Real-life example of hardly visible objects: the facades of the buildings are
visible through multiple holes in the foliage of the tree and can therefore not be culled
completely. However, hardly any details of the facades are perceptible.

then introduce the discrete cosine transformation and explain how we can use it to
transform images to the frequency spectrum. Subsequently, we detail our method and
implementation of the proposed occlusion algorithm and discuss our results when applying
our method to two large and complex scenes. Finally, we consider open problems and
possible improvements of our technique.
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CHAPTER 2
Related Work

In this chapter we will first present key strategies of occlusion culling algorithms and how
they attempt to address the visibility problem. Afterwards, we discuss methods that try
to reduce the geometric complexity of a scene, with particular attention to the conditions
under which they are applicable. Finally, we introduce the discrete cosine transformation
which is fundamental to our proposed solution.

2.1 Visibility culling

In literature, visibility culling algorithms are generally classified into two main categories:
from-point and from-region visibility. Whilst having many analogies considering principle
concepts, they optimize the visibility calculation for different constraints [PT02].
In the following, we will first detail the differences of those two approaches. Subsequently,
we will then concentrate on the most influential from-point algorithms that use hierarchical
structures to increase their efficiency.

2.1.1 From-point visibility

From-point visibility algorithms calculate all visible objects for the exact location and
perspective of the camera. Therefore, these computations are precise for the current
position, but need to be updated whenever the perspective of the camera changes even
slightly. Storing this visibility information for every possible location in a scene is im-
practicable. As a result, the current viewpoint is calculated at run-time, meaning that
these methods are applied online.
This has the advantage of requiring minimal to no preprocessing and being more flexible
to use, but at the cost of additional computations during execution. If implemented
naively, the per-frame costs of the visibility calculations can outweigh the benefits and
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2. Related Work

Figure 2.1: Left: from-point visibility. Right: from-region visibility. The light blue
lines show the border between visible (everything in white) and invisible (checkerboard
pattern) parts of the scene. Since from-region visibility must take multiple viewpoints
into account, fewer parts of the scene can be determined as completely occluded. In this
example, there is a small region between the boxes that is only visible from a small part
of the viewing region but therefore is considered to be visible for the entire region.

actually reduce efficiency. Nevertheless, one advantage of from-point visibility methods
is, that hardly any storage costs have to be accounted for, as most results from visibility
computation do not need to be stored or can be discarded shortly after the viewpoint
changes [Mat10, AMHH+18].

2.1.2 From-region visibility

From-region methods subdivide the scene into a spatial data structure with regions that
have similar visibility characteristics. For each of those regions a potentially visible
set (PVS) of objects is calculated and stored at a preprocessing step. At run-time, the
PVS at the position of the observer is retrieved. The advantage of such methods is the
minimal computational cost once the potentially visible set is created. However, visibility
calculations for regions are generally more complex and less precise for an individual
viewpoint, an example can be seen in Figure 2.1. Furthermore, since the visibility is
precalculated, the application is limited to static scenes. In addition, the storage costs of
the PVS for large scenes can be vast if not dealt with explicitly [Mat10, AMHH+18].

2.1.3 Hierarchical occlusion culling

In computer graphics, hierarchical structures are often used to combine multiple similar
problems so that they can then be solved with a divide-and-conquer approach, allowing
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2.1. Visibility culling

Figure 2.2: Different level of an occlusion map picturing a chestnut-tree [McG17]. The
levels of the occlusion map are ascending from left to right .

us to compute numerous small tasks efficiently. In this section we will detail occlusion
culling algorithms which use hierarchical data structures to improve the performance of
visibility calculations.
In the paper [ZMHH97] Zhang et al. describe an algorithm for a software-based hierarchical
occlusion map test. In the first step, a set of potential occluders has to be selected, which
are then rendered to a texture with a resolution equal to a fourth of the screen dimension.
This forms the lowest level of the occlusion map, also called level 0. The background
is drawn in black with an opacity value of 0, while the occluders are drawn completely
white with an opacity value of 1. In the next step, this texture is down-sampled, halving
the dimensions at each level until the size of the final level is reduced to one 4×4 block.
To do so, Zhang et al. propose to average 2×2 blocks of pixels of the higher occlusion map
level into a single pixel of the lower level. Figure 2.2 shows an example for an occlusion
map construction with a tree object as an occluder. This occlusion map is then used to
calculate visibility in two steps, an overlap test and a depth comparison.
For the former, Zhang et al. calculate a bounding box of an object they want to test
visibility for. This bounding box is then transformed into screen-space, after which an
axis-aligned bounding rectangle (AABR) is calculated containing the entire object, as
can be seen in Figure 2.3. They then choose a level of the occlusion map, so that the
AABR is roughly the same size as a single pixel of the map. This has the advantage that
an occludee’s AABR covers at most four pixels of the occlusion map. They then check
the opacity value at each of those pixels that overlap with the rectangle. If all opacity
values are completely white (opacity value of 1), we know that the object is overlapped
by the occluders. If not, some of the pixels in a lower level of the occlusion map are not
completely opaque, and therefore the object cannot be entirely occluded and it has to be
rendered.
Since the average operation is used at the construction of the occlusion map, it is possible
to retrieve the number of pixels that are not covered by occluders with the opacity value.
This provides a method to perform so-called approximate visibility culling: we can define
a threshold of how many pixels of an occludee are allowed to be visible for it to still be
considered occluded. In scenes with sparse occlusion this can improve the effectiveness
of the algorithm. However, the occlusion culling is no longer conservative and might
introduce noticeable artifacts.
In the next step, we have to compare the depth of the object to the occluders: if it is
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Figure 2.3: Left: Stanford dragon model [Sta] with bounding box. Middle: screen-space
axis-aligned bounding rectangle in red. Right: overlap test of the red AABR against the
occlusion map. The level of the occlusion map is chosen so that the AABR covers at
most four pixels.

behind the occluders, we can cull it, otherwise it has to be rendered.
For the depth comparison Zhang et al. describe a depth estimation buffer that works like
a software z-buffer. Nowadays, it has become standard for graphic cards to include a
hardware z-buffer, making the method outdated. To check if an overlapped object is also
behind the occluders, we can simply compare the minimum depth value of the axis-aligned
bounding rectangle to the depth of all pixels of the occluders that are overlapped by it.
If the depth is smaller than those of the occluders, we know that the object is invisible.
There are a few similar methods to hierarchical occlusion maps: Greene presents

in [Gre95] and [GKM93] occlusion culling with a hierarchical Z test. In this method,
a hierarchical Z pyramid is constructed instead of an occlusion map and the scene is
spatially structured in an octree. The octree is constructed by first encapsulating the
entire model in a cube. If the polygon count inside this cube is higher than a certain
threshold, the cube is subdivided into eight smaller cubes. As long as the threshold
is not reached, this subdivision repeats itself recursively. For creating the hierarchical
Z pyramid, the concept of rendering the occluders and downsampling is quite similar
to the hierarchical occlusion maps. However, the initial values that are drawn to the
texture are the outputs of the z-buffer, which corresponds to the depth information of
the objects. Additionally, when sampling 4×4 blocks, the lowest value is chosen at each
step, instead of interpolating between them. This allows conservative overlap tests and
removes the need of a depth test, but loses the ability to perform approximate visibility
culling. Instead of bounding boxes, the algorithm checks the cubes of the precomputed
octree to calculate visibility. If a cube is completely occluded, all the geometry that is
inside it is occluded as well. This has the advantage, that children of a tree node can be
culled if the parent is detected as being occluded.
Hardware occlusion queries were introduced in the late 90s and are still prominent
techniques used in game and rendering engines. They too share many conceptual
similarities with occlusion map and hi-Z test methods: In the first step, designated
occluders are rendered to the depth buffer. But instead of sub-sampling as in the previous
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2.2. Polygon reduction methods

methods, every pixel contained within the axis-aligned bounding rectangle of a potential
visible object is tested against the full resolution. These so-called queries are processed
in parallel on the GPU to efficiently determine the visibility. The issue of this technique
comes from the communication between the CPU and GPU: the query is issued by the
CPU after which it has to wait for the result, staling the rendering pipeline until the
GPU has finished calculating the query. At the same time, the GPU could run out of
queries to process, meaning that it has to wait for a new CPU input. Factoring in that
communication between CPU and GPU is expensive, a naive implementation could even
reduce the efficiency of an application. To still maintain real-time performance, means of
reducing the number of queries as well as decoupling the CPU and GPU from each other
as much as possible are required [Per20, BWPP04].
Bittner et al. propose an algorithm that utilises a spatial data structure in the form of
a kd-tree and the property of visibility coherence to address those issues. Additionally,
while the CPU waits for the queries to be executed, it begins to render objects that were
visible in the previous frame until the queries results are available. In the worst case,
if all objects that were started to be rendered are invisible, no performance was lost
since the CPU was waiting for the GPU anyway. However, every object that was already
rendered and that is still detected to be visible is already drawn, thus using the waiting
time effectively. In scenes with reasonably temporal coherence, the number of objects
that are rendered in vain is relatively small. Nonetheless, this optimization should be
considered with caution since in scenes with relatively small but complex geometry it can
yield a negative influence on performance. In their paper Bittner also briefly mentions
approximate visibility culling: Since occlusion queries are able to determine the exact
number of pixels that are visible, the above mentioned method of defining a threshold of
how many pixels are allowed to be visible is applicable [BWPP04].
In a follow-up paper this algorithm was refined, improving the coherence between the
GPU and CPU working together as well as further reducing the number of queries that
have to be issued thanks to more precise bounding volumes [MBW08].

2.2 Polygon reduction methods

A different strategy to improve rendering performance is to reduce the geometrical
complexity (number of polygons) of objects in the scene and replace them with simpler
approximations. However, this comes at the cost of reducing the visual quality and
potentially introducing optical errors to the final image. For this reason, we only want to
reduce the geometric complexity for objects where the change is hardly noticeable.
In this section we will give an overview of the three most common polygon reduction
methods: image-based impostors, level of detail (LOD) and real-time tessellation. Further,
we pay special attention to how these methods decide when to lower the visual quality of
an object.
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Figure 2.4: Example of a 3D dinosaur object and its planar impostor. Reprinted
from [Jes05].

2.2.1 Impostors

There are a few different definitions in the field of computer graphics for impostors and
when an object is considered to be one. For this thesis, we will go by the definition from
Maciel in their paper [MS95]: "Impostors are image-based entities used as alternative
representations for 3D scene parts for accelerating their rendering process." In this context,
the term "image-based" describes methods that use a set of images projected on 2D
geometry to represent all or some parts of a scene. Figure 2.4 shows an example for an
image-based entity.
To generate an impostor, an object usually has to be rendered at least once. The resulting
image as well as some basic geometric information is then stored and used to replace
the object with its 2D representation with as few artifacts as possible. Special attention
should be paid to the following to avoid potential errors in the final image:

• If the required output resolution is higher than the resolution of the impostor,
the image-based representation needs to be extrapolated to fill the required space.
This can lead to a pixelated appearance and loss of details. To prevent this, the
resolution of an impostor should boast similar quality to the image output of the
object it replaces.

• With a change of the viewpoint, far away objects seem to move slower than closer
objects. This phenomenon is called the parallax effect and can make previously
occluded parts of an object visible. Since impostor are only 2D representations
without depth, their appearance is unchanged by this phenomenon compared to
the original geometric model, resulting in visual artifacts. One way to reduce this
kind of error is to generate impostors which approximate the three dimensional
geometry. However, this greatly increases the complexity and the benefits are
strongly dependent on the structure of the models [SDB97].

• In dynamic scenes, depth information of the original object has to be stored to be
able to calculate the visibility for impostors. Moreover, for simple 2D representations
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Figure 2.5: Possible image artifacts caused by 2D impostors. Top left: ground truth.
Top right: low sampling resolution causing pixelation. Bottom left: impostor generation
from different viewpoint causes perspective errors. Bottom right: parallax errors yield
wrong perspective and scene integration. Reprinted from [Jes05].

it is impossible to display visibility correctly if one part of an impostor is in front
of an object and another part is occluded by that same object. One solution to this
is to store the depth information for every pixel of the impostor so that a z-test is
possible [Sch97].

Examples for these artifacts were well illustrated by Jeschke et al. and can be seen in
Figure 2.5 [Jes05, JWP05].

The impostor generation can be dynamic at run-time or static in a preprocessing step.
The former has the advantage of requiring less storage, being generally easier to im-
plement, as well as allowing for a more flexible and dynamic scene. The trade-offs are
additional computations during the execution of the application, as the impostor creation
requires the rendering of the original object. As a consequence, to reduce the number
of impostor generations, most methods allow impostors to diverge slightly from the
appearance of the object they are replacing, providing that the difference contains only
small and acceptable visual errors. Therefore, efficiency gains are tightly coupled to the
extent to which the temporal coherence of a scene can be exploited to reduce the rate at
which impostors need to be replaced [Jes05, JWP05].
As long as an impostor does not need to be updated, it is called valid. The factors that
influence validity of an impostor are dependent on the particular method that is used.
This threshold can be seen as an upper bound for the error that is introduced in the final
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image when replacing the original object. The regions in which an impostor is valid is
called view cell and most commonly depends on the distance (impostors should not be
too close to the viewpoint) and the change of viewing angle between the observer and
the impostor (because of parallax errors). For these reasons, the view cell region is often
cone shaped.
The efficiency gains expected from using impostors depends on the soundness of the
selection of which geometric objects should be replaced by their image-based counterparts.
Besides the consideration of image quality, it is a trade-off between rendering speed and
memory requirements.
One of the simplest approaches is to replace all objects that are far away, since they
mostly occupy only a few pixels of the final image which makes potential artifacts less
noticeable. Furthermore, distant objects need to be updated less often because of the
parallax effect described earlier. Methods that expand on these observations are detailed
in [AL99] and [WM03].
Jeschke et al. propose in [JWSP05] an algorithm which combines multiple objects into a
single impostor to reduce their size as well as guaranteeing a desired frame rate. Among
other improvements, this is achieved by applying occlusion culling to reduce the number
of objects before placing the impostor dynamically. However, occlusion culling is only
used to completely remove objects that are invisible, ignoring the subset of hardly visible
objects. Without factoring in the screen-space contribution, objects that are partly
occluded, with only a few pixels visible in the final image, are still rendered as expensive
geometrical models.
So-called perceptually-based rendering techniques expand on the fact that the visual
system of humans is not perfect, allowing methods to deliberately trick our perception to
achieve more efficient rendering algorithms. There has been some research regarding the
perception of partly occluded objects that are in motion. It was shown that the movement
of grids or patterns is difficult to notice when only visible through small holes in an
occluder [AM82]. In their paper [SLCO+04], Sayer et al. build on this observation and
propose to replace partly occluded objects with impostors, since the potential parallax
error is less likely to be noticeable.

2.2.2 Level of detail

The time it takes to render an object depends strongly on how many polygons it contains.
As a consequence, reducing the number of polygons can greatly speedup the rendering
process. Level of detail (LOD) methods store for each object multiple models with
different number of polygons, an example can be seen in Figure 2.6. These LOD are
generated either in a preprocessing step, offline or are designed manually in advance. At
run-time, for each visible object its LOD model, that is detailed sufficiently enough to not
produce any visual errors, is rendered. The selection criteria for which LOD to choose
are typically the same as with impostor rendering: the distance between the viewpoint
and the object as well as the screen-size [HD04]. It is important to note that the parallax
error is less of an issue for LOD compared to images based representations, since even at
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Figure 2.6: Different levels of detail of the Stanford bunny [Sta]. From left to right:
69451, 2502, 251, and 76 polygons. The models with fewer polygons are faster to render,
but can cause a visible error in the final image.

the lowest LOD the object is usually still three dimensional.
Although under-researched, there has been exploration regarding object visibility as an
supplementary input for LOD selection. The idea is, that if only a few pixels of an object
are visible, most details are occluded anyway. Especially in wide open scenes with sparse
occlusion this can increase the effectiveness of the overall LOD methods.
The term hardly visible set (HVS) was first introduced in [ASVNB00] by Andújar et
al. for describing objects which are only partly occluded. In their method, this set is
computed in a preprocessing step: First, the visibility with exact occluders is calculated.
Afterwards the scene is rendered a second time, but with enlarged occluders. Objects that
were visible at the first rendering step but are occluded at the second pass form the HVS.
Andújar et al. propose to group the objects contained in this set on how many pixels
they are contributing to the final image. If the contribution is below a user-specified
threshold, the object can be culled or rendered with a low LOD.
In [ESSS01], Birkholz expand on this idea with the addition of view-dependent LOD.
This technique allows to render different parts of a model at different LOD. To do so,
usually a very low-poly model is rendered first before refining it continuously at each
step. Whilst this method is not new in itself, the combination with visibility culling
results is a novel approach. In their application, Birkholz first renders the lowest detailed
version of the occluders to the z-buffer. Then, for each occludee the low-poly model is
rendered. At each refinement step the visibility of the geometry that would be added is
tested against the previously generated z-buffer with the help of occlusion queries. If a
refinement is determined to be visible, it is executed, otherwise it is ignored. As a result,
only the visible parts of an object are becoming more and more exact and geometrically
complex while the occluded parts remain simple approximations. However, this process
is inefficient and increases rendering time, since it was designed to optimally render a
scene using a fixed number of polygons and not as an improvement to efficiency.
As with impostors, there have been some attempts that exploit the shortcomings of our
visual system for an increase in rendering performance by decreasing the LOD of hardly
visible objects. In [DBD+07], Drettakis et al. present a perceptual rendering pipeline.
In their method, they first divide the scene into planes which are perpendicular to the
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viewing direction. In the next step, these planes are combined to compute so-called
threshold maps [RPG99]. These threshold maps contain information on how each plane is
masked by all the other planes’ geometry and shadows and predict the maximum change
in illumination that is unnoticeable to the human eye for each pixel. These threshold
maps are then used to determine an acceptable LOD for each object which ensures that
the difference in contrast when replacing the current LOD is imperceptible. While there
are a few tricks described in the paper to speed up this process, the basic idea is to
render both the current LOD and best possible LOD and then compare the difference in
luminance with the threshold for each pixel. Depending on the number of pixels that
are above the threshold, we then either increase, decrease or keep the current LOD. The
effectiveness of this method in reducing the LOD while keeping the visual quality was
then tested in an user study, where it achieved an average success rate of 65.5% in the
test scenarios. However, while their paper shows promising results regarding the image
quality, the algorithm introduces a lot of additional computational overhead, which only
makes it beneficial in scenes with sufficiently high visual masking.

2.2.3 Real-time tessellation

In contrast to impostors and LOD, real-time tessellation methods allow to increase the
polygon count of objects during run-time on the GPU, enabling them to dynamically add
details and smooth out surfaces and silhouettes. This is done by strategically placing
new vertices and forming additional edges derived from the already existing geometry.
Therefore, this makes it possible to send only simple polygons to the GPU which are
then refined into complex models. As mentioned before when talking about hardware
occlusion queries, communication between CPU and GPU is expensive, so only having to
pass the reduced geometry can increase the performance significantly.
The number of new edges generated is controlled by the tessellation level or sometimes
called the tessellation factor. A higher level of tessellation results in a tighter and more
fine-meshed object. In general, the distance to an object is used as an heuristic, where
farther away objects are rendered at a lower level. In this section we will present two key
techniques to calculate these new edges and vertices dependent on the input mesh.
The first is called Phong tessellation and prevails because of its simplicity while still
achieving high visual quality. To find a new vertex, first its barycentric coordinates in
the target polygon are calculated. In the next step, for each of the polygons normals
a tangent plane is constructed on which the vertex is projected. Simply interpolating
those projected points yields the final position. Figure 2.7 visualises this process. The
biggest advantages of the algorithm is that no neighbourhood information of the polygon
is needed and that a single rendering pass is sufficient for constructing all additional
vertices’. Moreover, since vertices and normals are usually shared between adjacent
batches, a continuous surface is guaranteed [BA08].
Point-normal triangles, often abbreviated to PN triangles, follow a very similar principle
of interpolating the normals and vertices. First, a set of ten control points is derived from
the vertices’ position and normals, which are evenly spread across the triangle. These
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2.3. Discrete Cosine Transformation

Figure 2.7: Schematic construction of a new vertex with Phong tessellation. The blue
point labeled with p is the trilinear interpolation, which is then projected (green dotted
lines and points) to each of the tangent planes (dotted rectangles). The red point is the
interpolation of those projected points and the final position. Reprinted from [BA08].

control points are then interpolated to form a Bézier surface, smoothing the edges of the
object [VPBM01].

swapping one LOD for a lower one.

2.3 Discrete Cosine Transformation

Utilizing the discrete cosine transformation (DCT), any signal can be represented as
a weighted sum of basic cosine functions with varying orthogonal frequencies. This is
also applicable for two dimensional signals such as images. Figure 2.8 shows a matrix
containing every 2D function needed to depict all possible 8×8 block of pixels. The
frequency of the function in the top left of the matrix is zero and represents the mean
amplitude of the input, also called discrete cosine coefficient. The intensity of vertical
frequencies increases the further we move to the right and that of the horizontal frequencies
the further we move to the bottom.
Transforming an 8×8 pixel block of an image to the frequency domain with the DCT results
in an 8×8 matrix containing the weights that indicate the influence each corresponding
cosine function has on the appearance of the image. The higher the absolute value of a
coefficient, the greater is the influence of the corresponding frequency. Input signals with
amplitudes ranging from [0, P ], where P is the highest possible value, are often shifted to
the range of [−P

2 ,
P
2 ] before the transformation. This has the advantage of the resulting

coefficients being centred around 0, where a negative coefficient means the inverse of a
frequency is present. This matrix will be called DCT coefficient matrix for the remainder
of this thesis [ANR74].

15
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Figure 2.8: The 2D 8×8 discrete cosine transformation’s basis functions [Wik21]. The
frequency of the function in the top left is zero. The intensity of vertical frequencies
increases the further we move to the right and that of the horizontal frequencies the
further we move to the bottom.

The DCT is widely used in different fields of computer science: In image compression
methods, combined with the observation that high frequencies are less important for the
quality of an image, the DCT is used to reduce the storage size of images. To do so, an
image is first split into 8×8 blocks of pixels. In theory, an arbitrary block size can be
chosen, but 8×8 has proven to be a good balance between simplicity of transformation
and achieving a high level of compression. After the transformation, for each block
a quantization matrix is multiplied with the DCT coefficient matrix which prioritises
lower frequencies and eliminates the high frequencies of images. This results in a sparse
coefficient matrix, which combined with other data compression algorithms, makes it
possible to store images extremely compact with generating only minimal errors [Wal92].
Another application for the DCT is the detection and removal of noise in images. For
this purpose, at first the level of noise has to be estimated. In their paper [KYFI16],
Katase et al. divide an image into multiple smaller patches and then analyses the high
frequencies of each patch respectively. This information is then used to calculate an
overall noise approximation which can then be subtracted from the image. This method
illustrates well how the DCT can be used to obtain valuable information and to examine
the content of images.
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CHAPTER 3
Method

We present an occlusion culling algorithm with hierarchical occlusion map and occluder
frequency analysis. The core algorithm is derived from the paper [ZMHH97] by Zhan et
al. but extends the method by a novel concept of an occluder frequency analysis. The
idea of this addition is to reduce the level of detail of objects which are not significant to
the quality of the final image, because they are partly occluded by other objects. Our
technique is based on the observation that for the same degree of occlusion, objects that
are only visible through small holes can be rendered with less geometric complexity than
if they are visible through a single large hole. Figure 3.1 visualises this idea.
Subsequently, we introduce a method that estimates the structure of the occluders and
provides a parameter defining the level of visibility. To do so, we apply the discrete
cosine transformation and analyse the resulting coefficient matrix. This parameter can
then be used to reduce the geometric complexity of hardly visible objects.
The method is designed to take advantage of the parallel processing power of the GPU

Figure 3.1: Left: original armadillo model [Sta] Middle: occluder with large holes Right:
occluder with small holes. Even though the number of pixel that are visible of the
armadillo is almost equal, fine details are less noticeable through small holes.
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3. Method

to achieve real-time rendering. After loading and preprocessing the scene, the algorithm
performs the following steps in each frame:

1. Occluder selection

2. Construction of the occlusion map

3. Overlap test

4. Frequency analysis

In the following sections we will detail the individual tasks of each step and explain the
reasons for our design choices.

3.1 Preprocessing
Our approach is designed to require very limited preprocessing and makes no assumptions
about the structure of the scene. This makes it versatile and easy to integrate into
existing applications.
When loading a scene, we create a bounding box for each mesh. In theory, arbitrary
bounding shapes can be used. Although spheres have the benefit of requiring less storage
and are easier to construct, the advantage of rectangular shapes are the simpler calcula-
tions as well as a better integration of DCT that will become apparent in Section 3.5.
It is important that the bounding volume is not too conservative, as this would greatly
reduce the effectiveness of the culling process.
For calculating the box, we simply choose the minimum x, y, and z coordinates of a mesh
as the lower left corner and the maximum as the upper right. The remaining vertices can
be derived implicitly. While these calculations are processed on the CPU, all calculated
bounding boxes are stored in a single buffer and are passed to the GPU.

3.2 Occluder selection
The selection of good occluders has the highest impact on the performance of our culling
algorithm. Both selecting too few and too many objects can result in a very small number
of occludees. Consequently, the visibility algorithm can then only remove a very limited
number of polygons, therefore hardly improving rendering performance.
An optimal occluder selection is highly dependent on the scene and should be adjusted
accordingly. Our test scenes consist of objects that are similar in size and fairly equally
distributed, for details we refer to Chapter 4. This allows us to keep the implementation
as simple as possible: we define an object as an occluder solely if it is close enough to the
viewpoint.
As a first step, we calculate the distance of the closest point from an object’s bounding
box to the camera and test if it is below a user-defined threshold. Every object selected
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3.3. Construction of the occlusion Map

this way is marked as occluder. All the other objects are forming the set of potentially
visible set, for which we have to perform the visibility testing in the following steps.
Our application’s occluder selection is computed on the GPU, making it extremely
efficient. As a consequence, we are able to perform the selection online, avoiding to build
an occluder database. Another advantage of this selection is that we do not have to
perform a depth test as in the original hierarchical occlusion map algorithm, because no
object can be closer to the viewpoint than the occluders.

3.3 Construction of the occlusion Map
For creating the occlusion map, every object determined as occluder in the previous step
is rendered at full intensity to a texture without a depth buffer and only a single colour
channel. The tessellation level or LOD of the occludees should be set to its maximum,
since the so-created curved and convex surfaces may occlude objects that would otherwise
be visible. Any lightning or shadow calculations are ignored at this stage. The texture
is then downsampled, averaging 2×2 blocks of pixels at every step, until the texture’s
size is only a single pixel. In the source paper, Zhan et al. render the occluders into a
texture with only a fourth of the size of the screen resolution. We assume that this is
due to reducing the number of calculations, since the map is built on the CPU and the
computation is quite costly. In contrast, we build our map hardware accelerated and can
therefore afford rendering at full resolution.
We note that it is important to set the texture parameters to return the nearest pixel
when performing a texel lookup instead of interpolating between neighbours, as this
would yield errors in the following Section 3.4 and Section 3.5.
We observed one problem when implementing this method which is occurring when a
single pixel is not occluded in an otherwise completely occluded region. In high levels of
the occlusion map, the influence of a single pixel is becoming so small, that the opacity
value is eventually rounded to full intensity due to machine precision. This can result
in objects being culled although a very small number of pixels is visible, a detailed
explanation can be seen in Figure 3.2. Since this has only very limited impact on the
results of this thesis, we did not take any special precautions, but point to possible
solutions in Chapter 5.

3.4 Overlap test
In this step we determine for every object in the PVS if it overlaps with the occluders. This
is done using the same method as Zhan et al. and is described in detail in Section 2.1.3.
First, we transform each vertex of an object’s bounding box to clip space. We then
compute the two points at minimum and maximum x and y coordinates of the transformed
vertices, which implicitly form an axis-aligned bounding rectangle. Following, we shift
the AABR coordinates from the clip space range of [-1, 1,] to texture coordinates of [0, 1].
In the next step, we calculate the level of the occlusion map where the AABR has roughly
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3. Method

Figure 3.2: A single non-occluded pixel with an opacity value of 0 is surrounded by
occluded pixels with an opacity value of 1 (image 1). For each level of the occlusion
map, an average of four pixels is calculated. With three occluded pixels and a single
non-occluded one, this results in 1+1+1+0

4 = 0.75 for the first level (image 1 to 2). This
is repeated for the second level (image 2 to 3) with 1+1+1+0.75

4 = 0.9375, and continues
until the final level of the occlusion map is computed. In the case that a single pixel
was not occluded in the lowest level of the occlusion map, the occlusion value is quickly
converging towards 1, until machine precision reaches its limit and the value is actually
rounded to 1, marking it incorrectly as completely occluded (image 6).

the size of a pixel and therefore covers at most four pixels. Since the occlusion map is
constructed by averaging 2×2 blocks, its dimensions are reduced at every level by half.
As a consequence, we can simply take the logarithm of the largest side relative to the
screen size of our AABR to result in our level of occlusion map (LOM). In Equation 3.1,
X and Y are the dimensions of the viewport, l and h the length and height of the AABR.

LOM = dlog2(max(Xl, Y h))e (3.1)

For every corner of the AABR we check the opacity of the occlusion map at the calculated
LOM. If the value for all points is above a user-defined threshold, we can cull the object.
If any corner is below the threshold, we descend one level in the occlusion map and check
every sub-pixel within the AABR. This is done twice at most, because the number of
pixels we potentially have to test grows by the power of two. If any of the sub-pixels are
still below the threshold, we know that the object is not completely occluded.
For an early termination, we also check if the opacity values of every corner of the
AABR equals zero. In this case, the object is not occluded at all, and we simply set the
object’s tessellation level to the maximum. Otherwise, we perform a frequency analysis
to determine their level of visibility.
Algorithm 3.1 outlines the overlap test. The outer for-loop is redundant in the actual
implementation because we are processing every bounding box in parallel in its own
thread.
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3.5. Frequency analysis

Algorithm 3.1: Overlap test
1 Function isVisible(aabr):
2 for object in PVS do
3 LOM = dlog2(max(Xl, Y h))e;
4 for corner in object.aabr do
5 visibility = textureLod(occlusionMap, corner.xy, LOM);
6 if (visibility & threshold) ∨ checkSubP ixels() then
7 corner.occluded = true;
8 end
9 end

10 if all corners occluded then
11 object.instanceCount = 0;
12 return;
13 end
14 if all corners equal 0 then
15 object.tessellation_level = MAX_TESSELLATION;
16 return;
17 end
18 doFrequencyAnalysis();
19 end

3.5 Frequency analysis

In regions where the overlap test determines objects to be visible, we want to calculate a
parameter measuring their level of visibility. This parameter is then used to reduce the
geometrical complexity of partly occluded models to increase their rendering efficiency.
Simply calculating the number of visible pixels does not fully exploit the imperfections of
our visual perception or the spatial information available from the hierarchical occlusion
map. To recall, Figure 3.1 shows that with the same number of visible pixels, small
details of an object are far less noticeable if we can perceive them only through multiple
small holes in the occluders, instead of a single large one. Accordingly, we can much
further reduce a model’s geometric complexity without introducing apparent artifacts if
it is only visible through small holes.
To analyse the structure of the occluders, we utilise the 2D DCT. Its equation can be
seen in Equation 3.2 and is used to transform the regions overlapped by the AABR of
the occlusion map to the frequency spectrum. If the resulting coefficient matrix has low
values in the low frequency sections, we know that the analysed block must be fluctuating
frequently between high and low opacity values. This is reminiscent of occluders with
many small holes, as can be seen in Figure 3.3.
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3. Method

Figure 3.3: Schematic depiction of the coefficient matrices of the pixels within the red
boxes when transformed by the DCT. The graphs are illustrating the resulting coefficient
matrices with a bar for each coefficient. The higher a bar, the greater is the value of the
coefficient and therefore the influence of the corresponding frequency on the image. a)
Abrupt cut from occluded to non-occluded results in a lot of vertical frequencies. b) A
single large hole does not include many high frequencies. c) Completely occluded regions
result in a single bar at the coefficient for the frequency of 0 d) Frequent changes in the
occlusion map result in many high frequencies. DCT coefficient graphics were created
with [BGH+05].
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3.5. Frequency analysis

F (u, v) = α(N)α(M)
N−1∑
i=0

M−1∑
j=0

f(i, j) cos( πu2N (2i+ 1) cos( πv2M (2j + i)

α(x) =


1√
x
, for x ≥ 0√

2
x , otherwise

(3.2)

One challenge arises from the fact that the AABR of objects at the computed LOM
covers at most four pixels. This implies that its largest dimension must be smaller than
the size of a pixel, and larger than half a pixel. However, for the DCT to yield meaningful
results, inputs with a size between 8×8 or 16×16 blocks of pixels are ideal. For this
purpose, we again take advantage of the fact that the number of pixels in the occlusion
map decreases by the power of 2 at each level. If we descend four levels in the occlusion
map, we have at the minimum 24 · 0.5 = 8 pixels and at the maximum 24 · 1.0 = 16 pixels
in one dimension, and equal or less in the other. This block can then be transformed
with the DCT, ensuring its size is a good compromise between keeping computational
costs manageable and still accomplishing meaningful results.
The simplest idea would be to calculate the entries of the coefficient matrix for all
frequencies. However, the fastest implementations of the 2D DCT still has a complexity
of O(n2 logn). Even though the algorithm can be parallelised well on the GPU, the costs
of calculating the DCT for every object in the PVS could still outweigh the benefits.
Therefore, we suggest two simplifications to increase efficiency of the DCT: firstly, we
calculate the coefficients only for frequencies that are important for computing the
visibility parameter. Secondly, we check the number of high frequencies by calculating
the number of low frequencies. This is possible because the frequencies are indirectly
proportional, so that small occurrences of low frequencies imply high occurrences of high
frequencies and vice versa.

In Equation 3.3 we present a simple parameter for describing the level of visibility (LV)
that takes the average intensity of the pixel block (the first coefficient) and subtracts the
absolute value of the highest frequencies in every direction as well as their combination.
This results only in high values for inputs with a sufficiently high level of occlusion as
well as a high occluder frequency. Figure 3.4 shows the steps required to calculate the
LV.

LV = F (0, 0)− (|F (1, 0)|+ |F (0, 1)|+ |F (1, 1)|) (3.3)

To benefit from the level of visibility estimation, the application needs to implement a
method that can reduce the complexity of models dynamically in the scene, the most
common being impostor, LOD and tessellation. Depending on which technique is imple-
mented, the visibility parameter has to be computed slightly differently. While impostor
techniques require a threshold of when to replace an object or update the image repre-
sentation, LOD and tessellation enable a more continuous control of the level of complexity.

23



3. Method

Figure 3.4: Computation of the level of visibility for an AABR. Top left: occlusion map
with a tree occluder. Highlighted in red is the AABR of the object for which we want to
test the level of visibility for. Top right: Closeup of the 8×8 block of the occlusion map
contained within the bounding box. Bottom left: the opacity values of the 8×8 block.
The values were multiplied by 255 to conform to standard image colour values and to
easier compare their size. Bottom right: discrete cosine transformation coefficients after
shifting the values to the range [-128,127] and transforming them with the DCT. The
values within the blue rectangle are input for the level of visibility parameter. The LV for
a completely occluded 8×8 block is 1024 and for a non-occluded -1024, so this example
has 3

4 of the maximum LV, meaning that the object is fairly occluded.
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CHAPTER 4
Implementation and Results

To evaluate our method, we implemented the algorithm in C++ and OpenGL version 4.5.
In this chapter, we first summarise the most important aspects of our implementation.
Following, we discuss the results of two test scenarios regarding the efficiency of the
algorithm and of a small survey concerning the visual quality of the rendered images.

4.1 Implementation

In this section we summarise implementation details that are not specific to our method,
but which improve the efficiency and which can be found in most rendering applications.

4.1.1 Indirect rendering

To improve performance, we exploit a technique known as indirect rendering [SWH15].
The difference between indirect and normal rendering is that the parameters of a draw
call are retrieved from the GPU instead of the CPU. For this purpose, we have to first
load the entire geometry of the scene to a single buffer which we will call the scene buffer.
Afterwards, we store a simple struct for every mesh in a draw call buffer that specifies
the input variables required for rendering: the vertex count, positions of the first vertex
and index in the scene buffer, number of instances that should be rendered as well as the
ID of the base instance.
After binding this draw call buffer to the GPU, we can directly manipulate the input
parameters when performing visibility culling: If an object is determined to be occluded
or outside of the view frustum, we simply set the instance count to zero, preventing it
from being rendered.
The advantage of this method is that we only have to issue a single draw call for each
shader that is used for rendering the scene. Moreover, we do not have to read back the
results from the GPU-side visibility calculations, increasing the performance significantly.
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4.1.2 Frustum culling

Since most applications utilise frustum culling, we also included it in our implementation.
To recall, frustum culling removes all geometry from the rendering pipeline that is outside
of the view frustum. To calculate if an AABR is inside the view frustum, we simply have
to check whether both corners are greater 1 or smaller -1 in any direction. If this applies,
we know that the AABR is outside of the clip space and therefore the mesh is outside
of the view frustum. To cull the mesh, we set its number of instances in the draw call
buffer to 0. We compute frustum culling on the GPU and before the occluder selection
to already reduce the number of objects we have to apply our algorithm for.

4.1.3 Tessellation

To utilise the level of visibility, we perform Phong tessellation [BA08] over triangle
patches because of its simplicity. We define a tessellation level which determines the
number of times an edge is split into segments. The maximum tessellation level is bound
to 20 and is the highest quality of a model.
The individual level of tessellation for each object depends on their level of visibility that
is dynamically computed and described in Section 3.4. In our application the visibility
parameter is scaled to the range of our tessellation levels. For this purpose, we simply
map the interval of the minimum and maximum of the possible parameter values to the
range of the tessellation levels. It is stored in a buffer so that we can set it on the GPU,
circumventing a pass through the CPU. As an example, the LV of 641 from Figure 3.4
would result in a tessellation level of 4 in our application.
Special care has to be taken when tessellating so called T-junctions. They can occur
when the edge between a flat and a non-flat surface is split and result in a crack in the
surface. There are multiple strategies to circumvent this, with some being extremely
complex. We implement one of the simplest solutions that is averaging the normals of
every mesh of an object, making it impossible for a flat surface to be next to an uneven
one. The downside is that sharp corners are smoothed out in the process even if we do
not want them to, as can be seen in Figure 4.1 [Dud12, PF05].

4.2 Results

To test the efficiency of our method, we rendered two complex scenes and compared our
frame times to hierarchical occlusion map without frequency analysis and only frustum
culling. The applications were executed in Windows 10 version 10.0.19042 on an AMD
Ryzen 7 2700X, 3700 MHz, 8 kernel processor with 16 GB RAM and a NVIDIA GeForce
GTX 1070 Ti GPU.

26



4.2. Results

Figure 4.1: Left: tessellation with smoothed normals. Right: tessellation without
smoothed normals. The surfaces with smoothed normals are much rounder and plumper
than without.

4.2.1 5001 bunnies scene

The first scene consists of 5001 Stanford bunnies [Sta] and is inspired by one of the test
scenes from the paper by Bittner et al. [BWPP04]. To utilise the tessellation method,
the original model was imported into the software Blender and its mesh was reduced to
just 98 triangles. With the maximum tessellation level of 20, the triangle count for a
single bunny increases to 58,800. In the next step we copied the object to 5000 random
locations within the volume of a relatively small cube, resulting in a tightly packed scene.
Each bunny was further given a random rotation on the global x axis and all objects are
illuminated by a simple direction light shining from the top. The resulting test scene can
be seen in Figure 4.2

An example for the culling and geometry reduction of our application can be seen in
Figures 4.3 and4.4. The first pictures the test scene as perceived by the camera. The
occluders are drawn in red, the occludees in different shapes of blue. The darker an
occludee’s colour, the higher is its level of tessellation and therefore its polygon count.
We note that hardly any light blue objects are visible and the visible ones are exclusively
in places where they can only be seen through small holes between the occluders.
For the second image, the position of the camera that is used for the occlusion culling
computations is anchored to the same position as before. To observe what effects the
occlusion culling algorithm has, we then move to the backside of the scene looking in
the opposite direction as in the previous render. It is easily noticeable, that the bunny
objects that would be in the middle of the cube, are culled completely by the hierarchical
occlusion map test. Moreover, in contrast to before, we can see that actually numerous
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Figure 4.2: First test scene with 5001 densely packed bunnies and 294,058,800 triangles
at max tessellation.

objects near the centre are drawn in bright blue, which indicates that they are rendered
at a low resolution. Because of this, the scene is reduced to just 132,872,418 triangles
which is almost 1

9 of the original triangle count.
We recorded a walkthrough and replayed it with three different visibility algorithms:
only frustum culling, visibility culling with hierarchical occlusion map and our extension
of the method. The results can be seen in Figures 4.6 and 4.7.
The camera is first circling around the cube of bunnies so that every object is within
the frustum and with only the outermost being detected as occluders. We can see that
standard hierarchical occlusion map culling does not deal with this situation very well and
even performs worse than frustum culling in the beginning. This is due to the bunnies
being small and sparse occluders that to a large extend only occlude parts of an occludee.
As a result, the algorithm performs the overlap test for several objects but will not be
able to actually cull any, leading to a significant drop in performance.
In contrast, our frequency analysis is still able to remove up to 30 percent of the geometry
just by reducing the complexity of the hardly visible models.
Starting from frame 900, the camera is closing in on the scene, increasing the number
of polygons outside of the viewing frustum. Subsequently, the efficiency gains of the
occlusion culling algorithms are reduced as fewer objects can be removed. On the plus
side, we also have to perform less overlap tests, reducing the computational overhead to
a minimum.
Figure 4.5 shows the different openGL commands and their GPU run-time costs for our
algorithm. The most expensive calls are rendering the scene and creating the occlusion
map. The frequency analysis is hardly noticeable in comparison.
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Figure 4.3: Front view of the camera. The red bunnies are the occluders, the blue bunnies
occludees. The brighter the blue, the lower is the level of visibility and therefore their
polygon count.

Figure 4.4: View from the back of the scene to see the effects of our algorithm. The
hole in the middle is due to bunnies being occluded completely and which were therefore
culled. Our algorithm reduces the scene from 294,058,800 to 132,872,418 triangles.
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Figure 4.5: Frame captured by Nvidia Nsight Systems from the 5001 bunnies scene. The
blue "glMultiDrawElementsIndirect" is the rendering command, the red "glClear" the
generation of the occlusion map. The grey part in between these two is the overlap test
and frequency analysis. The most expensive operation besides rendering the objects is
generating the occlusion map.

4.2.2 10001 bunnies scene

The second test scene uses the same bunny model as the first. Only this time, it is copied
10000 times and placed in a much larger volume to produce a more sparse distribution.
In addition to the rotation, each bunny is randomly scaled in size as well. Figure 4.8
shows the entire scene on the left and an example viewpoint from within the bunny cube
on the right.
We once more implemented an automated walkthrough to measure the frame time and
triangle count of all three methods. The results are presented in the graphs in Figures
4.9 and 4.10. At first, the camera observes almost the entire scene with relatively low
occlusion present, resulting in high frame times. It then closes in on the bunny cube and
moves along a circle on the inside.
We observe that in this scene with lower geometric density, the occlusion culling algorithms
are less effective. However, they still outperform simple frustum culling most of the time.
The only exception occurs in the same situation as in the first test scene when frustum
culling already removes most of the geometry. This is because our implementation still
builds an occlusion map even if there are few objects in the potentially visible set.
In general, our frequency analysis extension consistently lowers the frame time compared
to the original algorithm.
We note that when measuring the frame times, we encountered random spikes that

occur more frequently after recording for a while. We think that this is due to the
method of recording the frame data as we cannot find any signs of the application stalling
at any point and the spikes are only occurring after 1500+ frames. Unfortunately, we
were unable to find a solution for this issue, but the overall performance should not be
influenced by this.
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Figure 4.6: Comparison of frame times during the 5001 bunnies scene’s walkthrough of
occlusion map algorithm with and without frequency analysis and only frustum culling.
Our method consistently outperforms the other approaches.

4.2.3 Visual quality survey

The performance gain of our method is only relevant if we can still ensure that the
visual quality of the scene is not compromised by reducing the quality at which the
hardly visible objects are rendered. However, measuring the impact on the visual quality
is challenging, as it depends on human perception and can differ between individual
observers [AOS+17].
To still put our method to the test, we conducted a small survey consisting of five people.
While this sample size is far from statistical significance, it can at least hint at the
potential of our method and ensures that there are no obvious artifacts. As before, we
recorded a walkthrough of different scenes, this time consisting of an object behind a
plane with different levels of occlusion. An example can be seen in Figures 4.11 and 4.12.
We then showed the recordings to the participants, once with the occluder frequency
analysis turned on, and once with it turned off.
Especially in scenes with highly occluded objects as well as in scenes with hardly occluded
objects we received the feedback that the two methods are indistinguishable from each
other. The most noticeable artifact arises in scenes with moderate occlusion and which
contain objects whose silhouette shape is heavily affected by the level of tessellation. In
this scenario, a noticeable popping effect can occur at the transition between two levels
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Figure 4.7: Comparison of percentage of number of triangles rendered during the 5001
bunnies scene’s walkthrough with 294,058,800 triangles at full tessellation. Our method
significantly reduces the amount of rendered geometry.

Figure 4.8: Second test scene with 10001 bunnies and 588,058,800 triangles at full
tessellation.
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Figure 4.9: Comparison of frame times during the 10001 bunnies scene’s walkthrough.
Even with a lower geometric density our algorithm performs well compared to the other
methods.

of tessellation.

4.2.4 Discussion

The results of our tests show that in terms of rendering efficiency our method consistently
outperforms the standard hierarchical occlusion culling algorithm [ZMHH97]. Due to the
frequency analysis, this increase in performance is achieved without compromising the
visual quality of the scene.
In comparison to the perceptual rendering pipeline [DBD+07], our occluder frequency
analysis only introduces minimal overhead in both complexity and fixed run-time cost, as
it is built on an already established occlusion culling method. However, our technique is
only focusing on the occluder frequency, ignoring the contrast between individual pixels.
Therefore, even a combination of both methods might be plausible. In any case, a direct
comparison of both algorithms would be an interesting task for a follow-up work.

33



4. Implementation and Results

Figure 4.10: Comparison of percentage of number of triangles rendered during the 10001
bunnies scene’s walkthrough with 588,058,800 triangles at full tessellation. Although
less effective with a lower geometric density, the number of triangles is still reduced
noticeably.
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Figure 4.11: Comparison of visual quality with occluder frequency analysis turned on and
off for the bunny model [Sta] which is occluded by foliage. Top left: occluder frequency
analysis turned on. Top right: occluder frequency analysis turned off. Bottom left:
occluder frequency analysis turned on and removed occluders. Bottom right: occluder
frequency analysis turned off and removed occluders. Since the bunny is almost completely
occluded, our method renders the bunny at a lower LOD. However, it is only really
possible to tell the difference if we turn off the occluders (remove the foliage).
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Figure 4.12: Comparison of visual quality with occluder frequency analysis turned on
(left) and off (right) for lion head model [McG17] and low occlusion.
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CHAPTER 5
Conclusion and future work

We have presented a novel concept of occluder frequency analysis that improves the
effectiveness of visibility culling when rendering large scenes with occluders containing
small holes. We showed that with the help of the discrete cosine transformation, we
can gain more insight into the structure of occluders and adjust the occludees’ quality
accordingly. Because we perform frustum and hierarchical occlusion culling beforehand,
this analysis is only applied to a finite number of objects. Therefore, our approach
introduces only very limited computational costs in the worst case, while otherwise
improving rendering efficiency.
We believe that there is a lot of potential in further investigating methods to improve
rendering when dealing with hardly visible objects. Currently, resources addressing this
problem are very limited in quantity and many papers that try to solve the general
visibility problem regard it only in a short side note, if discussed at all.

5.1 Future work

While we showed the potential of the occluder frequency analysis, there is still room for
improvement. In the following subsections we point out problems that have emerged
during our implementation and that require further research. Additionally, we will discuss
possible further refinements to the algorithm that could be addressed in a follow-up work.

5.1.1 Round off errors

As mentioned in Section 3.3, when creating the occlusion map some inaccuracies may be
introduced by roundoff errors. One solution could be to use a higher precision data type
to store the opacity values. However, this will only increase the level at which the issue
occurs and not solve it completely. Another idea would be to raise a flag for each pixel

37



5. Conclusion and future work

where a sub-pixel is not occluded. If only conservative occlusion culling is implemented,
we do not have to interpolate at every step and only store if all sub-pixels are occluded.

5.1.2 Popping artifacts between LOD

The popping artifacts that were visible in the visual quality survey form Section 4.2.3 are
due to our very simplistic implementation of the tessellation algorithm. Since popping
is a common problem in LOD methods, there is plenty of literature on how to reduce
this visual error such as unpopping [GW07]. Integrating such a refinement could further
improve the results of our method.

5.1.3 Over-conservative bounding volumes

Another challenge arises from scenes where objects have shapes that cannot be tightly
enclosed with a bounding box, as illustrated in Figure 5.1. To still achieve good results
with our algorithm, the meshes should be split to produce more accurate bounding
volumes. However, this can greatly inflate the number of bounding boxes necessary,
reducing the efficiency. Therefore, if this is not applicable, a non-conservative bounding
box that does only include the core geometry could greatly increase effectiveness. The
same applies for objects where the bounding box would have extremely disproportional
dimensions. It should be taken into consideration that everything outside the bounding
box will be ignored during the visibility calculations.

5.1.4 Fast discrete cosine transformation

Since the discrete cosine transformation is widely used in the field of computer vision, a
lot of research is conducted to further improve its efficiency. Whilst our implementation
is sufficient for the application, additional speedup when computing the DCT can free
the GPU to compute different tasks in rendering engines.
Especially video compression methods require a fast DCT. Our implementation has a
higher tolerance for errors since we do not need to revert the transformation. Therefore,
replacing the exact DCT with an approximation as presented in [LSSB20] could be very
promising.

5.1.5 Improve GPU parallelisation

With GPUs becoming more and more powerful, the parallelisation of our program could
be further improved. Every coefficient of the DCT could be calculated by its own thread,
further reducing the overhead of our method and allowing us to analyse all frequencies
of the occlusion map. As a consequence, the visibility parameter could then be better
adjusted to achieve an even more precise adaption of the occludees’ quality.
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Figure 5.1: a)The object is completely contained within its red bounding box. Because
of the shape of the object, the size of the bounding box is relatively large and the overlap
test would be less effective. b) The bounding box is split into two, resulting in a tighter
bounding box and reducing the overall size but also doubling the number of required
overlap tests. c) Non-conservative bounding box that has a smaller volume but might
introduce errors.

5.1.6 Patch-based visibility culling

Instead of applying the occlusion culling algorithm to every object, Nießner et al. [NL12]
test visibility on patch level. In short, this means that the objects are divided into smaller
meshes so that each feature of an object is processed individually.
For large scenes, we are of the opinion that the number of overlap tests required for all
patches could quickly become overwhelming. However, our application could adapt this
approach to adjust different parts of the model to different levels of geometric complexity
while still only testing the visibility once for the entire model. For example, if only one
half of the entire model is visible, the DCT would reflect this in its coefficients as can be
seen in Figure 3.3a. As a consequence, we could render only the visible half at a high
resolution and thus adjust the models to the visibility on a more fine-grained level.
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