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Kurzfassung

Bei der Optimierung des Beleuchtungsdesigns spielen besonders für Büro- und Wohn-
räume Fenster eine große Rolle, da natürliches Licht wichtig für Produktivität, Fokus
und die Stimmung ist. Das Rendering Framework Tamashii, das zur Zeit an der For-
schungseinheit für Computer Grafik der TU Wien in Entwicklung ist, bietet eine Funktion
automatisch verschiedene Parameter von Lichtquellen an Hand eines Optimierungsziels
zu optimieren, beispielsweise die Position, die Intensität oder die Rotation. Das Ziel
dieser Arbeit ist die Möglichkeiten die Tamashii zum Beleuchtungsdesign bietet durch die
Simulation von Fenstern durch Flächenleuchten zu erweitern. Tamashiis automatische
Beleuchtungsoptimierung nutzt Light Tracing, was im Gegensatz zu Path Tracing die
Lichtstrahlen von den Lichtquellen anstatt der Kamera verfolgt. Eine Implementierung
von Environment Maps im klassischen Sinn wäre daher nicht sinnvoll, denn sonst müssten
für jedes Pixel der Environment Map Lichtstrahlen emittiert werden, obwohl davon nur
wenige überhaupt das Fenster erreichen würden, was sehr ineffizient wäre.

Wir implementieren einen neuen Lichttyp der Flächenleuchten mit IES Leuchten kom-
biniert um Fenster zu simulieren. Das IES Dateiformat wird häufig von Leuchtmittel-
herstellern genutzt, um die physikalischen Eigenschaften von Leuchten darzustellen und
diese in Software nutzbar zu machen. Damit unsere neuen Leuchten das Licht das durch
Fenster scheint genau simulieren können, wandeln wir HDR Dateien in IES Profile um.
Unser neuer Lichttyp kann außerdem an anderen Objekten in der Szene wie Wänden oder
Decken befestigt werden, wodurch die manuelle Bewegung auf das verbundene Objekt
beschränkt wird, was die Nutzung intuitiver macht. In unseren Tests stellen wir fest,
dass unsere Implementierung im Vergleich zu Blenders Path Tracing Renderer Cycles
bei der gleichen Kombination an Szenen und HDR Dateien echte Fenster mit wenigen
Einschränkungen realistisch simulieren kann.

Damit der Algorithmus zur Beleuchtungsoptimierung ein Fenster nur innerhalb des
Objekts bewegen kann an dem es befestigt ist, implementieren wir eine Nebenbedingung
die bei jeder Iteration der Optimierung evaluiert wird. Diese Nebenbedingung wurde
umgesetzt indem wir mithilfe einer Straffunktion Strafen berechnen wenn das Fenster an
den Rand des verbundenen Objekts bewegt wird, wodurch wir verhindern können dass
der Algorithmus das Fenster aus dem Objekt hinaus bewegt. Bei der Evaluierung unserer
Implementierung stellen wir fest, dass der Algorithmus mithilfe unserer Nebenbedingung
gültige Positionen für die Fenster bei der Optimierung findet.
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Abstract

For lighting design, optimizing windows plays a major role, especially for office and living
spaces, as natural light is important for focus, productivity and also mood. The rendering
framework Tamashii, which is currently in development at the research unit of computer
graphics at TU Wien, offers a feature to automatically optimize multiple parameters of
light sources like the position, intensity or rotation for a predefined lighting target. This
thesis aims to expand the possibilities Tamashii offers for lighting design by simulating
windows through area lights. Tamashii’s automatic light parameter optimization relies
on light tracing, which unlike path tracing, casts the light rays from the light sources
instead of the camera. This is why implementing environment maps in a classical sense
is not feasible, as emitting light rays from each pixel of the environment map only for a
small percentage to go through the window is very inefficient.

We implement a new type of light that combines area lights with Illuminating Engineering
Society (IES) lights in order to simulate windows. The IES standard is a file format
commonly used by luminaire manufacturers to describe the physical properties of a
luminaire for simulation in software. To accurately mimic the light that shines through
real windows, we convert High Dynamic Range (HDR) files into IES profiles, which our
lights can then use. Our new light type can also be attached to models in the scene,
such as walls or roofs, which constrains the manual movement of the windows to the
connected object and makes their usage more intuitive. In our tests, we find that our
implementation is able to realistically simulate real windows when compared to the same
combination of scenes and HDR files in Blender’s path tracing renderer Cycles.

To ensure that the light parameter optimization algorithm only moves the window lights
inside the model its connected to, we implement a constraint that gets evaluated repeatedly
while optimizing. We realize this by calculating penalties when the light reaches the
edges of the model, in order to encourage the algorithm to keep the window light inside.
When evaluating our implementation we find that with the activated constraint, the
algorithm is able to find valid positions for the window lights when optimizing.
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CHAPTER 1
Introduction

Over the last years the scientific rendering framework Tamashii has been in development at
the research unit of computer graphics at TU Wien. The main goal of this framework is to
enable developers to implement new ideas without the need to reimplement the underlying
technologies of a rendering engine. Two of the methods that have been implemented
previously are an adjoint light tracing pipeline and lighting design optimization.

The lighting design optimization works by calculating an objective function value that
compares the rendered scene with a predefined lighting target. Furthermore, the calcula-
tion of gradients provides information about how the scene parameters that need to be
optimized impact the objective function value, which is important to find a local minimum.
These two concepts play an essential part in differentiable rendering research. Tamashii’s
adjoint light tracing pipeline was developed because light tracing is particularly effective
for optimizing scene lighting. One of the reasons is that rays get cast from the light
sources, so every emitted ray contributes to the scene lighting.

With lighting design optimization, it is possible to optimize the position, rotation, intensity
and color of multiple lights in a scene, to optimally light a certain target that was defined
previously. Currently, Tamashii supports multiple different light sources like point lights,
area lights and spotlights, and also importing and exporting glTF files to seamlessly work
with other 3D-rendering programs like Blender. However, the rendering framework does
not yet support natural light that passes through windows, doors or skylights, which
is why the goal of this thesis is to integrate simulated windows to expand Tamashii’s
possibilities for lighting design.

To simulate daylight in 3D-rendering, environment maps are usually the easiest way to
achieve a realistic result, without having the performance impact of having actual models
and light sources in the scene. However, with Tamashii’s light tracing pipeline, letting
an environment map shine through a normal window in the form of a hole in the wall
would be very ineffective, because as opposed to path tracing, where rays get traced from
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1. Introduction

the camera into the scene, light tracing does the opposite and traces the rays from the
lights into the scene. This means that for every pixel on the environment map we would
need to trace many rays and only a small fraction of them would go through the window,
which would make this approach very inefficient.

Due to this, we chose to convert environment maps into IES profiles, which then are used
as an area light. IES profiles are a type of standardized lighting format that describe
certain parameters like the dimensions, wattage and emission profile of a luminaire, so
lights can be accurately simulated in application software. Because the lighting format is
very versatile and Tamashii already supports it, we explore the suitability to simulate
the light that would shine through a real window with the conversion of environment
maps to IES profiles.

Since Tamashii is designed to work as a lighting design tool, manipulating lights and
models in a scene is essential for an interactive workflow. Therefore we need to ensure
our window lights are intuitive to work with, especially when it comes to placing and
moving them. Unlike other light sources, which can theoretically be placed anywhere
in a room, windows can only be installed inside of a wall, so in order to have a realistic
representation of how windows can be placed in the real world, we need to bring this
constraint over into the rendering framework. This is very important for an intuitive
workflow, as having to manually move and align window lights to walls would be very
tedious and time-consuming. To realize this, we add a functionality to attach window
lights to models like walls or ceilings in the scene, which allows us to verify the position
and scaling of the window and ensure that it can not leave the bounds of the connected
model.

The movement constraints for manual movement also need to be brought over to the
automatic optimization process in order to enable the algorithm to find a valid position
for the window light if it is connected to a model. Just as for manual movement, the
algorithm is only usable in a beneficial way if it is able to find valid positions for window
lights, which is why we manipulate the algorithm’s gradient calculation to counteract
this.

In chapter 2 we explain the theoretical backgrounds of the underlying technologies and
data formats that we utilize. First, we clarify the features of the rendering framework
and where exactly we expand the framework for this thesis. After that, we present the
structure of environment maps and IES files in detail, as they are essential to this thesis.

In chapter 3 we discuss multiple solutions to the challenges of this thesis, and why we
chose our particular method of solving these problems. The challenges we tackle in this
chapter include the general integration of windows as light sources into the framework,
the conversion of HDR images to IES profiles, constraining the movement of the windows
and enabling the light parameter optimization for windows.

In chapter 4 we explain the practical implementation of the solutions presented in
chapter 3, and discuss the problems that came up in the process and how we solve them.
In particular, we describe our implementation that enables the conversion of HDR files
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into IES profiles, how we constrain the movement of windows and the algorithm we use
to manipulate how the optimization algorithm moves the lights.

At last in chapter 5, we first evaluate the implementation by comparing it to other
3D-rendering programs like Blender, to see if the approach we apply is feasible for
simulating windows by environment maps. After that we evaluate how well the light
parameter optimization algorithm is able to optimize the position of window lights with
our movement constraint implementation.
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CHAPTER 2
Background

In this chapter we will explain important concepts and data formats that are important
to understand following chapters of this thesis. Among that are the rendering framework
Tamashii, different rendering methods, environment maps and IES profiles.

2.1 Tamashii

Tamashii is a rendering framework which is currently in development at the institute of
computer graphics at TU Wien [LHEN+24]. It is used as a research platform to easily
experiment with new ideas and approaches without having to implement the underlying
technologies every time. To provide an engaging workflow, Tamashii is usable through
a command line interface and a graphical user interface, which is powered by the Dear
ImGUI library [CCng] and allows the user to inspect the scenes in real time.

Tamashii is implemented in C++ for the CPU-side code, while the code that runs
on the Graphics Processing Unit (GPU) is written in OpenGL Shading Language
(GLSL) and High-Level Shader Language (HLSL), and CMake manages the build process
across multiple platforms. Furthermore, Vulkan is used as the graphics Application
Programming Interface (API) because it gives developers a lot of low level control,
for example synchronization and explicit memory management of the GPU, which is
important for high-performance applications. Tamashii also has three implementations
for different rendering methods like a rasterization pipeline, a path-tracing pipeline and
an adjoint light tracing pipeline, which we explain in detail in 2.1.1. Currently, Tamashii
supports multiple forms of light sources like area lights, spotlights and point lights, and
users are also able to create lights using IES profiles. Furthermore, it is possible to import
scenes that were created in other programs like Blender, as long as the file has the glTF
file format.
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2. Background

As mentioned in the chapter above, Tamashii also has a feature to automatically optimize
the position, intensity and color of light sources in the scene in a view-independent
way [LHEN+24]. The optimization works by predefining one or multiple targets in
the scene, for which the optimization algorithms try to optimize the lights in order to
optimally light these targets. The underlying technologies to this feature are explained
in further detail in subsection 2.1.1.

2.1.1 Rendering Methods

In this subchapter we briefly explain relevant rendering techniques including light tracing,
path tracing and differentiable rendering and how they are implemented in the rendering
framework Tamashii.

Path tracing

Path tracing is a specific type of rendering algorithm and a form of ray tracing. The
algorithm applies the Monte Carlo method, which means it randomly samples as many
light paths possible to compute an image [Kaj86]. The algorithm traces the rays from the
camera through each pixel and follows their paths through the scene while they bounce
off of objects while being either reflected or refracted. Because in practice scenes often
contain point lights, which are impossible to hit by a ray, techniques like next event
estimation are used to directly determine whether a light source is visible or not. The
tracing of rays continues until they either hit their limit of recursive bounces, or their
contribution to the final image gets negligible [Vea97]. This recursive tracing of rays
enables a path tracing algorithm to simulate global illumination.

Because path tracing is very computationally expensive, it is often not possible to sample
enough rays per camera pixel to get a noise free image, which is why there are denoising
algorithms that help with getting a smoother image. Despite its computational cost, path
tracing is widely used in film production and photorealistic rendering when rendering
time is not as big of a concern.

Tamashii implemented a real time path tracing pipeline that is highly customizable via
the user interface. It is possible to choose different pixel filters, use tone mapping, change
ray settings, enable accumulation of samples and many more settings.

Light tracing

Light tracing is a global illumination algorithm used in computer graphics, which like
path tracing is also a form of ray tracing. The major difference is the direction in which
the rays are traced, as light tracing starts tracing rays from the light sources instead of
the camera, which is why it is also called forward ray tracing [LRS97]. This means that
after casting a ray from then light sources, it bounces around the scene until it is either
absorbed or hits the camera. Light tracing can simulate global illumination through
direct and indirect lighting, which means that object get either illuminated by the light
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2.2. Environment Maps

directly or illuminated by light reflecting or refracting off of other objects. This means
that light tracing is suitable to be used for complex lighting effects like caustics.

Tamashii has an implementation of an adjoint light tracing pipeline with different
parameters that can be manipulated in the User Interface (UI), like the culling mode,
the amount of rays emitted and the number of allowed indirect ray bounces. Unlike
traditional rendering, the pipeline not only renders an image, but also calculates the
lighting for the whole scene, which provides information that can be used by the automatic
light parameter optimization to find a local minimum.

Differentiable rendering

Unlike normal rendering that computes an image from the scene parameters, differentiable
rendering is a technique that calculates both the image and the derivatives. This can
either be done directly with respect to a specific scene parameter, or more commonly
with an objective function that measures how close the image is to a defined target with
multiple scene parameters [LADL18]. Through the calculation of the gradients, it is
possible to use gradient-based optimization techniques that are often used in machine
learning, to optimize certain aspects of the scene.

Tamashii combines differentiable rendering with light tracing, to enable the usage of
optimization techniques in a view-independent and camera free way to optimize the
position, color, intensity and rotation of luminaires in the scene according to a defined
lighting target. With the gradient and an objective function value, the optimization
algorithms are able to find local minima for the light sources in the scene. There are
multiple optimization algorithms implemented in Tamashii, for instance L-BFGS [Noc80],
and ADAM [KB17].

2.2 Environment Maps
Environment maps are one or multiple images used in 3D-graphics to simulate the
realistic reflection and illumination of objects or a scene by a surrounding environment,
ideally covering all possible viewing directions to ensure accurate lighting. It was first
introduced as environment or reflection mapping by James F. Blinn and Martin E. Newell
in their scientific paper called “Texture and Reflection in Computer Generated Images”
in 1976 [BN76]. The goal of this technique is to simulate reflections on shiny objects
like water or metallic surfaces, without having to rely on raytracing, which is still very
computationally expensive. After that in 1984, Gene Miller and Robert Hoffman invented
an illumination model based on reflection mapping, which builds on the paper of Blinn
and Newell [MSH84]. The evolution of this technique was published by Ned Greene in
1986, who proposed cube mapping as an alternate way to represent the environment as
six images, which makes reflections more accurate [Gre86]. Today, environment maps
are mostly used in video games, movies and virtual reality applications, because they
can save processing power by simulating complex reflections and lighting without having
to compute the surroundings in real time.
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2. Background

As mentioned above, there are multiple different ways to implement environment map-
ping [Zim99]. Cube environment maps represent the environment by six independent
perspectives that surround the object or scene like a cube. Spherical environment maps
on the other hand simulate the environment as a sphere around the scene. A less common
way to represent the environment is parabolic mapping, where the environment is split
into two perspectives for each hemisphere.

Capturing realistic representations of an environment for the use in 3D-graphics often
involve special techniques. With the use of a 360-degree camera, a spherical image of the
environment can be taken in a single shot, which can then be processed into either a cube
or spherical environment map. Other methods involve capturing images of a mirrored ball,
which is also called a light probe, or panoramic photography, where multiple overlapping
pictures are used to create a 360-degree panoramic image.

Figure 2.1: Example of an environment map called Rosendal Plains [DS24a].

There are also different approaches to storing the environment maps. For cube environ-
ment maps, the data can be stored as independent images for each perspective of the six
faces of the cube. For spherical environment maps on the other hand equirectangular
projection can be used, where the spherical data is projected onto a rectangle in a 2:1
aspect ratio, which means they map a 360◦ horizontal and 180◦ vertical field of view onto
the rectangle. An example of an equirectangular representation of an environment map
can be seen in figure 2.1. Equirectangular environment maps can have many different
resolutions, while most of them are anywhere between 1024× 512 to 8192× 4096 pixels.

The most popular data formats to store environment maps are HDR formats, because
other than Low Dynamic Range (LDR) formats, HDR formats can store a wide range of
brightness values, which is especially important for physically based rendering (PBR)
pipelines. While there are multiple HDR image formats like OpenEXR or TIFF, this
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2.3. IES Profiles

thesis focuses only on the Radiance RGBE format, which was invented by Greg Ward
and published in the book Graphics Gems II [War91]. This format stores the data as
32 bits per pixel, meaning 8 bits for each color channel and one shared exponent, and
uses run-length encoding. That means each color channel can have a value from 0 to 255,
while the exponent can range anywhere from -128 to 127, which leads to a theoretical
max value of 255 × 2127 for each channel. Although such high values would probably
never be reached in practice, it allows HDR images to capture very bright light sources
which would be impossible in standard LDR images, where the individual color channels
only range from 0 to 255.

2.3 IES Profiles

IES profiles are a type of data format which describe certain physical properties and
the distribution of light from a light source, and were created and standardized by the
Illuminating Engineering Society by the name IES LM-63-1986 so it can be used in
different software [Ill19]. These profiles are used to realistically simulate the behavior of
real lights, which is why they are utilized especially in architecture or manufacturing but
also in video games or 3D-visualizations.

1 IESNA:LM-63-1995
2 [TEST]
3 [MANUFAC] BEGA
4 [MORE] Copyright LUMCat V
5 [LUMCAT]
6 [LUMINAIRE] 50975.6K3 (Preliminary)
7 [LAMPCAT] LED 7,9W
8 [LAMP] 321 lm,9 W
9 TILT=NONE

10 1 -1 1.0 73 1 1 2 -0.080 0.000 0.000
11 1.0 1.0 9
12 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0
52.5 55.0 57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0
77.5 80.0 82.5 85.0 87.5 90.0 ... 180.0

13 0.0
14 330.8 333.2 335.2 336.2 336.8 337.1 337.2 336.7 331.4

302.1 238.1 159.9 90.7 51.3 38.9 36.0 34.8 34.2 33.5
32.7 31.6 29.3 25.2 19.8 15.4 12.3 9.9 8.1 6.4

5.1 3.9 3.0 2.1 1.4 0.9 0.4 0.1 0.1 ... 0.0

Listing 2.1: Shortened IES File Data Example [ies].
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2. Background

The data for these profiles is often recorded by photometric testing laboratories where
the intensity of the light at different angles is captured [Lab]. Most IES profiles contain
various metadata about the light source like the manufacturer, description of the light
source and the laboratory and date it was tested. They also contain physical properties
of the light like the wattage and lumen values. What they do not contain however is
color information in any form, so when using IES profiles for lighting simulation the color
information has to be assigned separately. An example of an IES file for a LED light
from BEGA, which was shortened and formatted for clarity, can be seen in figure 2.1.

Arguably the most important data in IES files are the emission angles which are split into
vertical and horizontal angles and the corresponding light intensity values. The vertical
angles represent the angle from the nadir to the zenith and range from 0 to 180 degrees,
which means on a hanging light source, 0 degrees corresponds to directly below the light,
90 degrees corresponds to the horizon and 180 degrees corresponds to directly upwards.
On the other hand, horizontal angles represent the horizontal plane, ranging from 0 to
360 degrees. A visualization of these angles taken from the official IES specification can
be seen in figure 2.2.

Figure 2.2: Visualization of the angles in an IES file [Ill19].

Typically, the intensity values are arranged line by line for each horizontal angle, so
one line contains the intensity values of one horizontal angle in combination with all
vertical angles. As an example in figure 2.1, line 12 represents the vertical angles at which
the intensity was measured, while line 13 specifies the horizontal angle. This particular
example has 0 degrees as it’s only horizontal angle, which means that the luminaire is
rotationally symmetrical. Below that, in line 14, the file specifies the intensity values of
the light source, which are measured in candela (cd).

In figure 2.3, we can see the light distribution of the IES profile shown in listing 2.1.
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Figure 2.3: Light distribution of the unshortened version of Listing 2.1.
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CHAPTER 3
Method

In this chapter multiple solutions for the various challenges we face are discussed. First
of all, we need a performant and realistic way to simulate the light that shines through a
window. Why we chose environment maps for this and what considerations we need to
make to solve this problem is discussed in section 3.1. Furthermore we need to ensure
that our implementation of windows offers intuitive controls, since Tamashii aims to work
as a lighting design tool. In section 3.2 we explain how certain movement constraints we
impose on windows help with the usability of our implementation. At last, we need to
enable the light optimization algorithm to work correctly with our implementation of
windows, since this is one of the core features of Tamashii. The iterations we go through
while solving this challenge will be explained in section 3.3.

3.1 Utilizing environment maps to simulate windows
For the simulation of windows in Tamashii we chose to use environment maps for several
reasons. First of all, environment maps offer a realistic and performant way to simulate
the surroundings of a scene, which eliminates the need to create a complex environment
by hand. Furthermore, since environment maps are just images, they can be quickly
swapped to experiment with different lighting configurations. This is important because
as a lighting design tool, Tamashii’s usability is heavily dependent on good performance
and an interactive workflow that allows users to quickly experiment with different lighting
setups. Now we will go over two different ways we can utilize the environment maps to
implement our windows into the rendering framework, what the upsides and downsides
are, and which way we ultimately chose.

The first option for implementing windows is to utilize environment maps in a way multiple
3D-rendering programs such as Blender or 3ds Max have done, so that the environment
map is infinitely far away and illuminates everything in the scene. To implement this
into both the adjoint light tracing pipeline and the path tracing pipeline, we would
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3. Method

have to majorly rewrite the shader code to allow for global illumination by environment
maps. This would also come with a need to implement an option to manipulate the
rotation and intensity of an already loaded environment map. As already mentioned in
subsection 2.1.1, since light tracing casts rays from the lights into the scene, calculating
light rays for a whole environment map only for a small fraction of them making it
through windows would be a very inefficient approach without additional techniques such
as importance sampling.

Another consideration to make is Tamashii’s usability as a lighting design tool. With
this approach, we would need to implement a workflow to manipulate geometry directly
in the rendering framework in order to quickly add movable windows to walls or ceilings
without needing to rely on another program. Right now, manipulating geometry is not
possible in the rendering framework as it is not trying to be a 3D-modeling program, so
this would also be an enormous amount of work to implement. Furthermore, working
with an environment map and a window in the form of a hole in the wall is not as intuitive
as working with a single light source.

The second way to implement windows into Tamashii is to convert the environment maps
to IES profiles, and to use them with area lights. In other applications, it might not
make a lot of sense to implement the usage of IES profiles just to convert HDR files
into them, but since Tamashii can already utilize IES profiles, this approach is definitely
feasible. The approximation of windows using IES area lights is possible because with
IES profiles, we can control the intensity of the light at different emission directions,
which is needed to accurately simulate the varying lighting conditions of real windows.
This allows us to simulate directional lighting, which mostly happens when the light
shines unobstructed from the sun through a window, and diffuse lighting, which happens
when the sunlight gets scattered in clouds or fog, and lighting conditions in between.
The effect the different emission angles have can be seen in figure 3.1, where the left area
light has a spread of 1◦ and the right area light has a spread of 45◦.

For a realistic depiction of a window however, we also need information about the sur-
roundings, which is where we can utilize environment maps. By sampling the environment
maps, which offer a realistic representation of the environment, we can get both the
intensity values from different directions for the IES profile, as well as color information.
Through the combination of IES profiles with environment maps, we can approximate
windows by only calculating the light propagation from the window itself, without needing
a complex simulation of the environment.

However, this approach comes with some limitations we also need to discuss. First of
all, we cannot simulate occlusions that can happen when objects block the light from
the outside, like trees or buildings that are near the window, because an environment
map does not contain any depth information that would make it possible to calculate
occlusion effects. Another simplification is that unlike real windows, where the light
distribution varies at different points of the window depending on the surroundings, the
light distribution is the same on every point of the simulated windows because we only
use one IES profile for the whole light. Theoretically it would be possible to use multiple
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3.1. Utilizing environment maps to simulate windows

Figure 3.1: Two area lights with an emission angle of 1◦ and 45◦ respectively.

IES profiles for the simulated windows, but the visual difference between one and multiple
IES profiles would likely be negligible for a lighting design tool. Furthermore, reflection
or refraction effects caused by the light traveling through the glass layers of a window
can also not be simulated with our approach.

Despite all these limitations, this approach offers a considerably realistic way to simulate
windows, which is also performant enough to be used with the light tracing pipeline and
the automatic lighting design optimization.

Ultimately we choose the second approach, which is why there are more considerations
to think of on how to accurately convert HDR files, especially because the IES profiles
only contain emission angles and intensity values. Since environment maps are images,
they do not contain any emission angles, which means we need to either calculate them
or let the user configure them in the UI.

Calculating them correctly would be very difficult, because even with a single environment
map, it is possible to have two completely different illumination patterns, as seen in
figure 3.2. For this reason, we decide to set the emission angles to a baseline value, and
let the user decide what kind of lighting configuration they want.

As already mentioned in section 2.2, most environment maps have a resolution between
1024× 512 and 8192× 4096, and the IES texture we convert the environment map into
will have a size of 256×256 pixels. We select a texture size of 256×256 pixels because the
resolution is high enough to capture the varying intensity values of the environment map
while avoiding long sampling times that would come with a higher texture resolution.
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(a) (b)

Figure 3.2: Image (a) shows the small office test scene in Blender with the The Sky
Is On Fire environment map [GZnd]. Image (b) shows the same scene, with the same
environment map rotated by 100◦ around the Z axis.

To get the intensity values, we decide to only sample the upper half of the HDR image,
because on most HDR images the lower half is the ground and therefore very dark, which
would not be realistic because the ground rarely reflects enough light into a window.
The sampling itself works in a circular pattern, because we want to convert the hdr file
as accurately as possible to the IES profile. We do this by sampling in four quadrants,
starting with the first quadrant, then the fourth, after that the third and at last the
second. In each quadrant, 64 rows are sampled, with 256 sampling points per row, which
results in 256 × 256 sampling points in total. The rows are always sampled from the
center of the vertical sampling range outwards, which ensures, that the center of the
sampling area is also in the center on the IES texture. A sketch of the sampling can be
seen in figure 3.3, where the arrows indicate how the rows get sampled for each quadrant,
and how the sampled rows will be end up on the IES profile. The angle values that are
present in both subfigure (a) and (b) refer to the horizontal angles, that were explained
earlier in section 2.3.

(a) Representation of the HDR image (b) IES profile

Figure 3.3: This is a sketch on how we convert HDR files to IES profiles.

Because the environment maps have a much higher resolution than the resulting IES
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texture, we choose to sample 4 pixels of the environment map for each sampling point,
and bilinearly interpolating the 4 pixels of the environment map. Problems that normally
arise when applying bilinear interpolation like blurring do not matter here, since we
only want to create an IES texture and not a picture, where small pixel-sized details
do not matter. After the sampling is done, we need to convert the interpolated pixels
into luminance values: 0.2126 ∗R + 0.7152 ∗G + 0.0722 ∗B, where R, G and B are the
values of the individual color channels [Uni15]. The luminance values are then used to
create the IES texture, where each value in the texture corresponds to one combination
of vertical and horizontal emission angles.

3.2 Constraints of windows in a scene

Certain constraints need to be implemented for window lights to accurately simulate the
behavior of real windows. The next subsections will go into detail which constraints need
to be imposed and how they can be realized.

3.2.1 Attaching windows to models

Because windows can only exist on walls and sometimes ceilings in the real world, this
constraint also needs to be brought over to the window lights in the rendering framework.
This means that we need to add a functionality to attach window lights to models when
creating a new window light. Considering that there can be many different models in a
single scene, we need to restrict the attachment of window lights to models that are not
a wall or a ceiling. We can do this by allowing the attachment only for models that are
flat, which means one of the model’s dimensions is zero. The attachment process also
needs to be intuitive for the user, which means the model the window light is attached
to should be changeable in the UI without needing to create a new window light.

For the attachment to work, we need to calculate both a new position and direction
for the window light, so it is aligned with the model. The position can be just copied
over from the model to the window light, but for the direction we need to calculate a
rotation based on the initial direction the window light faces and the new direction it
should face. The rotation angle can be calculated with the arc cosine of the dot product
of both directions: θ = arccos (v1 · v2), where θ is the resulting angle and v1 and v2 are
the initial direction and the target direction of the window light respectively. The axis
we need to rotate the window light around to align it with the new model should be an
orthogonal vector so it can be calculated with the cross product: v3 = (v1 × v2), where
v1 and v2 are the initial direction and the target direction again and v3 is the resulting
rotation axis.

We also need to pay attention to two edge cases, which happen when the dot product of
the two vectors is either 1 or -1, because that means that the initial direction and the
target directional are parallel or antiparallel respectively. When the vectors are parallel,
we need no rotation at all, so we can just update the position of the window light. When
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the vectors are antiparallel on the other hand, we need a new rotation axis because the
cross product of two antiparallel vector will result in the zero vector. In this case we can
just choose the tangent of the window light, which solves our problem.

3.2.2 Manual transformation constraints

In Tamashii, objects can be manipulated either in world space or in object space by
a gizmo. World space is the global coordinate system of the entire scene, where all
objects are transformed relative to a fixed origin and coordinate axes. Local space, or
also referred to as object space, is the coordinate system of a single object, which can be
used for transformations relative to its own origin.

Translations can be done on multiple axes at once, and it is possible to rotate and
scale along one of the axes. Furthermore, it is possible to perform transformations on
objects by changing the values directly inside the model matrix. The goal of constraining
movement of window lights is to not allow the lights to leave the attached model, because
as previously stated this also would not be possible in the real world, and would also not
be very user-friendly. To achieve this, every translation of the window light needs to be
checked whether its bounding box is still inside the connected model’s bounding box. If
the light’s bounding box reaches the edge of its connected model, the translation needs
to be reduced by the exact amount the light would be outside the model. Since Tamashii
has the possibility to transform objects in local space, we chose to automatically switch
to local space translations when selecting a window that is connected to an object and
disable the translation axis that aligns with the objects normal vector. This way, the
translations can only happen on the two-dimensional plane of the object it is attached
to, which makes bounding box checks easier. We have two choices for the bounding box
checks, as they can either be done in world space or in object space.

The calculations in world space would be fairly easy if the objects would always be
axis aligned because it would be possible to simply compare the coordinates, but since
this is not always the case, this cannot be done. Because the window can only move
on a two-dimensional plane in the three-dimensional world, it is possible to define the
bounding edges of the object the light is connected to and then check if the corner points
of the light are still inside. With two edge vectors, any point that lies on the plane can
be described as a linear combination of these edges: P = P0 + u ·Edge1 + v ·Edge2. Here,
P is the corner point of the light we want check whether it is inside the connected object,
and Edge1 and Edge2 are the two edge vectors originating from the corner point P0 of
the connected object: The equation can be solved for u and v, and if both of the values
are between 0 and 1, the corner point lies inside the plane. If the values are either below
0 or above 1 it is outside.

If we do the calculations in object space on the other hand, the problem of constraining
the movement gets a little bit more straightforward. If one of the objects gets transformed
into the other object’s local space, there is no need to account for rotations that are
present in world space. This way only the bounding boxes need to be calculated with
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the dimensions and position of the objects and checked whether one object is still inside
the other by comparing the coordinate values of the window light and the connected
object. The transformation needed to transform one object into the other object’s local
space is done by multiplying one object by the other object’s inverse model matrix:
Lobject = M−1

world · Lworld. In this example, Lworld represents the light in world space,
M−1

world the inverse of the model matrix in world space and Lobject the transformed light in
the model’s object space. The downside of this approach is that the constant conversions
and transformations between local space and world space can have a performance impact,
since this calculation happens every frame while manually moving the window light.

Ultimately we chose to do the bounding box checks in object space, because despite the
performance impact, it is easier when we do not need to pay attention to any rotations
that are present in world space. Rotation of windows that are attached to a model is
prohibited entirely, because rotating the windows without its attached model would not
make sense, and could potentially cause problems when done accidentally. It would make
sense to implement a functionality to rotate both the light and the connected model at
once, but since this is not a priority and does not hinder the other functionalities, we
chose to leave this direction for future work. Scaling also needs to be limited to be inside
the bounds of the object the light is connected to.

3.3 Enabling light parameter optimization for windows
As briefly mentioned in section 2.1, Tamashii has a feature to automatically optimize
multiple parameters of light sources in a scene, including the position, intensity and the
color. The optimization algorithm works by calculating an objective function value ϕ that
compares the rendered scene with a predefined lighting target. The value ϕ gets calculated
on every iteration of the optimization process, and is the main value that determines a
good solution. Furthermore, the calculation of gradients help the optimization algorithm
by providing information about how the parameters of the lights impact the objective
function value. Tamashii also has implementations for constraints, which get evaluated
by the optimization algorithm on each iteration, and add a penalty value to the objective
function value when the constraint is not fulfilled. An example for this is a constraint
that is aimed at hindering the optimization algorithm from making the lights too bright
while optimizing, which can be helpful when energy-efficient solutions are needed.

To enable the light optimization algorithm to optimize our window lights in a correct
way, the same constraints that apply to manual movement of the window lights should
also be brought over for the light parameter optimization. Otherwise, the algorithm
would move window light around in the whole scene and break the attachment between
a window light and its model.

The most reasonable way to do this is to create an additional constraint that is specific
to window lights, that hinders the algorithm from moving the lights away from the
model they are attached to. The optimization algorithm uses the gradients to calculate
the correct movement in order to find a local minimum, so by adding penalties to the
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calculated gradient, the movement can be manipulated. We also want to calculate the
gradient penalties in the connected model’s object space as we did with the translation
check for manual movement in subsection 3.2.2. The advantage of doing the calculation
in object space is that we do not have to worry about the rotation of the objects in
world space, which makes the calculations of the penalties easier, but it could have a
performance impact since these calculations have to be done on every iteration of the
optimization algorithm.

We can transform both the gradients of the window light and the window light itself by
multiplying them with the inverse of the model’s model matrix: Lobject = M−1

world · Lworld.
In this equation Lworld represents the light’s model matrix in world space, M−1

world the
inverse of the model’s model matrix and Lobject the transformed light in the model’s object
space, but the calculation for the gradients is the same. After these transformations, we
need to calculate the bounding boxes for both the window light and the model for the
penalty calculation.

Figure 3.4: A sketch of a wall, where the red lines indicate the threshold from which
penalties get added to the gradient.

For the penalty calculation we decide to start adding penalties to the gradients even
before the algorithm moves the window light over the edge of the wall, to discourage the
algorithm from finding a solution that is very close to the edges, because most windows in
real life have a central position in a wall. A sketch of the threshold from which penalties
are added can be seen in figure 3.4. The optimization algorithm calculates gradients for
parameters independently, which means we can manipulate the movement the algorithm
chooses on each axis individually. The gradient for the axis that aligns with the normal
vector of the model always has to be zero, as otherwise the attachment between the
window light and the model would break. The penalties for the remaining two axes need
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to be calculated individually, and the penalty value for each axis represents the exact
amount the window light’s bounds exceed the threshold of the model. After the penalties
are calculated, they get added to the gradient and also to the objective function value ϕ.

If we only manipulated the gradients without the objective function value, the algorithm
could still find local minima where the window light would be outside the bounds of
the connected model, as the main indicator of a good solution is the objective function
value and not the gradients. On the other hand, if we only manipulate the objective
function value, the algorithm would break the attachment with the wall as there are no
hard constraints implemented that hinder the algorithm from moving the window light
away from the connected model. Through the manipulation of both, we can ensure that
the optimization algorithm finds valid positions for our window lights.
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CHAPTER 4
Implementation

In this chapter we explain the practical implementation of the solutions presented in
chapter 3, and discuss the problems that came up in the process and how we solved them.
Among that is the integration of the new WindowLight class, the implementation used
to convert HDR files into IES profiles, how we solved constraining the movement of
windows and the implementation used to manipulate how the optimization algorithm
moves the lights.

4.1 Integration of windows
Before implementing the solutions we discussed in chapter 3, we first need to implement
the WindowLight class, which will be used on the Central Processing Unit (CPU) sided
part of the rendering framework. On the CPU, the light types all have specialized classes
with specific attributes that derive from a superclass which includes attributes that all
lights have in common, like the color, intensity and direction. The light superclass can
be seen in listing 4.1.

These specialized classes for every light type are necessary for differentiating between
lights in the editing UI, the light parameter optimization and the overall background
logic of Tamashii. This is why a new type of light on the CPU side is definitely necessary,
and also because the window lights need extra attributes for certain functionalities that
would not be beneficial to have in an area light, for example connecting the light with an
object to constrain its movement.

The new WindowLight class can be seen in listing 4.2, where we combined attributes
from area lights with attributes from IES lights. The shape and dimensions are important
to have a rectangular representation of a window in the rendering framework, and the
horizontal and vertical angles together with the light texture enable our window to utilize
IES profiles either directly or as a conversion from a HDR file. Furthermore, we added
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the mConnectedModel attribute for the attachment of window light to models, which
will be explained in the next subsection 4.3.

1 class Light : public Asset {
2 public:
3 enum class Type
4 {
5 DIRECTIONAL, POINT, SPOT, SURFACE, IES, WINDOW
6 };
7
8 // Getter and setter methods removed for compactness
9

10 virtual Light_s getRawData() const = 0;
11 ~Light() override = default;
12 protected:
13 Light(Type aLightType, glm::vec3 aDirection, glm

::vec3 aTangent);
14
15 Type mLightType;
16 glm::vec3 mColor;
17 float mIntensity;
18 glm::vec3 mDirection;
19 glm::vec3 mTangent;
20 };

Listing 4.1: Implementation of the Light superclass other classes derive from.

When lights get moved over to the GPU, every light no matter which type gets packaged
into a struct, which is possible because the GPU only needs the data that is important
for the rendering. The struct can be seen in in listing 4.3.

1 class WindowLight final : public Light {
2 public:
3 enum class Shape
4 {
5 SQUARE, RECTANGLE
6 };
7 WindowLight(): Light(Type::WINDOW, { 0,0,-1 }, {

1,0,0 }), mShape(Shape::SQUARE), mDimension
(1) {}

8 Light_s getRawData() const override;
9

10 // Getter and setter methods removed for compactness
11
12 private:
13 Shape mShape;
14 glm::vec3 mDimension;
15
16 std::vector<float> mVerticalAngles;
17 std::vector<float> mHorizontalAngles;
18
19 Texture* mCandelaTexture;
20 std::shared_ptr<Model> mConnectedModel;
21 };

Listing 4.2: Implementation of the WindowLight class.
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Because the type attribute still exists, it would be possible to also implement our window
light as a new type in the shaders, but that would mean that we would have to implement
the light propagation logic from scratch. But since the windows have a lot in common
with the already implemented area lights, this approach would lead to lots of redundant
code.

1 struct Light_s {
2 glm::vec3 color;
3 float intensity;
4 glm::vec4 pos_ws;
5 glm::vec4 n_ws_norm;
6 glm::vec4 t_ws_norm;
7 glm::vec3 dimensions;
8 uint32_t double_sided;
9 float range;

10 float light_offset;
11 float inner_angle;
12 float outer_angle;
13 float light_angle_scale;
14 float light_angle_offset;
15 float min_vertical_angle;
16 float max_vertical_angle;
17 float min_horizontal_angle;
18 float max_horizontal_angle;
19 int texture_index;
20 uint32_t triangle_count;
21 int id;
22 uint32_t index_buffer_offset;
23 uint32_t vertex_buffer_offset;
24 uint32_t type;
25 };

Listing 4.3: Implementation of the struct that is used for lights in the shaders.

Because of that we choose to treat the window lights as area lights on the GPU, which
means we need to change the shader code for area lights to allow for IES texture usage.
This also means that we can now simulate normal IES lights as area lights, which was
not possible before. We adjust the shader code for both path tracing and light tracing,
because we want the IES lights to work in both renderers. For light tracing, we have
to modify the function that generates light rays, as the rays get traced into the scene
from the light. This means, that when a light texture is present for an area light, the
IES texture needs to be sampled with the randomized ray direction in order to calculate
the correct ray intensity for the emission angle. We also need to scale the ray intensity
with the dimensions of the window, since when the window is bigger more light shines
through and illuminates the scene.

For path tracing on the other hand, we had to change the way area lights are evaluated
when hit with a ray in a similar manner to the light tracing modifications. To realize
this we change the function that evaluates lights when hit by a ray to check whether a
light texture is present for the area light, and if it is, we sample the texture with the
incident ray direction to get the correct intensity value.
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For the general usability of the window lights, we also need to implement the descriptions
and controls in the Graphical User Interface (GUI) that appear when selecting a window
light, to show relevant information about the light and also change values on the fly.
Apart from standard values that are present on all light sources, we add the emission
angles and the direction of the light so they can be changed easily.

Another consideration we have to make is to expand the importing and exporting of
glTF files to also support our new window lights. When saving a scene with a window
light, the most important properties like the height, width and the model the light is
connected to get saved, and also the HDR file the light was created from. Because our
window lights are custom, other programs like Blender will ignore them when importing
the glTF file, but when loading the scene in Tamashii all properties of the light are set
correctly.

4.2 Conversion Algorithm for HDR files

As mentioned in section 3.1, to use HDR files in the rendering framework we choose to
convert the files to IES profiles. The conversion of HDR image files solely happens inside
Tamashii, either when loading a scene or when creating a new window light, where it is
possible to choose a file through a file dialog. Converting the file and then saving it into
an IES file is not the goal of this conversion, so when saving a scene, there will still be
only the original HDR file present, which gets converted again when the scene is loaded.

1 void generateAnglesSampling (float aHorizStartAngle, float aHorizEndAngle, float
aVertStartAngle, float aVertEndAngle, int aHorizSize, int aVertSize, std::vector<
float>& aHorizAngles, std::vector<float>& aVertAngles) {

2 float horizMiddle = (aHorizEndAngle + aHorizStartAngle) / 2.0f;
3 float vertMiddle = (aVertEndAngle + aVertStartAngle) / 2.0f;
4
5 // Create 256 horizontal angles
6 for (int i = 0; i < aHorizSize/4; ++i) {
7 float t = static_cast<float>(i) / (static_cast<float>(aHorizSize) / 4 - 1);
8
9 aHorizAngles[0 * aHorizSize/4 + i] = lerp(horizMiddle, aHorizEndAngle, t);

10 aHorizAngles[1 * aHorizSize/4 + i] = lerp(aHorizEndAngle, horizMiddle, t);
11 aHorizAngles[2 * aHorizSize/4 + i] = lerp(horizMiddle, aHorizStartAngle, t);
12 aHorizAngles[3 * aHorizSize/4 + i] = lerp(aHorizStartAngle, horizMiddle, t);
13 }
14
15 // Create 1024 vertical angles in total
16 for (int i = 0; i < aVertSize; ++i) {
17 float t = static_cast<float>(i) / (static_cast<float>(aVertSize) - 1);
18
19 aVertAngles[0 * aVertSize + i] = lerp(vertMiddle, aVertEndAngle, t);
20 aVertAngles[1 * aVertSize + i] = lerp(vertMiddle, aVertStartAngle, t);
21 aVertAngles[2 * aVertSize + i] = lerp(vertMiddle, aVertStartAngle, t);
22 aVertAngles[3 * aVertSize + i] = lerp(vertMiddle, aVertEndAngle, t);
23 }
24 }

Listing 4.4: Implementation of the function for creating the sampling angles.
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The algorithm we use to convert the HDR files to IES profiles, can be seen in pseudo-code
in listing 4.1. At first, we need to load the data of the HDR file, and define the texture
size, which is 256× 256 pixels in this case. Furthermore, we need to define the sampling
ranges, which gets set to 0◦ to 360◦ for the horizontal range and 90◦ to 180◦ for vertical
range, as we only want to sample the upper half of the HDR image. We sample over
the whole width of the environment map, even though a normal window would only
receive light from a range of approximately 180◦, to capture the brightness variance of
the environment map better. After defining the sampling ranges, we calculate 256 angles
for the horizontal, and 1024 angles for the vertical sampling angles.

As already mentioned in section 3.1, we choose to sample in a circular pattern around
the center of the defined sampling angles to more accurately reflect the environment map
on the IES texture, which is why we need one set of 256 vertical sampling angles for each
of the four quadrants. The function that calculates the vertical and horizontal sampling
angles can be seen in listing 4.4. The lerp() function is for linear interpolation between
the first and second function argument, with the third argument being the interpolation
factor.

Algorithm 4.1: Pseudo-code of the algorithm for converting the HDR file to a
window light object.

Input: HDR file
Output: WindowLight Object

1 Load HDR data from HDR file
2 Define constants for texture size and sampling angle ranges
3 Generate sampling angles
4 foreach horizontal sample angle h do
5 Calculate the quadrant we are in foreach vertical sample angle for the

quadrant v do
6 x, y ← Calculate image coordinates from angles (h, v)
7 Compute integer and fractional parts of (x, y)
8 Get surrounding pixel coordinates and clamp within bounds
9 foreach color channel do

10 Bilinearly interpolate color values of the 4 pixels
11 Calculate luminance from interpolated pixels and store in array

12 Find maximum luminance from luminance array
13 Calculate average color from HDR data
14 Normalize the average color if necessary
15 Create sampler and image with luminance array
16 Create texture with image and sampler
17 Create WindowLight Object with color, texture and emission angles

After calculating the sampling angles, we can start with the sampling loop. For each
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step in the loop, the sampling angles of the current iteration get converted into image
coordinates on the environment map by the function in listing 4.5.

1 std::pair<float, float> anglesToImageCoords(float aVertAngle, float aHorizAngle, int
aWidth, int aHeight) {

2 // Convert angles to latitude and longitude
3 float latitude = 180.0f - aVertAngle;
4 float longitude = aHorizAngle;
5
6 // Convert latitude and longitude to image coordinates
7 float x = (longitude / 360.0f) * static_cast<float>(aWidth);
8 float y = (latitude / 180.0f) * static_cast<float>(aHeight);
9

10 return {x, y};
11 }

Listing 4.5: Implementation of the function for the conversion of sampling angles to pixel
values.

Afterwards, we split the image coordinates into the fractional and non-fractional part,
as the conversion from angles to image coordinates returns floating point values. The
non-fractional image coordinates are then used to pick 4 pixels next to each other in
a rectangular pattern, which we interpolate bilinearly on each color channel, with the
fractional part of the image coordinates as the interpolation factor. We also clamp the
pixels values to prevent an accidental out of bounds error. After that the algorithm
converts the interpolated color values into a luminance value, which then gets added to
an array that is needed for the creation of the light texture later. As previously stated
in section 2.3, IES profiles do not specify the color of the light, so we decide to use the
arithmetic mean over all pixels of the upper half of the environment map to calculate an
average value that represents the color of the sky.

Before creating the window light object we still need the emission angles and an intensity
value. As mentioned in section 3.1, we want to let the user control the emission angles
themselves, so we set the emission angles to range from 0◦ to 360◦ horizontally and 0◦

to 35◦ vertically. On creation of the window light object, a function that is similar to
the function in listing 4.4 calculates the 256 vertical and 256 horizontal emission angles
we need for our texture, as one value in the texture corresponds to one combination of
vertical and horizontal angles.

Calculating an intensity value for the window light in watts from an HDR image is not
really possible, since the pixel values are just an encoding for the brightness in the scene,
and there is no standard way of converting them to a physically accurate value. This is
why we set the intensity of the window light to the maximum value of the luminance
values that were calculated in the sampling loop.
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4.3 Attaching windows to models
As mentioned in subsection 3.2.1, we want to make our window lights attachable to
models in the scene, to provide better usability and a realistic representation of windows
in the rendering framework.

The most reasonable way to do this is by adding a unidirectional association from the
window light to a reference of a model, so it is easy to access the attributes of the model
for various purposes. A bidirectional association would only be needed if the model would
also need to access the windows properties, for example when rotating both the model
and the attached light together, but since this was not a priority we choose to use the
unidirectional association.

Algorithm 4.2: Pseudo-code algorithm for attaching the window light to a
model in the scene.

Input: Reference to window light, Reference to new model to attach to
1 Get target direction from model to attach the light to
2 Get current direction the window light is facing
3 Calculate dot product of current window light direction and target direction
4 Calculate angle with arc cosine of dot product
5 if Dot product equals 1 then
6 Set new position of window light and exit function
7 if Dot product equals -1 then
8 Set rotation axis to tangent of window light
9 else

10 Calculate rotation axis with cross product between initial direction and target
direction

11 Apply the rotation to light’s model matrix with angle and rotation axis
12 Set new position of window light

For the workflow of attaching windows to models that are present in the scene, we first
implement the attachment to models when the window light is created. Since Tamashii
has a menu for adding lights that appears when right-clicking on the mouse, we extend
it to additionally show an option to add window lights. We limit this option to only
show up when a model is selected with a left click, so the light and the model can be
connect directly on creation of the light. Furthermore, we restrict the attachment to only
work with models that are flat, which we check by testing whether any of the model’s
dimensions are zero. During the creation the association between the light and the model
is made and the light gets positioned in the center of the model, with the direction of
the light aligning with the front facing vertices of the model.

Since only being able to attach the window light to a model when creating it is rather
unintuitive and not perfectly user-friendly, we decide to also implement a way to change
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the attached model on the fly through the edit menu of the UI. This means that we need
to change the edit menu of the user interface, and implement a dropdown menu where it
is possible to interactively choose which model the light should be attached to. When
changing the model the window light is attached to, we need to align the window light
with the new model as explained in subsection 3.2.1. The algorithm that handles the
alignment can be seen in listing 4.2.

We also made sure it is possible to create a window light without attaching it for testing
and debugging purposes. By combining these methods for creating new window lights
and changing their attached model we aim to make the workflow user-friendly and as
intuitive as possible.

4.4 Movement and scaling constraints for windows

After making our window lights attachable, we need to utilize the unidirectional association
between the window light and the model to also constraint the movement and scaling.
As explained in section 3.2 we choose the approach to do the calculations in the model’s
object space. How the implementation works in detail is discussed below, and the
algorithm itself is shown in listing 4.3 in pseudo-code.

Algorithm 4.3: Pseudo-code algorithm for the movement constraint of window
lights while translating manually.

Input: Reference to WindowLight, Position of WindowLight, WindowLight’s
new translation for this frame

Output: WindowLight’s manipulated translation for this frame
1 if Reference is of type Light then
2 if Lightreference is of type Window then
3 if Lightreference is connected to a model then
4 Get model matrices, translations, and scale
5 Get model’s AABB and light’s dimensions
6 Calculate bounding box of the model with the AABB and the scale
7 Transform WindowLight’s position and this frame’s translation into

model’s object space
8 Calculate bounding box of the WindowLight with the position and

scale
9 if light’s bounds exceed model’s bounds on any axis then

10 Correct new Translation based on how far the light exceeds the
model’s bounds

11 Transform new translation back to world space
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4.4. Movement and scaling constraints for windows

The algorithm that constraints the movement, takes the reference to the window light, the
current position and the translation for the current frame as input parameters. At first,
we calculate the bounding boxes of the model the light is connected to by using an already
implemented function, which returns an axis-aligned bounding box in object space, that
gets multiplied by the scale of the model to get the correct dimensions. After that, the
translation for this frame and the window light’s position need to be transformed into the
model’s object space, like mentioned in subsection 3.2. To calculate the bounding box
of the light, we combine the dimensions with the transformed position and the scaling.
It is important to scale both the bounding boxes to the scale the objects have in world
space in order to keep their proportions, as otherwise our calculations would not be
correct. With both bounding boxes calculated, the algorithm checks whether the light’s
bounds would exceed the model’s bounds if the translation of this frame would be applied
individually for each axis.

If this is the case, we reduce the translation for this frame by the exact amount the
window light would exceed the model, so it is positioned right at the edge. After that,
we transform the manipulated translation values back into world space by multiplying
them with the model matrix of the connected model.

This algorithm ensures that the light can never leave the model via manual gizmo
movement. The algorithm is called every frame while manually moving the window light
by the colored arrows indicating the light’s coordinate axes, or the two-dimensional plane
defined by the axes, as seen in 4.1.

Figure 4.1: Manual gizmo movement can be done by the arrows or the plane in the UI.

The constraint for manual scaling of the window light works mostly the same, except
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that the scaling factors get set to 1 when the light would exceed the connected model’s
bounds.

4.5 Movement constraint for windows in the optimization
process

As already mentioned in section 3.3, for implementing a new constraint that can be
evaluated by the algorithm, we need to create a new class that derives from the superclass
LightConstraint, which can be seen in listing 4.6.

1 class LightConstraint{
2 public:
3 LightConstraint() : mPenaltyFactor(1.0), mIsActive(true) {}
4 virtual ~LightConstraint() = default;
5 void setPenaltyFactor(const double aFactor = 1.0) { mPenaltyFactor = aFactor; }
6 void setActive(const bool aActive = true) { mIsActive = aActive; }
7 void addLight(tamashii::RefLight* aRefLight) { mLights.insert(aRefLight); }
8 void removeLight(tamashii::RefLight* aRefLight) { mLights.erase(aRefLight); }
9

10 virtual double evalAndAddToGradient(Eigen::VectorXd& aGradient) = 0;
11 protected:
12 std::set<tamashii::RefLight*> mLights;
13 double mPenaltyFactor;
14 bool mIsActive;
15 };

Listing 4.6: Implementation of the LightConstraint superclass

The superclass has several important functions and parameters that are needed by all
constraints, like adding and removing lights from constraints, setting the penalty factor
and activating or deactivating the constraint. The penalty factor is an important variable,
as it lets the user adjust how big the influence of the constraint is on the optimization
algorithm. Our implementation of the WindowInModelConstraint does not need any
additional parameters, since the evaluation function evalAndAddToGradient only
needs the gradient vector and the lights that are affected by the constraint.

Our implementation of the evalAndAddToGradient function for the gradient and
objective function value manipulation, which can be seen in pseudo-code in listing 4.4, has
a lot of similarities in the underlying logic with the algorithm for the manual movement
constraints 4.3.

We first need to calculate the bounding boxes of both the model and the window light in
the model’s object space, because we want to compare the bounding boxes in the model’s
object space. One big difference is that we also need to transform the gradients into the
model’s local space. We need to do this to ensure that the penalties we calculate are
added to the correct axis, and also to set the y component of the gradient to zero, because
in the model’s object space the y-axis points into the direction of the normal vector,
which is where the light should never be moved because it would break the attachment
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4.5. Movement constraint for windows in the optimization process

between the window light and the model. As mentioned in subsection 3.3, we also scale
the model’s bounding box by a threshold value, to discourage the optimization algorithm
from finding a solution that is very close to the edges of the connected model. In this
case the threshold value is set to 0.75, which means the bounding box gets shrunk by
25% and penalties get added when the window light’s bounding box is int the outer 25%
of the actual model.

Algorithm 4.4: Pseudo-code algorithm for manipulating the gradients and the
objective function value.

Input: Gradient vector
Output: Manipulated gradient vector and overall penalty value

1 if Constraint is active then
2 foreach Light reference added to the constraint do
3 Get WindowLight Object and connected Model from Light reference
4 Create penalty vector
5 Compute model’s inverse model matrix
6 Extract gradients for light’s position from gradient vector
7 Transform gradients using the models’ inverse model matrix
8 Get model’s AABB and light’s dimensions
9 Calculate bounding box of the model with the AABB and the scale

10 Transform WindowLight’s position into model’s object space
11 Calculate bounding box of the WindowLight with the position, scale and

threshold
12 if light’s bounds exceed model bounds on any axis then
13 Update penalty vector based on how far light exceeds model’s

threshold

14 Add the penalty vector multiplied by the penalty factor to the gradients
15 Transform gradients back to world space
16 Update the gradient vector with manipulated gradients
17 Calculate the overall penalty value with the squared norm of the penalty

vector multiplied by the penalty factor

The check whether the window light exceeds the model’s bounds is also mostly the same
as in listing 4.3, except that the penalties get saved to a vector first, because we multiply
the penalties by the penalty factor before adding them to the gradients and objective
function value. The penalties are calculated per axis and represent the distance of how far
the window light’s bounds exceed the model’s bounds. After manipulating the gradient,
we need to transform the gradients back to world space and save them to the gradient
vector. Furthermore, we add the squared norm of the calculated penalties to the return
value, which then is added to the objective function value to evaluate the current solution
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outside of our function.

To control the constraint in the framework, we also added an additional slider in the UI
of the light tracing pipeline, where the penalty factor can be changed. If the penalty
factor is zero or lower, the constraint is deactivated, and for everything above zero it is
activated with the chosen penalty factor.

4.6 Summary
In the previous subsections, we explained the practical implementations of the challenges
we discussed earlier in chapter 3.

At first we defined the general implementation of our new WindowLight class, and
explained what attributes we need to realize our plans for the window lights.

After that, we demonstrated our implementation of the conversion algorithm for HDR
files in pseudo-code.

Furthermore, we showed how we realized the attachment of window lights to models
and the constraint for the manual movement and scaling, to improve the usability of our
window lights.

At last, we described our new WindowInModelConstraint class and explained how
our implementation of the evalAndAddToGradient function manipulates both the
gradient and the objective function value to enable the optimization algorithm to find
valid positions for window lights.
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CHAPTER 5
Evaluation

In this chapter we will evaluate our implementation of windows in the rendering framework.
First we will compare our implementation with the Cycles rendering engine in Blender,
specifically on how similar the results of our implementation are compared to a typical
implementation of environment maps. Since Blender can work with glTF files just like
Tamashii, we can use exactly the same scenes for our test in both programs. After that
we will also show 2 scenes with multiple window lights attached to the walls to show how
different configurations could work.

5.1 Overall lighting and histogram comparison
At first, we do an overall lighting comparison by creating Blender scenes with the classical
implementation of environment maps, and then try to recreate it with our window light
in Tamashii. To not only compare the two scenes visually, we also create histograms of
both scenes with short Matlab script, to see whether the overall distribution of pixel
intensity values matches. For this comparison to be useful it is necessary to configure
both programs correctly, to make the histograms as comparable as possible.

For accurate comparisons between both programs we use the path-tracing renderer Cycles
in Blender and also the native camera path-tracing implementation in Tamashii, with
special considerations being needed for parameters like the sample count, denoising and
output resolution. The output resolution of both programs is set to 1920× 1080 and the
samples for our tests are dependent on the scene in order to have an image that has as
minimal noise as possible, which is especially important when the scene is relatively dark
with only one window. The clamping in both programs is set to 0 for direct lighting and 10
for indirect lighting. Because Tamashii does not have an implemented denoising solution,
we used a standalone OptiX denoiser for both images for a more accurate comparison.
We cannot use the Blender denoising, because these builtin denoisers have access to
more information than just the raw image data, like albedo or normal data, which would
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make them perform a lot better than a standalone denoiser. In our comparisons we will
always use only one window, because the more windows we add the harder it would be
to compare our implementation to the Blender scene.

5.1.1 First comparison

For the first comparison we use the small office scene and the Victoria Sunset HDR
image [Zaa24], which can be seen in figure 5.1.

Figure 5.1: The Victoria Sunset environment map.

In Blender, we import the gltf file and place it at the world origin, and then create holes
in the walls by using the Boolean modifier with a cube, to cut exactly a 2m× 2m sized
square out of the wall where our window should be. The environment map in Blender
is used as the world background with strength set to 1, which means the environment
map is infinitely far away from the scene and illuminates everything. To create a lighting
condition where the sun shines straight through the window, we also had to rotate the
environment map by 216◦ around the z-axis and 5.5◦ around the y-axis.

In Tamashii, we simply load the scene and create a new window light at the center of a
wall, with 2m× 2m as the dimensions and without changing the intensity value. To have
similar lighting conditions, we also need to set the emission angles of our window light to
1◦, to get the same hard lighting effect as the Blender scene, and the exposure is also set
to 6 under the tone-mapping settings. We set sample count for this comparison to 1024
for Blender and 30000 for Tamashii, because with the low emission angles in Tamashii
we need a lot of samples to have a relatively noise-free image. This is because the lower
the emission angles, the more difficult it is for rays to hit the window light at an angle
it is still emitting light. In Blender on the other hand, having only 1024 samples is not
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a problem, since the rays can go through the hole in the wall at any angle and hit the
environment map.

As we can see in figure 5.2, the hard lighting that is present in the Blender scene from the
sun can be recreated pretty accurately by changing the emission angles of the window
light in Tamashii. The overall brightness of the scene also matches, however the color of
the window light is less yellow which is likely because in our implementation, the color is
averaged over the whole sky, while in Blender most of the light that shines through the
window is the sun, which has a yellow tint.

(a) Blender small office test scene (b) Tamashii small office test scene

(c) Histograms of Blender and Tamashii scene

Figure 5.2: First overall lighting and histogram comparison in the small office test scene.

This can also be seen in the histogram comparison of the scene in figure 5.2, where at
255 pixel intensity on the x-axis the histogram of the Tamashii scene has a lot higher
frequency of the blue channel than the Blender scene, which makes the scene more white
instead of yellow. The rest of the histograms are pretty similar in comparison, as the
most frequent intensity values of all color channels are distributed similarly.
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5.1.2 Second comparison

For the second comparison we also use the small office scene with the same window size,
but with a different HDR file called Overcast Soil [SM24], which can be seen in figure 5.3.
For this test both programs use a sample count of 1024, and in Tamashii the exposure is
set to 0.8 under the tone mapping settings. To match the scene from Blender, we set the
emission angles of the window light to 90◦. The intensities of the environment map in
Blender and the window light in Tamashii are not changed.

Figure 5.3: The Overcast Soil environment map.

The environment map used in this comparison has very diffuse lighting mainly because
the sky is very cloudy, which scatters the light from the sun a lot. As we can see in
figure 5.4 the overall brightness of the scene in Tamashii matches very well compared to
the Blender scene. This is because when adjusting the emission angles to a high value
like 90◦, it is possible to emulate the diffuse lighting through the clouds. In the Blender
scene the light gets reflected by the ground a little more than in the Tamashii scene,
which can be seen on the walls as they have a slight orange tint. This can be explained
by the angle the light falls into the scene, as in Blender most of the light falls into the
scene from the sky to the ground, while in the Tamashii scene the light emits from the
window light evenly in all directions.

When comparing the histograms of both scenes in figure 5.4, we can see that the pixel
values with the highest frequencies are at roughly the same intensity values across all
channels, which aligns with the assessment that our implementation in Tamashii can
achieve a similar look to Blender with this environment map.
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(a) Blender small office test scene (b) Tamashii small office test scene

(c) Histograms of Blender and Tamashii scene

Figure 5.4: Second overall lighting and histogram comparison scene in the small office
test scene.

5.2 Evaluation of lighting optimization modifications

In this section we will evaluate our modifications to the lighting optimization algorithm,
specifically how well the algorithm finds valid positions inside the connected model. We
can do this by plotting the objective function value and see whether it converges to a
local minimum.

5.2.1 First optimization test

For the first test scene we will use the small office test scene with the predefined lighting
target being the two tabletops, and the HDR file Symmetrical Garden [DS24b], which
can be seen in figure 5.5. We use the L-BFGS algorithm as the optimization algorithm
and cap the maximum iterations at 200. The optimizer also uses a step size of 0.3 and the
penalty factor for the movement constraint we implemented is set to 5. For the window
lights we use one light on the left wall of the scene with the intensity set to 2000W and
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dimension set to 1m× 1m.

Figure 5.5: The Symmetrical Garden environment map.

The scene consists of a small room with two tables being placed in the middle against
one of the longer walls. In figure 5.6 the scene is displayed together with the lighting
target which represents the two tabletops.

(a) (b)

Figure 5.6: On the left the small office test scene can be seen lit by a point light (a).
On the right we see the predefined lighting target on the tabletops. For our test the
optimization algorithms will determine the best position for the window lights to optimally
light the target.

For this test the window light is positioned in the lower left corner of the wall before the
optimization starts, as seen in figure 5.7. After 46 evaluations and around 2.6 seconds
the algorithm is finished and moved the window light to the top of the wall almost right
in the middle. This is a valid position, as the upper edge of the window light is still
below the upper edge of the wall, and the light is able to evenly illuminate both of the
tabletops.
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(a) (b)

Figure 5.7: In this figure the left image (a) represents the starting position of the window
light before the optimization, where the the tabletops are not well illuminated. Image
(b) is the optimized lighting position for the target tabletops.

In figure 5.8, we can see how the both the objective function value and the calculated
constraint penalties changed over the 46 evaluations the optimization algorithm performed
in total. As we can see, after the first two evaluations the algorithm already found a
reasonably good position, but then at evaluation 4, the constraint penalty gets really high
because the algorithm tried to move the window light out of the bounds of the model.
After that the constraint penalties reduce until evaluation 14, where the optimization
algorithm tried to move the window away from the wall again. From evaluation 17 until
the end, both the objective function value and the constraint penalties stay relatively
stable.

Figure 5.8: Diagram of the objective function and constraint penalty values over the
evaluations.

It is important to note that the constraint penalty never becomes zero, because as we
mentioned in section 4.5, we scale the bounding box of the model down by a threshold
value to discourage the algorithm from finding a solution that is very close to the edge.
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This means, that the penalty is above zero even before the window light reaches the edge
of the model. In this case, the algorithm chooses to still position the window light almost
at the upper edge of the wall, because it seems the objective function value gets better
the higher the window light is positioned. This means that even though the window
light is positioned right at the edge, shrinking the model’s bounding box still helped in
preventing the algorithm from choosing an invalid beyond the upper edge. Increasing the
penalty factor would also help to keep the window light further away from the upper
edge in this case.

5.2.2 Second optimization test

For the second optimization test we will use the large office scene, with two different
lighting targets, one being the area around the big table on the upper floor, and the other
being the chill out area on the lower floor. We also use the L-BFGS algorithm as the
optimization algorithm and cap the maximum iterations at 200. The optimizer also uses
a step size of 0.3 and the penalty factor for the movement constraint we implemented is
set to 5 again. As we have two lighting targets for this test on two different floors, we
will also use two window lights that get optimized at the same time. Both lights use the
HDR file Symmetrical Garden [DS24b] again, which can be seen in figure 5.5.

(a) (b)

Figure 5.9: On the left the large office test scene can be seen lit by one point light on
each floor (a). On the right we see the predefined lighting targets on both floors. For our
test the optimization algorithms will determine the best position for the window lights
to optimally light both targets.

The scene for this test consists of two floors, with the lower floor being a reception and
waiting room area, and the upper floor being a room with a big table in the middle. As
we can see in figure 5.9 the lighting targets are placed around the seats on the bottom
floor and the table area on the upper floor.

In figure 5.10, the start position of both of the window lights can be seen on the left,
and the position after the optimization process can be seen on the right. We place one
window light on each of the floors, so the optimization algorithm can find a a solution
for both lighting targets simultaneously. The algorithm manages to find a valid position
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(a) (b)

Figure 5.10: In this figure on the left side the position of both window lights before
the optimization process is displayed (a). On the right side we can see the position the
optimization algorithm found.

for both lights in around 8.3 seconds with 49 evaluations, where both lights are able to
illuminate the respective lighting targets sufficiently.

Figure 5.11: Diagram of the objective function and constraint penalty values over the
evaluations.

In the diagram in figure 5.11, we can see that around evaluation 6 both the objective
function value and the constraint penalty stay relatively stable until evaluation 35, where
the algorithm tried to move both windows out of the bounds of the wall at the same
time, which is why the constraint penalty goes up to 1102. After that the objective
function value and constraint penalties start to lower again until evaluation 46 where
the algorithm stops. The reason why the the constraint penalty never reaches zero is
similar as in subsection subsec:first-optimization-test, only that this time the edges of
both window lights are right at the threshold where the penalties start to get added,
which means our constraint prevented the algorithm from placing the lights too close to
the edges successfully.
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5.3 Lighting configurations
In this section we will show a lighting configuration with multiple different HDR files
loaded in window lights, to show the versatility of our implementation in the adjoint light
tracing pipeline. Since we implemented our window lights to be able to load a HDR file
on creation of the light, it is possible to load different HDR files for different windows.

Figure 5.12: Large office scene lit by two window lights on each floor.

In figure 5.12, we created 2 window lights on each floor of the large office scene, with
different HDR files loaded for each floor. The window lights on the lower floor use a HDR
file called The Sky Is On Fire [GZnd], and the window lights on the upper floor use the
Symmetrical Garden Environment Map [DS24b], which can be seen in figure 5.13 and
figure 5.5 respectively. As we can see, with our implementation it is possible to experiment
with a lot of different configurations for lighting design optimization, especially with the
parameter settings the window lights offer.
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Figure 5.13: The environment map called The Sky Is On Fire.
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CHAPTER 6
Conclusion and Future Work

For lighting design optimization in office or living spaces, natural light shining through
windows plays a big role, and to make the optimization process more realistic and true to
life, our implementation aims to provide a simulation of real windows through area lights.
By converting HDR files to IES profiles we can accurately simulate the surrounding
environment of a scene. Furthermore, the implemented configuration settings for our
window lights can help configuring the light, and the attachment of windows to other
models combined with the implemented movement constraints can help finding valid
positions for the windows in the scene.

For future work it would be possible to refine the optimization algorithm, so that the
algorithm can automatically choose which wall the window light should be attached to,
in order to find the best lighting configuration. Another topic for further exploration
would be to calculate the emission angles that fit the scene automatically, by locating
areas in the environment map that emit light stronger than other parts and then using
that information to calculate fitting emission angles. An example of this would be that
the emission angles get set to a higher value when the intensity values of the environment
map are evenly distributed in the sky, and set to a lower value when there is a small
area in the environment map where the intensity values are a lot higher than the rest.
Furthermore it would be possible to implement more shapes for the window lights, so that
round, oval or triangular windows can be created, and also enabling windows to be placed
on curved walls. Another idea to consider is to implement the automatic optimization
for other parameters of window lights like the emission angles or the light direction.

In conclusion, our implementation of window lights is able to simulate windows in a
more performant way than the traditional usage of environment maps in a light tracing
pipeline, and can therefore be used in light parameter optimization.
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Appendix

The algorithms in this chapter are the implementations of the pseudocode algorithms we
explained in chapter 4. First, in listing A.1 we show the algorithm for the conversion of
HDR files to IES profiles. Furthermore, listing A.2 contains the algorithm that aligns
a window light with objects in the scene, such as walls or ceilings, when the object to
which the window light is attached to is changed. After that, listing A.3 presents the
function that prevents a window light from leaving the object it is connected to when
manually moving it. Finally, listing A.4 shows the algorithm that calculates the penalties
for the automatic optimization process when a window light would leave the object it is
connected to.

1 std::unique_ptr<WindowLight> io::Import::loadHdriToIes(const std::filesystem::path &
aFile) {

2
3 // Load HDR file
4 int width, height, desiredChannels = 3, nrComponents;
5 float *data = stbi_loadf(aFile.string().c_str(), &width, &height, &nrComponents,

desiredChannels);
6 if (!data) {
7 spdlog::error("Failed to load HDR image.");
8 return nullptr;
9 }

10
11 // Define the size of the candela texture
12 constexpr int vertSize = 256, horizSize = 256;
13 // Angles for sampling
14 std::vector<float> verticalAnglesSampling(4 * vertSize), horizontalAnglesSampling(

horizSize);
15 // Angles for emission
16 std::vector<float> verticalAnglesEmitting, horizontalAnglesEmitting;
17 // Sampling angle range
18 float sampleVertAngleStart = 90, sampleVertAngleEnd = 180, sampleHorizAngleStart =

0, sampleHorizAngleEnd = 360;
19 // Emission angle range
20 float emitVertAngleStart = 0, emitVertAngleEnd = 35, emitHorizAngleStart = 0,

emitHorizAngleEnd = 360;
21 // Initialize candela values
22 std::vector candelaValues(vertSize * horizSize, 0.0f);
23 // Generate the sampling angles
24 generateAnglesSampling(sampleHorizAngleStart, sampleHorizAngleEnd,

sampleVertAngleStart ,sampleVertAngleEnd, horizSize, vertSize,
horizontalAnglesSampling, verticalAnglesSampling);

25
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26 // Extra index to pick correct vertical Angles for sampling
27 int vertAngleIndex = 0;
28 // Sample the HDRI and calculate luminance
29 for (int h = 0; h < horizSize; ++h) {
30 float horizAngle = horizontalAnglesSampling[h];
31 if(h == horizSize / 4) {
32 vertAngleIndex = 1;
33 } else if (h == horizSize / 2) {
34 vertAngleIndex = 2;
35 } else if (h == 3 * horizSize / 4) {
36 vertAngleIndex = 3;
37 }
38 for (int v = 0; v < vertSize; ++v) {
39 float vertAngle = verticalAnglesSampling[vertAngleIndex * (vertSize - 1) +

v];
40
41 // Get pixel values from sampling angles
42 auto [x, y] = anglesToImageCoords(vertAngle, horizAngle, width, height);
43
44 // Calculate the non-fractional and fractional part of the coordinates
45 float yFloor = std::floor(y);
46 float xFloor = std::floor(x);
47 float fx = x - xFloor;
48 float fy = y - yFloor;
49
50 // Determine the integer coordinates of the surrounding pixels
51 int x0 = std::clamp(static_cast<int>(xFloor),0, width - 1);
52 int x1 = std::clamp(x0 + 1, 0, width - 1);
53 int y0 = std::clamp(static_cast<int>(yFloor), 0, height - 1);
54 int y1 = std::clamp(y0 + 1, 0, height - 1);
55
56 // Interpolate the color values
57 std::vector<float> rgb(desiredChannels, 0.0f);
58 for (int c = 0; c < desiredChannels; ++c) {
59
60 float p00 = data[(y0 * width + x0) * desiredChannels + c];
61 float p01 = data[(y1 * width + x0) * desiredChannels + c];
62 float p10 = data[(y0 * width + x1) * desiredChannels + c];
63 float p11 = data[(y1 * width + x1) * desiredChannels + c];
64
65 rgb[c] = lerp(lerp(p00, p10, fx), lerp(p01, p11, fx), fy);
66 }
67 // Calculate the index in the one-dimensional list
68 int index = h * vertSize + v;
69 // Calculate luminance and store it in the array
70 candelaValues[index] = calculateLuminance(rgb);
71 }
72 }
73 float intensity = *std::max_element(candelaValues.begin(), candelaValues.end());
74
75 // Calculate the average color value
76 glm::vec3 totalColor(0, 0, 0);
77 for (size_t i = 0; i < width * (height/2) * desiredChannels; i += 3) {
78 float r = data[i], g = data[i+1], b = data[i+2];
79 totalColor[0] += r; // Red channel
80 totalColor[1] += g; // Green channel
81 totalColor[2] += b; // Blue channel
82 }
83 glm::vec3 averageColor = totalColor / (static_cast<float>(width) * (static_cast<

float>(height)/2));
84
85 // Make sure the highest value is 1.0 and scale the others accordingly
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86 if (float maxColorValue = glm::compMax(averageColor); maxColorValue > 1.0f) {
87 averageColor /= maxColorValue;
88 }
89
90 // Create sampler
91 constexpr Sampler sampler = {
92 Sampler::Filter::LINEAR, Sampler::Filter::LINEAR, Sampler::Filter::LINEAR,
93 Sampler::Wrap::CLAMP_TO_BORDER, Sampler::Wrap::MIRRORED_REPEAT,
94 Sampler::Wrap::CLAMP_TO_EDGE, 0, 0
95 };
96
97 // Create image
98 Image* img = Image::alloc(aFile.filename().string());
99 img->init(horizSize, vertSize, Image::Format::R32_FLOAT, candelaValues.data());

100
101 // Create texture with image and sampler
102 Texture* texture = Texture::alloc();
103 texture->image = img;
104 texture->sampler = sampler;
105
106 // Create the WindowLight object
107 auto light = std::make_unique<WindowLight>();
108 light->setFilepath(aFile.string());
109 light->setIntensity(intensity);
110 light->setColor(averageColor);
111 light->setCandelaTexture(texture);
112 light->generateHorizontalEmissionAngles(emitHorizAngleStart, emitHorizAngleEnd,

horizSize);
113 light->generateVerticalEmissionAngles(emitVertAngleStart, emitVertAngleEnd,

vertSize);
114 light->setConnectedModel(nullptr);
115
116 stbi_image_free(data); // Free the original data
117 return std::move(light);
118 }

Listing A.1: Algorithm for converting the HDR file to a window light object.

1 void MainGUI::alignWindowWithModelRefLight(RefLight &aRefLight, const RefModel &
aRefModel) {

2
3 // Get the direction of the light and the target direction
4 glm::vec3 targetNormal = glm::normalize(glm::mat3(aRefModel.model_matrix) * glm::

vec3(aRefModel.refMeshes.front()->mesh->getVerticesArray()->normal));
5 glm::vec3 initialDirection = glm::normalize(glm::mat3(aRefLight.model_matrix) * glm

::vec3(0, 0, -1));
6
7 // Calculate the angle between the directions
8 float dotProduct = glm::dot(initialDirection, targetNormal);
9 float angle = acos(std::clamp(dotProduct, -1.0f, 1.0f));

10
11 glm::vec3 rotationAxis;
12
13 if (glm::epsilonEqual(dotProduct, 1.0f, 1e-6f)) {
14 // Vectors are parallel, only new position needed
15 aRefLight.model_matrix[3] = glm::vec4(glm::vec3(aRefModel.model_matrix[3]), 1.0f

);
16 return;
17 }
18 if (glm::epsilonEqual(dotProduct, -1.0f, 1e-6f)) {
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19 // Vectors are antiparallel, choose light’s tangent as rotation axis
20 rotationAxis = aRefLight.light->getDefaultTangent();
21 } else {
22 glm::mat3 toObjectSpaceMatrix = glm::mat3(glm::inverse(glm::scale(aRefLight.

model_matrix, glm::vec3(1.0f) / aRefLight.transforms.front()->scale)));
23 rotationAxis = toObjectSpaceMatrix * glm::normalize(glm::cross(initialDirection,

targetNormal));
24 }
25 // Apply rotation and new position
26 aRefLight.model_matrix = glm::rotate(aRefLight.model_matrix, angle, rotationAxis);
27 aRefLight.model_matrix[3] = glm::vec4(glm::vec3(aRefModel.model_matrix[3]), 1.0f);
28 }

Listing A.2: Algorithm for aligning a window light with the connected model.

1 void MainGUI::translationValidityCheck(const std::shared_ptr<Ref> &aSelection, glm::
vec3 &aOldTranslation, glm::vec3 &aNewTranslation) {

2 if (aSelection->type == Ref::Type::Light) {
3 if (const auto &lightRef = dynamic_cast<RefLight &>(*aSelection);
4 lightRef.light->getType() == Light::Type::WINDOW) {
5 if (lightRef.connectedRefModel) {
6 const auto &windowLight = dynamic_cast<WindowLight &>(*lightRef.light);
7 const auto &refModel = dynamic_cast<RefModel &>(*lightRef.

connectedRefModel);
8
9 // Get Model matrices

10 const auto modelMatrix = refModel.model_matrix;
11 const auto inverseModelMatrix = glm::inverse(modelMatrix);
12
13 glm::vec3 modelTranslation = refModel.transforms.front()->translation;
14 glm::vec3 modelScale = refModel.transforms.front()->scale;
15
16 // Get AABB of model
17 aabb_s AABB = refModel.model->getAABB();
18 // Get dimensions of light
19 glm::vec3 lightDimensions = windowLight.getDimensions();
20
21 // Divide dimension by 2 for the calculation of the "bounding box" later
22 for (int i = 0; i < 3; i++) {
23 lightDimensions[i] == 0 ? lightDimensions[i] = 0 : lightDimensions[i]

/= 2;
24 }
25
26 // Change axes so it aligns with the models axes
27 lightDimensions[2] = lightDimensions[1];
28 lightDimensions[1] = 0;
29
30 // calculate the "bounding box" of the model
31 const glm::vec3 minModelBounds = {
32 modelScale.x * AABB.mMin.x, modelScale.y * AABB.mMin.y, modelScale.z *

AABB.mMin.z
33 };
34 const glm::vec3 maxModelBounds = {
35 modelScale.x * AABB.mMax.x, modelScale.y * AABB.mMax.y, modelScale.z *

AABB.mMax.z
36 };
37
38 // Transform the translation in world Space into the models Object space
39 glm::vec3 oldTranslationObjectSpace = inverseModelMatrix * glm::vec4{

aOldTranslation, 1.0f};
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40 glm::vec3 newTranslationObjectSpace = inverseModelMatrix * glm::vec4{
aOldTranslation + aNewTranslation, 1.0f};

41 newTranslationObjectSpace -= oldTranslationObjectSpace;
42
43 // Multiply by the scale because it was reversed by the inverse matrix
44 oldTranslationObjectSpace *= modelScale;
45 newTranslationObjectSpace *= modelScale;
46
47 // calculate the "bounding box" of the light
48 const glm::vec3 minLightBounds = {
49 oldTranslationObjectSpace.x - lightDimensions.x,

oldTranslationObjectSpace.y - lightDimensions.y,
50 oldTranslationObjectSpace.z - lightDimensions.z
51 };
52 const glm::vec3 maxLightBounds = {
53 oldTranslationObjectSpace.x + lightDimensions.x,

oldTranslationObjectSpace.y + lightDimensions.y,
54 oldTranslationObjectSpace.z + lightDimensions.z
55 };
56
57 // Determine wether the light is still inside or outside the model
58 if (minLightBounds.x + newTranslationObjectSpace.x < minModelBounds.x) {
59 newTranslationObjectSpace.x = minModelBounds.x - minLightBounds.x;
60 } else if (maxLightBounds.x + newTranslationObjectSpace.x > maxModelBounds

.x) {
61 newTranslationObjectSpace.x = maxModelBounds.x - maxLightBounds.x;
62 }
63 if (minLightBounds.y + newTranslationObjectSpace.y < minModelBounds.y) {
64 newTranslationObjectSpace.y = minModelBounds.y - minLightBounds.y;
65 } else if (maxLightBounds.y + newTranslationObjectSpace.y > maxModelBounds

.y) {
66 newTranslationObjectSpace.y = maxModelBounds.y - maxLightBounds.y;
67 }
68 if (minLightBounds.z + newTranslationObjectSpace.z < minModelBounds.z) {
69 newTranslationObjectSpace.z = minModelBounds.z - minLightBounds.z;
70 } else if (maxLightBounds.z + newTranslationObjectSpace.z > maxModelBounds

.z) {
71 newTranslationObjectSpace.z = maxModelBounds.z - maxLightBounds.z;
72 }
73
74 // Transform the new translation back into the world coordinates
75 aNewTranslation = modelMatrix * glm::vec4{((newTranslationObjectSpace /

modelScale)), 1.0f} - glm::vec4{
76 modelTranslation, 1.0f};
77 }
78 }
79 }
80 }

Listing A.3: Algorithm for the movement constraint of window lights while translating.

1 double evalAndAddToGradient(Eigen::VectorXd& aGradient) override {
2 double f = 0.0;
3 if( mIsActive ){
4 for(const tamashii::RefLight* refLight : mLights) {
5 const auto &windowLight = dynamic_cast<tamashii::WindowLight &>(*refLight->

light);
6 const auto &refModel = dynamic_cast<tamashii::RefModel&>(*refLight->

connectedRefModel);
7
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8 const auto idx = static_cast<Eigen::Index>(refLight->ref_light_index);
9 const glm::vec3& p = refLight->position;

10 Eigen::Vector3d d; d.setZero();
11
12 // Get Model matrices
13 const auto modelMatrix = refModel.model_matrix;
14 glm::vec3 modelScale, modelTranslation;
15 glm::quat modelRotation;
16 tamashii::math::decomposeTransform(modelMatrix, modelTranslation,

modelRotation, modelScale);
17 const auto inverseModelMatrix = glm::inverse(glm::scale(modelMatrix, glm::

vec3(1.0f) / modelScale));
18
19 glm::dvec3 gradients = {aGradient(idx * LightOptParams::MAX_PARAMS +

LightOptParams::POS_X)
20 ,aGradient(idx * LightOptParams::MAX_PARAMS +

LightOptParams::POS_Y)
21 ,aGradient(idx * LightOptParams::MAX_PARAMS +

LightOptParams::POS_Z)};
22
23 gradients = glm::dmat3(inverseModelMatrix) * gradients;
24
25 // Get bounding box of model
26 const tamashii::aabb_s AABB = refModel.model->getAABB();
27 // Get dimensions of light
28 glm::vec3 lightDimensions = windowLight.getDimensions();
29
30 // Divide dimension by 2 for the calculation of the "bounding box" later
31 for (int i = 0; i < 3; i++) {
32 lightDimensions[i] == 0 ? lightDimensions[i] = 0 : lightDimensions[i] /=

2;
33 }
34
35 // Change axes so it aligns with the models axes
36 lightDimensions[2] = lightDimensions[1];
37 lightDimensions[1] = 0;
38
39 // calculate the "bounding box" of the model
40 const float factor = 0.75;
41 const glm::vec3 minModelBounds = {modelScale.x * AABB.mMin.x * factor,

modelScale.y * AABB.mMin.y * factor, modelScale.z * AABB.mMin.z * factor
};

42 const glm::vec3 maxModelBounds = {modelScale.x * AABB.mMax.x * factor,
modelScale.y * AABB.mMax.y * factor, modelScale.z * AABB.mMax.z * factor
};

43
44 // Transform the translation in world Space into the models Object space
45 glm::vec3 positionObjectSpace = inverseModelMatrix * glm::vec4{p, 1.0f};
46
47 // calculate the "bounding box" of the light
48 const glm::vec3 minLightBounds = {positionObjectSpace.x - lightDimensions.x,

positionObjectSpace.y - lightDimensions.y, positionObjectSpace.z -
lightDimensions.z};

49 const glm::vec3 maxLightBounds = {positionObjectSpace.x + lightDimensions.x,
positionObjectSpace.y + lightDimensions.y, positionObjectSpace.z +
lightDimensions.z};

50
51 // Determine whether the light is still inside or outside the model
52 if (minLightBounds.x <= minModelBounds.x) {
53 d[0] = static_cast<double>(minLightBounds.x) - static_cast<double>(

minModelBounds.x);
54 } else if (maxLightBounds.x >= maxModelBounds.x) {
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55 d[0] = static_cast<double>(maxLightBounds.x) - static_cast<double>(
maxModelBounds.x);

56 }
57 if (minLightBounds.y <= minModelBounds.y) {
58 d[1] = static_cast<double>(minLightBounds.y) - static_cast<double>(

minModelBounds.y);
59 } else if (maxLightBounds.y >= maxModelBounds.y) {
60 d[1] = static_cast<double>(maxLightBounds.y) - static_cast<double>(

maxModelBounds.y);
61 }
62 if (minLightBounds.z <= minModelBounds.z) {
63 d[2] = static_cast<double>(minLightBounds.z) - static_cast<double>(

minModelBounds.z);
64 } else if (maxLightBounds.z >= maxModelBounds.z) {
65 d[2] = static_cast<double>(maxLightBounds.z) - static_cast<double>(

maxModelBounds.z);
66 }
67
68 gradients[0] += mPenaltyFactor * d[0];
69 gradients[1] = 0;
70 gradients[2] += mPenaltyFactor * d[2];
71
72 gradients = glm::dmat3(glm::scale(modelMatrix, glm::vec3(1.0f) / glm::vec3(

modelScale))) * gradients;
73
74 f += 0.5 * mPenaltyFactor * d.squaredNorm();
75
76 aGradient(idx * LightOptParams::MAX_PARAMS + LightOptParams::POS_X) =

gradients[0];
77 aGradient(idx * LightOptParams::MAX_PARAMS + LightOptParams::POS_Y) =

gradients[1];
78 aGradient(idx * LightOptParams::MAX_PARAMS + LightOptParams::POS_Z) =

gradients[2];
79 }
80 }
81 return f;
82 }

Listing A.4: Algorithm for manipulating gradients and objective function value.
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Overview of Generative AI Tools
Used

When writing this thesis we used ChatGPT 4o as a helping tool for questions about the
documentation and syntax of C++, GLSL and LATEX. This included questions about
whether built-in functions for a specific use case exist and general information about
datatypes, keywords and access modifiers for example.

In LATEX, we also let the AI generate the basic structure of a pseudocode algorithm,
which we then modified and extended based on our implementation of the algorithms.

Furthermore, we asked ChatGPT for improvements on individual passages in the thesis
we wrote, but never directly copied generated text and only used the suggestions the AI
gave to further improve the structure and wording of our writing ourselves.
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