
Effizientes Rendern von Wäldern
mittels Gruppierter Detailgrade in

3D-Geoinformationssystemen

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Anand Eichner
Matrikelnummer 11808244

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Dipl.-Ing. Dr.techn. Daniel Cornel

Wien, 15. Mai 2024
Anand Eichner Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Efficient Rendering of Forests
Using Grouped Levels of Detail in

3D Geo-Information Systems

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Anand Eichner
Registration Number 11808244

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Dipl.-Ing. Dr.techn. Daniel Cornel

Vienna, 15th May, 2024
Anand Eichner Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Anand Eichner

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15. Mai 2024
Anand Eichner

v

Acknowledgements

I want to thank Daniel Cornel, who was responsible for my collaboration with VRVis
and helped me get up to speed with their systems. He was also a great help with
any questions regarding this paper and the implementation into their existing systems.
Further I want to thank my family who have supported me both emotionally as well as
financially throughout my studies.

vii

Kurzfassung

Interaktive Visualisierung ist für viele Arbeitsabläufe wichtig. Besonders im Kontext von
3D-Geoinformationssystemen, wo große Datenmengen verarbeitet und für den Nutzer
in interaktiver Geschwindigkeit dargestellt werden müssen, um Produktivität und Ori-
entierungssinn zu erhalten. In stark bewaldeten Ländern wie Österreich müssen bei der
Visualisierung von Wäldern enorme Mengen an Geometrie dargestellt werden. Naïve
Render-Verfahren scheitern selbst bei stark vereinfachter Geometrie. Der Bereich, in
dem ein hoher Detailgrad erforderlich ist, ist klein und ändert sich häufig. Der überwie-
gende Teil der Szene ist weit entfernt und benötigt nur einen geringen Detailgrad. In
dieser Arbeit wird versucht, eine Lösung für diese Problemstellung zu finden. Um dies
zu bewerkstelligen, wird jeder Baum, der sich nicht in der Nähe der Kamera befindet,
durch ein Billboard dargestellt. Um den Rechenaufwand für die Auswahl des geeigneten
Detailgrades jedes Baumes zu verringern, werden die Bäume in örtlich begrenzte Gruppen
eingeteilt. Die Auswahl der geeigneten Detaillierungsgrade und der Verwurf falls die Bäu-
me sich nicht im Sichtkegel der Kamera befinden, erfolgt dann auf diesen Gruppen. Dieser
neue Ansatz wird implementiert, qualitativ evaluiert und mit bestehenden alternativen
Ansätzen verglichen. Der Vergleich der Ansätze auf einer Stresstest-Szene zeigt, dass
unser neuer Ansatz je nach Szenario zwischen 1, 7 und 6 mal schneller sein kann wie die
verglichenen Ansätze, während die visuelle Qualität kaum beeinträchtigt wird.

ix

Abstract

Interactive visualization is important for many workflows. Especially so in the context
of 3D geo-informations systems, where large quantities of data have to be processed
and presented to the user at interactive speeds for productivity and orientation in the
geo-spatial context. In heavily forested countries like Austria enormous amounts of
geometry have to be drawn when visualizing forests. Naïve rendering approaches fail,
even when using heavily simplified geometry for the individual trees. The region in which
details are necessary is small and changes frequently. A major part of the scene is far
away and needs little detail. These constraints are what this thesis attempts to find a
solution for. Thus each tree is represented by a billboard, if not close to the camera. To
decrease the computational complexity of selecting the appropriate level of detail for all
trees, they are grouped into batches, for which frustum culling and level of detail selection
happens. This new approach is implemented, qualitatively evaluated, and compared with
existing alternative approaches. Comparison of the approaches on a stress test scene
shows that our new approach can be between 1.7 and 6 times faster than the approaches
tested against depending on the scenario, while barely reducing visual quality.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Related Work 5

3 Methodology 7
3.1 Idea . 7
3.2 Pipeline structure . 9
3.3 Billboard textures . 10
3.4 Batch Generation . 14
3.5 Selection & Rendering . 15

4 Implementation 17
4.1 LOD generation . 17
4.2 Batch generation . 18
4.3 Draw command generation . 19
4.4 Draw command execution . 19
4.5 Runtime resource analysis . 20

5 Evaluation 25

6 Conclusion 33

7 Future Work 35

List of Figures 37

List of Algorithms 39

Bibliography 41

xiii

CHAPTER 1
Introduction

3D visualization of geographic data at interactive speeds is difficult. The huge amount of
data required to represent an accurate model of even a small region of the real world
is enormous, even when drastic simplifications are made. The visualization of forests
is particularly difficult. Trees have a huge amount of geometric and texture detail.
Reducing the amount of geometry and texture detail that has to be rendered, is an easy
way of increasing performance or ensuring interactivity. Doing so using a naive approach,
however, also reduces visual quality, which is not desired.

The trees can either be fully modelled as geometry or approximated using simplified
geometry with textures. Simplifying the geometry and relying on textures to fake
geometrical detail presents its own problems however. If sparse non-opaque geometry such
as leaves and branches is approximated with textures, large sections of the triangle that
spans the texture must be transparent. Transparency and alpha mapping is considered a
very expensive operation for rendering. If blending is desired then the geometry has to be
sorted back to front to achieve correct transparency sorting. There are some approaches
for order-independent transparency such as depth peeling, presented by Everitt [Eve01].
These approaches introduce their own costs however, such as a large number of draw
passes in the case of depth peeling. Redrawing the entire scene n times for n layers of
order-independent transparency is not an option for complex scenes. Even if methods
such as alpha-to-coverage are used transparency incurs a cost. Alpha-to-coverage converts
the alpha value of the pixel into a coverage mask for the sub-samples of a multi-sample
render texture. This still adds an inherent cost to transparency, however, as pixels are
on average discarded later as the depth value of the furthest sub-sample is used. Even if
alpha clipping i.e. binary transparency is used, which inherently suffers from aliasing
artefacts, there is a cost to discarding pixels as opposed to not drawing them in the first
place. The rasterizer stage has to compute the interpolant values of the varying shader
variables whether the pixel is discarded or not. Thus great care has to be taken to avoid
drawing geometry that is not visible or does not improve visual quality. A common

1

1. Introduction

approach to achieve this reduction in drawn geometry, while retaining visual quality, is
by defining multiple levels of detail. A level of detail, henceforth referred to as LOD, is
a reduced version of the geometry or texture data of an object. This reduced version
generally has lower texture resolutions and/or lower triangle count and is thus cheaper
to render.

In this thesis we attempt to find a good way to solve the problems discussed above and
render large forests in the scope of 3D geo-information systems (GIS) at interactive speeds.
Concretely we are trying to formulate an algorithm, with its associated data structures,
that minimises the number of draw calls that have to be issued and simultaneously
minimises the overhead of determining the correct version of geometry to draw for large
numbers of trees. To solve these problems and arrive at the approach presented in this
thesis a few key concepts are important and are discussed in the following paragraphs.

Our approach uses an LOD system for the trees. Each tree is either rendered with full
detail, or as a view-oriented billboard. Note should be taken that full detail is already
extremely simple in our use case. The textures used for the billboards are generated at
runtime but in a slow-path, which is only executed if the geometry or material data of the
full-detail trees is modified. Due to the potentially large viewing angles imposed by the
setting of a 3D GIS, textures for multiple viewing angles are generated. The appropriate
texture for each billboard is then selected during rendering in the shader.

The second aspect of our approach is the LOD selection system. To reduce the overhead
associated with selecting the LOD for hundreds of thousands, or even millions, of tree
objects, we propose grouping regions of a forest into batches. This yields batches of trees
for which the same LOD is selected. This reduces the associated overhead while not
affecting visual quality. A conservative metric is used for selection. LOD transitions have
to be handled correctly by drawing the same batch twice for different LODs while fading
between them.

The combination of these two methods forms the foundation of our approach. Specifically
we propose a system, which combines runtime generated LOD geometry and textures,
with a batching method that groups sections of a forest into batches, for which all
LOD selections and view-frustum calculations are made. Nearly all of the per-frame
calculations can be easily implemented to run on the GPU, improving data locality. This
allows our approach to draw large numbers of trees with very few API calls. Since large
sections of a forest are represented by only a small number of batches, the appropriate
LOD for huge areas can be computed at a low computational cost. This also allows for
the early discarding of large amounts of geometry, further improving performance.

2

Figure 1.1: Screenshot of the decision support system Visdom by VRVis [VSD]

To evaluate this approach it is implemented in an existing 3D GIS application. The GIS
application that is used as a framework for the implementation and evaluation is Visdom
[VSD], a decision support system in the context of flood management and public flood
risk communication developed by VRVis. A screenshot of the application is shown in
Figure 1.1. The area shown in the screenshot only has light tree coverage, however areas
with heavier forest coverage can be seen in the background. The trees in those regions
are not drawn at all in the screenshot, but could be drawn with the new approach, while
retaining the same performance level.

The evaluation of our approach is done by benchmarking sample scenes in the chosen
framework and comparing the runtime with two separate render pipelines that are already
offered by Visdom. One of these pipelines has equal visual quality, and is the baseline for
the visual quality of our approach, while the other one promises better performance at a
degraded visual quality level. The target for our approach is to improve on the runtime
performance of the first pipeline while not impairing visual quality. The performance of
the second pipeline is considered the target for performance, but should not be considered
the limit.

3

CHAPTER 2
Related Work

Figure 2.1: Forests in different games ([BA],[HFW],[ML],[W3])

Rendering Forests is a very common task for many 3D applications. The most notable
among them being video games. Forest scenes in various different games can be seen
in Figure 2.1 (Top Left: Broken Arrow, Top Right: Horizon: Forbidden West, Bottom
Left: Manor Lords, Bottom Right: The Witcher 3). These however generally focus on
visual fidelity. Performance is then achieved by careful authoring of the game world by
artists manually hiding transitions or manually choosing the level of detail of different
regions depending on whether the player can reach these locations or not. Further, even
if large game worlds are portrayed, the draw distance of trees is usually kept fairly small

5

2. Related Work

and large open sight lines are usually broken up by artists to hide the limitations of
the game engine. While video games are a good case study for different approaches to
rendering large forests, video games are an extremely varied medium using many different
approaches, most of them not applicable to our application. The visual quality of 3D
GIS is generally secondary to usability, workflow, and productivity. This rules out many
approaches used by video games as they rely on artist authoring of the landscape to
achieve their balance of performance and visual quality. Further even while the portrayed
landscapes can often be very large, the total tree count is small compared to real-world
datasets. Our approach should work on real-world data as well as semi-procedural data
out of the box and not require any human intervention to achieve interactive performance.
Games are not the only types of applications that have to render large forests. 3D GISs
such as Visdom [VSD] also render large forests in real time and have optimizations for
it. These applications favour productivity and interactivity over visual quality. In the
case of Visdom for example a more performant approach is offered that renders trees as
simplified placeholders. In every case the use of a level of detail system is necessary to
render large forests at interactive speeds.

Level of detail systems are a well researched area, with many different approaches all
with their own advantages and disadvantages [HD04]. In this thesis a discrete level of
detail approach, with some aspects of a view-dependent level of detail, is used. This is
similar in character to the approaches presented by Bao et al. [Bao+09] and Zhang et al.
[Zha+06]. Our approach reduces geometric complexity yet further, as each individual
tree occupies an extremely small section of screen-space, and as such has little individual
impact on visual quality. Further, the additional simplification is done as the existing
tree meshes in Visdom are already a significantly reduced level of detail as described by
Fuhrmann et al. [FUM05] and Bao et al. [Bao+11]. While not directly applicable to our
problem, the approaches and solutions presented by Boreal Orienteering [BO], a game
about orienteering, can be adapted to our problem as well. Especially their approaches
for the lower LODs are a good starting point.

Other modern approaches for high fidelity scene geometry are actively developed, such as
Unreal Engine 5’s Nanite [BRG21]. Their approach to virtualized geometry, is one such
novel level of detail system that, while it does not yet support foliage, is an interesting
advancement to look at for further development. Along with Nanite, newer hardware and
driver features to support these new rendering pipelines, such as Mesh Shaders, could
enable new approaches. The Mesh/Task-Shader pipeline was first introduced by Nvidia,
[NV1], and is also available in Vulkan [Khr2]. Such approaches would benefit from more
granularity and less overhead for early discards, or even selecting the appropriate LOD
during the Task Shader stage for low polygon count LODs. Such approaches would batch
small groups of trees into meshlets that can then be discarded at the meshlet level and
at a finer grained level in the mesh shader. This would add another level between the
batch and individual trees into the hierarchy at which discarding and LOD selection can
take place.

6

CHAPTER 3
Methodology

3.1 Idea

Since most trees are far away given the viewing angles used in a 3D GIS, most trees only
cover small areas of the viewport. Therefore it is not cost effective to draw each tree
at full detail. Thus a lower LOD should be used for most trees in the scene. Selecting
an LOD for large numbers of trees (> 10k − 100k trees) individually carries its own,
potentially large, computational cost. Thus we propose a custom approach to LOD
selection.

The core idea that leads to the LOD selection scheme presented in this thesis is that
an LOD has to be selected for every visible tree in the camera frustum. This limits
any algorithm that does selection for every object to a linear runtime complexity. It is
desirable to reduce the constant factor of the runtime complexity of any such selection
algorithm as much as possible. Since every tree object in our large scale forest is already
a very simple object (< 20 triangles), and is usually far away from the camera, we gain
very little from such fine-grained selection as switching to a lower LOD earlier is visually
nearly indistinguishable unless the user inspects an individual object very closely.

Grouping objects into batches, henceforth referred to as batching, allows some optimiza-
tions to be done. Batching allows for the omission of certain per-tree variables as they
become invariants for the entire batch. Assuming values such as distance to the camera,
containment inside the view frustum, and geometry data as constant within each batch
saves computational resources, allowing for the discarding of entire batches of trees at the
cost of one computation. The computation of the data needed to make these per-batch
calculations is not free. The computation of this data is shifted out of the performance
critical section of the program into a preprocessing step that only needs to happen upon
changes to the static input data, reducing the cost per frame.

7

3. Methodology

We propose a hierarchical approach to LOD selection. Combining the selection of the
LOD over large clusters of trees saves significant runtime for very little penalty in terms
of visual quality. Further, we can define two broad cases for a batch of trees. Either
the entire batch is contained in a distance interval or it overlaps an LOD transition
region, where the transition between two distinct LOD levels happens. In this case the
batch needs to be drawn twice with varying alpha values to fade between the two LODs
smoothly and avoid pop-in.

The second pillar of our approach for rendering large scale forests consists of the lowest,
and in our case second, LOD. Due to the large number of similar objects we decided on
the simplest possible geometry for drawing distant trees, i.e. view-oriented billboards.
Due to the possibility of large viewing angles, we generate and select from different
pre-rendered low resolution images of the trees. When viewing a tree from above it does
not make sense to use the same billboard texture as when viewing the same tree from the
front, and doing so harms visual quality at large viewing angles. Billboards and texture
selection are then generated during the geometry shader stage of the draw call.

Figure 3.1: Forest with LOD scheme applied for rendering (Green: LOD0, Blue: LOD1,
Red: Transition Region Markings

This can also be seen in Figure 3.1. On the right side of Figure 3.1 the LOD of the
individual trees can be seen. Green denotes full detail LOD0, whereas blue denotes the
billboard level LOD1. The two red lines show the transitional region in which both LODs
are drawn, with the further one fading in, while the closer one is fading out. As can be
seen in the figure, despite the near field being relatively small, the transition between
full detail and billboard is difficult to make out. In the distance the individual trees are

8

3.2. Pipeline structure

nearly impossible to differentiate from each other, this enables some additional possible
optimizations that are discussed in Chapter 7.

3.2 Pipeline structure

Figure 3.2: Schematic structure of the pipeline

As can be seen in Figure 3.2, the computationally expensive operations, such as batch
generation and billboard texture generation, are done only when the scene geometry
changes. The data flow between the different operations is indicated using arrows. Data
is shown as an ellipse and operations are shown as rectangles. Batch data is only updated
if the instance data of the trees, such as the trees transform matrices, changes and the
pre-rendered LOD data is only updated if the geometry data or the material data of one
of the used trees changes. Only draw command generation happens each frame.

9

3. Methodology

3.3 Billboard textures

3.3.1 Viewing Angles

billboard_height: float

billboard_width: float

Array Texture

Figure 3.3: Schematic diagram of the LOD billboard textures of a tree

In Figure 3.3 a representation of the LOD data that is generated is shown. In practice
orthogonal projection is used to render the bill board textures. The figure shows
perspective cones for readability. As mentioned in Section 3.1 it is important that
multiple viewing angles of the tree are rendered, since different viewing angles expose
different parts of the tree. The number of angles that are rendered is changeable at
runtime as the textures are generated from the existing geometry and material data
of the trees. The individual textures that are obtained are stored in an array texture.
The number of textures presents a trade-off between visual quality and the memory
constraints of the application. More angles allow for a smoother transition between
horizontal and vertical viewing. Pseudocode for an algorithm implementing the described
operation is shown in Algorithm 3.1.

10

3.3. Billboard textures

Algorithm 3.1: Render LOD textures
Input: List of mesh data Mi, Number of meshes N, Number of angles K
Output: Array texture Aj, List of LOD metadata Di

1 Allocate A(N ·K)
2 for i← 1 to N do
3 BB ← Bounding Box of Mi

4 Projection ← Calculate Orthogonal Projection From BB
5 for k ← 0 to K− 1 do
6 View ← Calculate Camera View From Angle(90◦

K−1 · k)
7 Draw Mesh Mi into Ai·K+k using Projection, View
8 end
9 Di ← Compute LOD metadata (Mi)

10 end
11 return

The selection of the correct texture is done during the actual rendering in constant
time. This is possible because the angles are distributed equally across 90° allowing the
computation of the index into the array texture to be done as shown in Equation (3.1).

i = a−
⌊2a

π
cos−1(V⃗ · U⃗)

⌋
(3.1)

Where i is the index of the selected image in the array texture, a is the number of angles
that have been pre-rendered, V⃗ is the view direction, and U⃗ is the up vector of the tree.

The correct texture to use for the billboard during rendering is determined using this
index. To avoid obvious jumping upon the switches between these textures, the billboards
are not completely view-oriented and instead snap to discrete evenly spaced vertical
angles that match the angles of the billboard textures. This reduces the apparent jumping
upon the selection of a new angle, as the switch is masked by the perspective distortion
of the billboard roughly matching the distortion that occurred when pre-rendering the
billboard texture. The perspective distortion thus somewhat smoothly blends between
all billboard angles. While this does not perfectly hide the transition it makes it far more
subtle compared to keeping the billboard fully view oriented.

11

3. Methodology

3.3.2 Billboard Texture Mipmaps

Figure 3.4: Example texture split into color and alpha channels (White: fully opaque;
Black: fully transparent)

To avoid aliasing when down-sampling during rendering mipmaps are usually generated for
all textures. The basic down-sampling offered by blit operations and further encapsulated
in its own function in OpenGL is not sufficient in our case. When down-sampling
transparent textures it does not take the alpha values into account when down-sampling
the color channels. The reason that this is an issue is apparent in Figure 3.4, where it
can be seen that the color channels are zeroed out in the regions of the texture where the
alpha values are 0. As there is no conventionally useful information stored in the color
channels of fully transparent pixels, since an invisible pixel cannot have any color, they
are usually replaced with an arbitrary solid color. This color is constant across the entire
image and the replacement is done to improve image compression in common formats
(such as PNG PNG Spec §12.3 [PNG1]).

Figure 3.5: Comparison of simple per-channel down-sampling with alpha-aware down-
sampling

12

3.3. Billboard textures

Since all channels are down-sampled independently of each other using the built in
method using blit operations, all pixels that are fully transparent or are adjacent to fully
transparent pixels mix with the solid background color that the color channels of those
pixels are set to. This leads to dark fringes around the lower resolution versions of the
texture when down-sampled this way. Thus a custom algorithm is needed in our case for
generating the mipmaps of the tree textures. The implementation of this alpha-aware
down-sampling is further described in Section 4.1. The comparison between the built-in
method and the alpha-aware method, which is implemented to fix the described issues,
is shown in Figure 3.5. This avoids progressive darkening of the textures as they are
down-sampled.

Figure 3.6: Comparison with and without alpha equalization

There is one more problem. As the texture is down-sampled the values approach the
mean value of the corresponding channel of the entire texture, which is the desired result
in most cases. This leads to high mipmap-levels not having any fully opaque texels left,
see Figure 3.6. It is however important that the tree does not become more transparent
as higher mipmap-levels are selected. This would lead to the trees changing colour as
they blend more with their surroundings at large distances or becoming outright invisible
at larger view distances. To correct this an equalization step is done after down-sampling
the texture, where the alpha values are mapped back to value range of the original texture
linearly. This ensures that even at the highest mipmap-levels there will always be at
least one fully opaque texel. Pseudocode for the described alpha-aware method, which
avoids the issues that are described, is shown in Algorithm 3.2.

13

3. Methodology

Algorithm 3.2: Alpha-Aware Mipmaps
Input: Square 2D Texture A with sidelength 2n, n ∈ N
Output: Mipmaps for A

1 (Alphak)ij := alpha values of (Ak)
2 for k ← 1 to number of Mipmap levels do
3 for each pixel i, j in (Ak) do

// ĩ ∈ {2i, 2i + 1} and j̃ ∈ {2j, 2j + 1}
4 AlphaSum←

(∑
ĩ,j̃(Alphak−1)̃ij̃

)
5 (Ak)ij =

(∑
ĩ,j̃(Ak−1)̃ij̃ · (Alphak−1)̃ij̃

)
/AlphaSum

6 (Alphak)ij ← AlphaSum · 1
4

7 end
8 MinAlphak ← min{(Alphak)ij ,∀i, j}
9 MaxAlphak ← max{(Alphak)ij ,∀i, j}

10 end
11 for k ← 1 to number of Mipmap levels do
12 Linearly Remap (Alphak) to the value Range of (Alpha0) using MinAlphak

and MaxAlphak

13 end
14 return

3.4 Batch Generation

Center: vec3
Extent: vec3
Radius: float
MemoryRange: ivec2
MeshIdx: int

IndirectionArray: int[]

Top-down view of scene with trees Batch tile data

Figure 3.7: Schematic diagram of batches

14

3.5. Selection & Rendering

Trees are grouped into batches based on their horizontal positions on a 2D grid with a
given size. Given a forest with a roughly uniform tree density this simple method yields
uniform batches, whose size is easily tweaked by changing the size of the grid used to
generate them. Each type of tree has a tree mesh that describes its visual appearance,
containing the geometry and material data of a tree type. Many trees can share the
same tree mesh. As is shown in Figure 3.7, some metadata required for culling and
LOD selection is computed for each batch, including the bounding box and the bounding
sphere, shown in Figure 3.7 encoded as their Center, Extent, and Radius, as well as an
offset and length into the indirection array and the index of the tree mesh used. The
different colours shown in Figure 3.7 differentiate between different tree meshes. The
dotted circles show the calculated bounding spheres of the batches, note the separation
between the tree meshes, shown as circles, and the bounding circles. The gap is due to
the perspective chosen, tree meshes have a height that also has to be taken into account
when calculating the total bounding sphere of the batch. An additional buffer of indices
that provides an extra layer of indirection is used to match batches to the corresponding
per-tree data of the trees that are contained in that batch, specifically the transform
matrix for each tree. Each batch receives a continuous range of indices in the indirection
buffer described above, that lists the trees belonging to this batch. The offset and length
of this range is stored for each batch along with the index of the tree mesh that this
batch uses. For simplicity during draw command generation, each unique tree mesh has
its own batch, even when they occupy the same grid cell.

3.5 Selection & Rendering
LOD transition region

Bounding radius

Center: vec3
Extent: vec3
Radius: float
MemoryRange: ivec2
MeshIdx: int

Batch data

Mesh data
Draw command

Per-command data

Camera

Distance to batch

Figure 3.8: Schematic diagram of LOD selection

The batch data and LOD data, which are described in the previous sections, are then
used to generate a list of draw commands along with additional per-command data that

15

3. Methodology

is used during rendering. This list of data is then indexed using the index of the draw
command during a multi-draw indirect operation that emits all of the draw commands
that were generated using a single CPU side API call. To generate the list of draw
commands the entire list of batches is iterated. Each batch is projected onto a line given
by the view direction to obtain a distance of the batch center to the camera along the
view direction. This distance is then used to determine whether the given batch is to be
drawn with full detail, using the highest LOD, referred to as LOD0, or as a collection
of view oriented billboards, using the lowest LOD, referred to as LOD1. Batches that
overlap the LOD transition region must be drawn twice to enable smooth blending of the
two LODs. Thus two draw commands are emitted, with differing additional per-command
data. One draw command for the full detail LOD0 and a second draw command for
LOD1. The fading parameters, used to drive the transition between the two LOD levels,
are stored in the additional per-command data along with a flag to denote whether or
not the draw command is for regular geometry or for billboards.

The geometric interpretation of the selection process is shown in Figure 3.8. The green
regions show tree coverage. The dotted circles are the bounding spheres of the individual
batches, projected onto the ground plane. A camera is shown along with the described
view ray onto which the center points of the batches are projected. After projection
onto the view ray the bounding volumes of the batches become simple one-dimensional
intervals where checking overlaps and distances is trivial.

Drawing then happens in a single API call without any intermittent rebinding of resources.
The varying behaviour of the shader stages, such as whether the geometry shader stage
should generate billboards, or pass the geometry through unchanged, is driven using data
from the additional per-command companion data stored for each draw command. The
fragment shader stage also behaves differently based on whether the draw command is
for billboards or or not, to account for the different texture sources of the billboards.

16

CHAPTER 4
Implementation

The implementation and evaluation of the approach described in Section 3.1 was done in
the scope of a collaboration with VRVis, extending their decision support system Visdom.
The implementation of the approach is described in the following sections. First the
LOD generation and the batch generation, then the draw command generation and draw
command execution is described. The order of the sections matches the order in which
the described algorithms are executed during program execution. Lastly the runtime
resource requirements are analysed.

4.1 LOD generation

The data used to draw vegetation in Visdom is bundled into mesh sets, each mesh set
contains a number of submeshes. The mesh set encapsulates the vertex attribute buffers
and shared data of all submeshes. The submeshes then reference ranges of the vertex
attribute buffers contained by the mesh set, as well as their own material data. For
instanced rendering there is also a list of per-instance transform matrices. All tree meshes
are submeshes of the same mesh set containing all the vegetation meshes in Visdom.

When the mesh set, containing the vegetation meshes, is modified, or is first used, the
LOD data for every tree mesh is (re)generated. A 2D array texture is allocated with
enough layers for every angle and tree mesh. For every tree mesh an orthogonal projection
matrix, fitted to the bounding box of the tree mesh, is set up for every evenly spaced
viewing angle of the mesh and the mesh is drawn into its respective layer in the array
texture without lighting from the respective viewing angle, following Algorithm 3.1 shown
in Section 3.3.

After all viewing angles are rendered, mipmaps are generated for every texture layer.
As the mipmap generation utilities included in OpenGL have suboptimal handling of
transparency for our use case we have implemented our own mipmap generation using

17

4. Implementation

compute shaders as described by Algorithm 3.2 in Section 3.3. This custom mipmap
generation is necessary as we need it to preserve the entire range of alpha values for
all mipmap levels. The behaviour of the OpenGL function is not desirable in this case,
as it would cause the entire tree to become transparent at high mipmap levels. The
mipmap generation is implemented in three stages. First the maximum and minimum
alpha values for each texture are computed.

In the second stage each texture is down-sampled taking alpha values into account until
the highest mipmap level is reached. Finally, in the third stage, the alpha values of
the generated mipmap levels from the second stage are corrected using the minima and
maxima from the first stage.

Some metadata for billboard and draw command generation also needs to be precomputed
during the LOD generation step and uploaded to device memory. For each submesh
the offset in the vertex array object and its triangle count need to be stored for draw
command generation on the GPU. Further, width and height values for the billboard
generation need to be computed based on the bounding box of the submesh.

To avoid later rebinding of meshes during rendering a single dummy triangle, used as
an origin and scale reference to generate billboards in the geometry shader stage, is
appended to the end of the mesh sets vertex attribute buffers.

4.2 Batch generation

When scene data for the vegetation changes, a set of batches is generated for each tree
mesh. To generate the batches, a grid-based approach is used, as described in Section 3.4.
The list of all trees is grouped into batches according to a grid of equal size grid cells
based on their x and y coordinates. To avoid allocation of a large number of empty grid
cells a spatial hashing scheme is used to only allocate grid cells that contain trees. Note,
that clustering algorithms like the one presented by Ganganath et al. [GCT14], can be
used to generate batches that have a more uniform tree count, leading to more consistent
performance for varying forest densities. Implementation of such a clustering method was
decided against in this case due to implementation effort. The clustering approach yields
improvements when tree coverage is very sparse, where few trees cover many grid cells.

The per-batch tree indices are linearised in a large indirection array used to index into
the array of transform matrices of the trees during rendering, to avoid duplication of
per-tree data. After all trees are grouped into their respective batches, metadata for
each batch is generated for later draw command generation and LOD selection. The
collected per-batch metadata contains the geometric center of the batch, the extent of
its bounding box, the radius of its bounding sphere, the two-dimensional index of the
batch in the grid, the offset and length of the batch data in the indirection array, and the
submesh index that this batch belongs to. Both the indirection array and the metadata
of all batches are uploaded to device memory for rendering.

18

4.3. Draw command generation

4.3 Draw command generation

All LOD selection and draw command generation is done on the GPU to avoid syn-
chronization points with the CPU as much as possible. A command buffer of sufficient
size to contain the draw commands for all batches is allocated ahead of time, along
with a buffer to contain the additional per-command data for every draw command. An
additional buffer to count the number of draw commands per submesh for usage during
draw command generation as an atomic counter for indexing is also allocated.

The draw command buffers are cleared between consecutive frames. LOD selection and
draw command generation is then done in a single compute shader invocation. For every
batch, it is checked whether the batch is beyond the distance at which trees should be
drawn, referred to as draw distance, or is entirely outside of the view frustum of the
camera, in order to discard the batch early. For every LOD the batch is checked against
the transition distance of the LOD, where it replaces the previous LOD, and whether
or not it overlaps the transition distance of the next LOD. The draw commands are
then generated along with additional per-command data. A pre-computed fade gradient
describing the start and end distance between which the opacity should be linearly
interpolated to visually fade in, or fade out the drawn objects is stored. Data on whether
the draw command should be drawn using billboards, the respective index of the submesh
used, and the LOD of the draw command are also stored. If the batch overlaps an LOD
transition, then two draw commands are generated for both LODs.

4.4 Draw command execution

Execution of the draw commands is then handled by a single CPU side API call to
glMultiDrawElementsIndirect. The shaders differ from the regular pipeline of
Visdom in some key ways. During the vertex shader stage, the extra indirection from the
batch indirection array is used to access the transform matrix of the object.

19

4. Implementation

Geometry ShaderPass-through Billboard Generation

Per-draw-call data
IsBillboard: bool

⋮

billboard_height: float

billboard_width: float

num_angles: int
View: vec3
⋮

scale_x

scale_y

Figure 4.1: Diagram of the two paths in the geometry shader

During the geometry shader stage, a fine-grained discard operation, based on whether the
tree is within the draw distance, is performed. Further, if the LOD of the draw command
is LOD1, a billboard is generated from the dummy triangle, and the correct texture
is selected based on the submesh index of the draw command and the Equation (3.1)
described in Section 3.3. If the draw command is a non-billboard LOD, then the triangle
primitives are passed through unmodified after the draw distance check. A schematic
diagram of the two described paths in the geometry shader can be seen in Figure 4.1.
During the fragment shader stage, the texture load is switched between the texture
defined by the tree mesh or a texture from the billboard texture array depending on
whether the draw command is for a billboard LOD. Further the alpha value of the
fragment is modified based on the fade gradient of the batch, that was computed during
draw command generation, and the fragments distance, to achieve a smooth cross-fade
between LODs.

4.5 Runtime resource analysis
In this section the additional resource requirements in terms of runtime and space of the
approach are analysed. In the following section a few parameters are used to define the
resource demands. These parameters are as follows:

20

4.5. Runtime resource analysis

• n . . . Total number of trees

• t . . . Total number of batches

• m . . . Total number of tree meshes

• a . . . Number of billboard angles

• r . . . Resolution of billboard textures

• l . . . Number of LOD levels

4.5.1 Space Requirements

The space requirements of different components of our approach are listed below in big-O
notation, along with a description of what is stored.

• The indirection array of the batches. One index value is stored for each tree. O(n)

• Additional data for each batch is stored. O(t)

• Additional data for each tree mesh and the offsets of the specific sections in the
batch data buffer are stored. O(m)

• One texture is stored for each angle, and tree mesh for the billboard textures.
O(m · a · r2)

• A command buffer with sufficient size l draw commands per batch is pre-allocated.
O(l · t)

• During selection an additional buffer with m elements is used. O(m · l)

The total additional memory demand is thus O(n + t + m + m · a · r2 + l · t + m) =
O(n + l · t + m · a · r2) and assuming r, l, a as fixed parameters then the total space
complexity is O(n + t + m). The exact number of additional bytes required is given in
the following Equation (4.1).

4n + 64t + 24m + 16amr2 + 52lt + 4lm (4.1)

During our testing, batches were generated using a 500 meter grid, and 10 angles with
a resolution of 128 by 128 were generated for the billboards. For our application only
two LODs were used, LOD0 and LOD1 as described previously. For these parameters a
rough estimate can be computed. An exact value can not be determined a priori as the
total number of batches depends on the distribution of the individual trees and how they
overlap the grid used to generate the batches.

21

4. Implementation

Though an upper bound can be computed. A uniform distribution of trees as a worst
case for memory, since it will cover the most grid cells, is assumed. An average 5× 5 km
region of Austria, with a tree density of ∼ 36700 trees/km2 [Cro+15], is used as an
example. Assuming five different tree meshes, the area of 25 km2 is covered by 500
batches and contains ∼ 9.2 · 105 trees. Following Equation (4.1) yields an estimated
maximum additional memory requirement for such a region of ∼ 16.9 MB.

4.5.2 Runtime Requirements

The runtime requirements of the approach are analysed. The itemized runtime complexity
of the individual algorithms used during precomputation tasks followed by their total
runtime complexity is described below. After, the runtime complexity of all computations,
that happen every frame, is analysed.

Precomputation

The runtime complexity of each algorithm that is run during precomputation is listed
below.

• Each billboard angle for each mesh must be rendered and downsampled. O(m · a ·
log(r) · r2)

• All trees must be grouped into batches O(n)

• Additional metadata for each tree mesh must be extracted. O(m)

This leads to a total time complexity for the precomputations of O(m ·a · log(r) + n + m),
or assuming a, r as fixed parameters O(m + n).

Per Frame

Each batch needs to be categorized into one or two LODs and their draw commands
need to be generated (O(l · t)). An algorithm that runs in O(log l) for finding the correct
LOD to select could be implemented using interval-trees [AT95] or a binary search. We
implemented a naive O(l) search as the number of LODs is very limited (two). The
entire selection and draw command generation is done on the GPU and no data is copied
back to the CPU. This avoids extra synchronization points that could stall the rendering
pipeline.

4.5.3 Bottlenecks

From the resource analyses done above some insights can be gained. There is an obvious
memory sink, that could become a bottleneck, which is apparent from the resource
analyses.

22

4.5. Runtime resource analysis

The first possible bottleneck is per-batch data. When tree coverage is sparse the number
of batches could be large, with each batch containing only a small number of trees. This
leads to a large memory and runtime overhead for no gain or even additional costs. Thus
the number of batches should be much smaller than the number of trees to reduce both
memory consumption as well as runtime of the selection. This can either be achieved by
choosing larger grid sizes, or by implementing better batch generation as mentioned in
Section 4.1.

The other possible bottleneck is the draw command buffer. The way the draw commands
are pre-allocated might be improved with multi-frame pipelining. By reading back the
number of draw commands that were generated in the previous frame the buffer can be
shrunk or expanded using a heuristic based on the previous frame. Though this creates
the problem that there might not be enough space allocated for all the draw commands
of the current frame, in which case not all batches that should be drawn can be drawn.
While visual fidelity might suffer slightly, when large changes in perspective occur and
not all draw commands can be created, memory consumption, and overhead for empty
draw commands, could be improved drastically in this way. Queuing another frame
immediately if some draw commands could not be issued would alleviate issues with the
visuals as soon as possible. Queuing another frame would be necessary in the context of
our implementation in Visdom, as frames are generated on demand and not continuously.
This would keep interactivity the same while potentially drastically reducing memory
demands at the cost of presenting late pop-ins of vegetation on drastic scene changes.

23

CHAPTER 5
Evaluation

In this chapter we showcase our results and evaluate them quantitatively and qualitatively.
We tested our implementation on a modified version of an existing project containing a
vast part of the Wachau region of Austria. The project was modified to increase normal
tree density by a factor of 10. We ran the same benchmark using our approach as well
as the existing vegetation rendering pipeline built into Visdom as well as the primitive
impostor tree rendering pipeline also built into Visdom.

The vegetation rendering pipeline, named Vegetation, renders the entire geometry for
every tree. The geometry drawn is identical to LOD0 used in our new approach and
consists of a billboard cloud representation of the tree. The primitive impostor tree
rendering pipeline, named Primitive, draws billboard quads for each tree, simulating the
geometry by doing ray casting on simple geometry in the fragment shader. Primitive
is offered as an alternative to Vegetation with improved performance at the cost of
lower visual quality. The geometry, that is simulated for the purpose of these ray cast
operations, is a sphere on top of a cylinder. Both of these pipelines do view frustum
culling on a per-tree basis.

This stress test shows the scalability of our implementation compared to the two previous
implementations inside Visdom that were tested against. Further, a less demanding
scene with synthetic data that only contains basic terrain and a normal density of trees,
referred to as Synthetic, was also tested. There the performance of our approach for
different values of the adaptable parameters was compared.

5.0.1 Comparison with previous methods

For the stress test three different benchmarks were run.

• A far benchmark, where the camera is positioned so far away that all trees are
beyond the draw distance, and should be culled.

25

5. Evaluation

• A medium benchmark, where the camera is positioned at a medium distance, this
is also the most similar to a real-world scenario.

• A close benchmark, where the camera is positioned at a very low altitude above
the forest, which is the most computationally expensive of the three benchmarks.

For all three benchmarks the runtime statistics are taken over a 360 degree horizontal
camera sweep.

(a) Screenshot from the Far benchmark

(b) Runtime in the benchmark (c) Mean runtime of the different passes

Figure 5.1: Far benchmark

In the far benchmark (Figure 5.1), a notable improvement over both Primitive, which
seems to perform uniquely bad in this benchmark, and Vegetation can be observed. The
hierarchical approach allows us to discard entire regions of forest, and thus drastically
reduces overhead in this benchmark. Further, Primitive likely suffers in this benchmark
due to the usage of gl_FragDepth. Due to this the early Z-test, an optimization
strategy of the shader pipeline, is disabled [Khr1]. This greatly affects performance

26

despite nothing being drawn. Further, the reduced computations from only doing view
frustum culling on a per-batch basis, instead of a per-tree basis has a significant effect on
runtime in this benchmark.

(a) Screenshot from the Medium benchmark

(b) Runtime in the benchmark (c) Mean runtime of the different passes

Figure 5.2: Medium benchmark

In the medium benchmark (Figure 5.2), the largest improvement of the three benchmarks
can be observed, as our approach outperforms Vegetation by a significant margin, and
even outperforms Primitive. The medium benchmark containing the most realistic camera
position, shows the strong performance of our approach in the application scenario for
which it was designed. The GPU usage is significantly reduced by only drawing billboards
instead of billboard clouds for each tree, without negatively impacting visual quality.

27

5. Evaluation

(a) Screenshot from the Close benchmark

(b) Runtime in the benchmark (c) Mean runtime of the different passes

Figure 5.3: Close benchmark

The least improvement can be observed in the close benchmark (Figure 5.3), where our
approach is outperformed by Primitive. While our approach is outperformed by Primitive
for close ranges, it still outperforms Vegetation by a significant margin at those same
distances. The result further makes sense as this is the benchmark where our approach
has the largest overlap with Vegetation, as the closest LOD is rendered identically to
Vegetation.

5.0.2 Comparison of parameter choices

Another test to compare different choices for the adjustable parameters of our method
was conducted using a different sample scene with normal tree density, named Synthetic
as mentioned at the beginning of Chapter 5. The runtime statistics were captured over a
distance sweep to a fixed location, moving the camera away until all trees are beyond

28

the draw distance and then returning the camera to its original position.

Figure 5.4: Comparison benchmark

In the comparison between our approach and the two previous approaches implemented
in Visdom, shown in Figure 5.4, it can be observed that our method outperforms both
previous methods. Primitive presents worse performance than might be expected, however
this can be explained by the same reasoning as in the Far benchmark (Figure 5.1).

(a) Draw time per grid size (b) Selection time per grid size

Figure 5.5: Batch grid size benchmark

Varying the size of the grid used to generated the batches, a large performance difference
during drawing can be observed for the two extremes (Figure 5.5a). The time taken to
select the LOD levels and generate the corresponding draw commands decreases with
increasing grid size as expected. The large decrease in performance for very small grid
sizes is due to an increasing overhead of dispatching many draw commands, and worse
cache locality of the indirection array. The large decrease in performance for very large
grid sizes is due to large overdraw, and reduced early discard. For large grid sizes more
work has to be done later in the pipeline, as every tree has to be drawn twice for the

29

5. Evaluation

LOD transition. From this it can be seen that a grid size of 500 meters is the sweet spot
for our application.

(a) Number of billboard angles benchmark (b) Billboard texture size benchmark

Figure 5.6: LOD data benchmarks

As can be seen in Figure 5.6, neither the number of pre-rendered angles, nor the texture
size of the billboards seem to have a significant influence on performance. Both increase
the memory footprint of the pre-generated LOD data and may affect performance for
very large values as memory bandwidth limitations come into effect. Thus they should
be chosen as small as possible while retaining the desired visual quality. At a minimum
texture size should match the size in pixels that a billboard can occupy on screen, which
depends on the transition distance of LOD1 and the size of the trees. During our testing
10 angles with a texture size of 128x128 were used and gave satisfactory results.

Figure 5.7: LOD settings benchmark

In the LOD settings benchmark (Figure 5.7), it can be observed that reducing the
transition range of LOD1 to 0 (listed as "no LOD0") reduces runtime slightly, as all trees
are rendered as billboards. Batches that overlap the camera still have a draw command

30

emitted for them. Further setting the LOD fade distance to 0 (listed as "no cross-fade")
improves performance, to a lesser degree than disabling LOD0 however. The cross-fade
setting has little performance impact for values smaller than grid size used to generate
the batches and should be chosen based on subjective visual quality. The comparison
runtime listed as "default" uses an LOD1 transition range of 1000 m and a fade distance
of 250 m, and matches the values used throughout our testing.

31

CHAPTER 6
Conclusion

In summary, a robust rendering approach for large forests for use in 3D GIS was presented.
The approach was implemented, and evaluated in the scope of the chosen framework and
optimal parameter values were determined for the specific use cases of the chosen 3D
GIS.

Overall our implementation for rendering large-scale forests provides a significant increase
in rendering performance for vegetation-heavy scenes in 3D GIS. In the application that
was extended for the purpose of this evaluation it yielded speed-ups ranging from 70% up
to 500% over the performance of the two previous approaches. It produces a reliable and
extensible foundation for further performance improvements in the rendering pipeline of
the chosen framework. There it has fully replaced the previous approaches and is already
in production use, enabling higher interactivity for planning tasks without impacting
visual quality.

As discussed, there are many alternative approaches to rendering large numbers of trees
efficiently, however we believe that our implementation strikes the best balance for our
application. Our LOD0 is already considered a lower LOD in the scope of many other
approaches. Further ideas for possible improvements over the current implementation
are presented in Chapter 7.

33

CHAPTER 7
Future Work

Future work could improve several aspects of the rendering pipeline in Visdom. The
algorithm used to generate the batches could be massively improved. An algorithm
that takes tree density into account while creating the batches could further improve
performance. This would be accomplished by a reduction of overhead for sparse areas
and an increase in resolution for dense areas, which allows for more aggressive culling
and LOD selection to further minimise overdraw.

Another increase in performance especially for further away scenery could be accomplished
by pre-processing the batch data such that subsets of trees for each batch with predefined
densities can be rendered. Due to the shallow viewing angles imposed by large view
distances most trees that are drawn overlap each other. Therefore one can reduce the
number of trees that are drawn while only affecting the texture and silhouette of the
resulting forest slightly. This would allow a reduction in overdraw and potentially an
increase in draw distances. The subsets could be represented by storing multiple ranges,
and sorting the indices in the batches such that drawing a larger subset evenly increases
the density of the drawn trees, without leaving obvious gaps.

Generating tighter bounding spheres for the batches can also boost performance by
increasing the number of batches that can be culled. The system could be further
extended to render objects other than trees, or other radially symmetric objects, such as
buildings. To accomplish this, without losing too much visual fidelity, multiple azimuth
angles are generated in addition to the multiple elevation angles already generated.
Sorting of the indirect draw commands by distance could further improve performance
by reducing overdraw. Introducing another type of LOD that turns an entire batch into
a single opaque ultra-low-polygon-count mesh, of similar shape to the convex hull of the
batch, could improve visual fidelity by extending the maximum possible draw distance
for little extra performance cost.

35

List of Figures

1.1 Screenshot of the decision support system Visdom by VRVis [VSD] 3

2.1 Forests in different games ([BA],[HFW],[ML],[W3]) 5

3.1 Forest with LOD scheme applied for rendering (Green: LOD0, Blue: LOD1,
Red: Transition Region Markings . 8

3.2 Schematic structure of the pipeline . 9
3.3 Schematic diagram of the LOD billboard textures of a tree 10
3.4 Example texture split into color and alpha channels (White: fully opaque;

Black: fully transparent) . 12
3.5 Comparison of simple per-channel down-sampling with alpha-aware down-

sampling . 12
3.6 Comparison with and without alpha equalization 13
3.7 Schematic diagram of batches . 14
3.8 Schematic diagram of LOD selection . 15

4.1 Diagram of the two paths in the geometry shader 20

5.1 Far benchmark . 26
5.2 Medium benchmark . 27
5.3 Close benchmark . 28
5.4 Comparison benchmark . 29
5.5 Batch grid size benchmark . 29
5.6 LOD data benchmarks . 30
5.7 LOD settings benchmark . 30

37

List of Algorithms

3.1 Render LOD textures . 11

3.2 Alpha-Aware Mipmaps . 14

39

Bibliography

[AT95] Chuan-Heng Ang and Kok-Phuang Tan. “The interval B-tree”. In: Information
Processing Letters 53.2 (1995), pp. 85–89. issn: 0020-0190. doi: 10.1016/
0020-0190(94)00176-Y. url: https://www.sciencedirect.com/
science/article/pii/002001909400176Y.

[BA] Broken Arrow. Steel Balalaika, Slitherine Games. 2024. url: https://www.
slitherine.com/game/broken-arrow (visited on 05/04/2024).

[Bao+09] Guanbo Bao et al. “Billboards for Tree Simplification and Real-Time For-
est Rendering”. In: 2009 Third International Symposium on Plant Growth
Modeling, Simulation, Visualization and Applications. 2009, pp. 433–440. doi:
10.1109/PMA.2009.38.

[Bao+11] Guanbo Bao et al. “Realistic Real-Time Rendering for Large-Scale Forest
Scenes”. In: 2011 IEEE International Symposium on VR Innovation. 2011,
pp. 217–223. doi: 10.1109/ISVRI.2011.5759637.

[BO] Jani Honkanen. Boreal Orienteering: Technology. url: http://www.borealorienteering.
com/tech (visited on 04/15/2024).

[BRG21] Karis Brian, Stubbe Rune, and Wihlidal Graham. “A Deep Dive into Nanite
Virtualized Geometry”. In: ACM Siggraph: Advances in Real-Time Rendering
in Games Course (2021).

[Cro+15] Thomas Ward Crowther et al. Mapping tree density at scale. Nature. –
processed by Our World in Data. “Number of trees per km2” [dataset]. 2015.
url: https://ourworldindata.org/grapher/number-of-trees-
per-km (visited on 05/02/2024).

[Eve01] Cass Everitt. “Interactive Order-Independent Transparency”. In: NVIDIA
Corporation 2 (Oct. 2001).

[FUM05] Anton Fuhrmann, Eike Umlauf, and Stephan Mantler. “Extreme Model
Simplification for Forest Rendering.” In: Natural Phenomena. Jan. 2005,
pp. 57–66. doi: 10.2312/NPH/NPH05/057-066.

[GCT14] Nuwan Ganganath, Chi-Tsun Cheng, and Chi K. Tse. “Data Clustering
with Cluster Size Constraints Using a Modified K-Means Algorithm”. In:
2014 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery. 2014, pp. 158–161. doi: 10.1109/CyberC.2014.36.

41

https://doi.org/10.1016/0020-0190(94)00176-Y
https://doi.org/10.1016/0020-0190(94)00176-Y
https://www.sciencedirect.com/science/article/pii/002001909400176Y
https://www.sciencedirect.com/science/article/pii/002001909400176Y
https://www.slitherine.com/game/broken-arrow
https://www.slitherine.com/game/broken-arrow
https://doi.org/10.1109/PMA.2009.38
https://doi.org/10.1109/ISVRI.2011.5759637
http://www.borealorienteering.com/tech
http://www.borealorienteering.com/tech
https://ourworldindata.org/grapher/number-of-trees-per-km
https://ourworldindata.org/grapher/number-of-trees-per-km
https://doi.org/10.2312/NPH/NPH05/057-066
https://doi.org/10.1109/CyberC.2014.36

[HD04] Tan Kim Heok and Daut Daman. “A review on level of detail”. In: Proceedings.
International Conference on Computer Graphics, Imaging and Visualization.
2004, pp. 70–75. doi: 10.1109/CGIV.2004.1323963.

[HFW] Horizon: Forbidden West. Guerilla Games, Sony. 2022. url: https://
www.playstation.com/de-at/games/horizon-forbidden-west/
(visited on 05/04/2024).

[Khr1] OpenGL wiki: Early Fragment Test. Khronos. url: https://www.khronos.
org/opengl/wiki/Early_Fragment_Test#Limitations (visited on
04/15/2024).

[Khr2] Christoph Kubisch. Mesh Shading for Vulkan. Khronos. url: https://
www.khronos.org/blog/mesh-shading-for-vulkan (visited on
04/15/2024).

[ML] Manor Lords. Slavic Magic, Hooded Horse. 2024. url: https://manorlords.
com/ (visited on 05/04/2024).

[NV1] Christoph Kubisch. Introduction to Turing Mesh Shaders. Nvidia. url:
https://developer.nvidia.com/blog/introduction-turing-
mesh-shaders/ (visited on 04/15/2024).

[PNG1] PNG Spec §12.3. url: https://www.w3.org/TR/png/#12Encoder-
colour-handling (visited on 04/15/2024).

[VSD] Visdom. VRVis. url: https://www.visdom.at (visited on 04/28/2024).
[W3] The Witcher 3: Wild Hunt. CDProject: Red. 2015. url: https://www.

thewitcher.com/us/en/witcher3 (visited on 05/04/2024).
[Zha+06] Yi-Kuan Zhang et al. “Image Based Real-Time and Realistic Forest Rendering

and Forest Growth Simulation”. In: 2006 Second International Symposium on
Plant Growth Modeling and Applications. 2006, pp. 323–327. doi: 10.1109/
PMA.2006.44.

42

https://doi.org/10.1109/CGIV.2004.1323963
https://www.playstation.com/de-at/games/horizon-forbidden-west/
https://www.playstation.com/de-at/games/horizon-forbidden-west/
https://www.khronos.org/opengl/wiki/Early_Fragment_Test#Limitations
https://www.khronos.org/opengl/wiki/Early_Fragment_Test#Limitations
https://www.khronos.org/blog/mesh-shading-for-vulkan
https://www.khronos.org/blog/mesh-shading-for-vulkan
https://manorlords.com/
https://manorlords.com/
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://www.w3.org/TR/png/#12Encoder-colour-handling
https://www.w3.org/TR/png/#12Encoder-colour-handling
https://www.visdom.at
https://www.thewitcher.com/us/en/witcher3
https://www.thewitcher.com/us/en/witcher3
https://doi.org/10.1109/PMA.2006.44
https://doi.org/10.1109/PMA.2006.44

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Methodology
	Idea
	Pipeline structure
	Billboard textures
	Batch Generation
	Selection & Rendering

	Implementation
	LOD generation
	Batch generation
	Draw command generation
	Draw command execution
	Runtime resource analysis

	Evaluation
	Conclusion
	Future Work
	List of Figures
	List of Algorithms
	Bibliography

