Information
- Publication Type: Master Thesis
- Workgroup(s)/Project(s): not specified
- Date: 2024
- Open Access: yes
- First Supervisor: Manuela Waldner
- Pages: 80
- Keywords: Knowledge Externalization, Knowledge-Assisted Visualization, Visual Analytics, Unstructured Data, Concept Maps, Mental Models, User Study, Data Exploration
Abstract
Traditional machine learning approaches for analyzing large unstructured data often depend on labelled training data and well-defined target definitions. However, these may not be available or feasible when dealing with unknown and unstructured data. It requires human reasoning and domain knowledge to interpret it. Interactive systems that combine human analytical abilities with machine learning techniques can address this limitation. However, to incorporate human knowledge in such systems, we need a better understanding of the semantic information and structures that users observe and expect while exploring unstructured data, as well as how they make their tacit knowledge explicit. This thesis aims to narrow the gap between human cognition and (knowledge-assisted) visual analytics. In a qualitative and exploratory user study, this thesis investigates how individuals explore a large unstructured dataset and which strategies they apply to externalize their mental models. By analyzing users' externalized mental models, we aim to better understand how their knowledge evolves during data exploration. We evaluate the comprehensiveness, detail and evolution of users' external knowledge representations by applying quantitative and qualitative methods, including a crowdsourcing step. The results show that users' externalized structures are able to represent a given dataset comprehensively and to a high degree of detail. While these knowledge representations are highly subjective and show various individual differences, we could identify structural similarities between individuals. In addition to the insights about how users externalize their tacit knowledge during data exploration, we propose design guidelines for (knowledge-assisted) visual analytics systems.Additional Files and Images
Weblinks
BibTeX
@mastersthesis{irendorfer-2024-uat, title = "User Approaches to Knowledge Externalization in Visual Analytics of Unstructured Data", author = "Max Irendorfer", year = "2024", abstract = "Traditional machine learning approaches for analyzing large unstructured data often depend on labelled training data and well-defined target definitions. However, these may not be available or feasible when dealing with unknown and unstructured data. It requires human reasoning and domain knowledge to interpret it. Interactive systems that combine human analytical abilities with machine learning techniques can address this limitation. However, to incorporate human knowledge in such systems, we need a better understanding of the semantic information and structures that users observe and expect while exploring unstructured data, as well as how they make their tacit knowledge explicit. This thesis aims to narrow the gap between human cognition and (knowledge-assisted) visual analytics. In a qualitative and exploratory user study, this thesis investigates how individuals explore a large unstructured dataset and which strategies they apply to externalize their mental models. By analyzing users' externalized mental models, we aim to better understand how their knowledge evolves during data exploration. We evaluate the comprehensiveness, detail and evolution of users' external knowledge representations by applying quantitative and qualitative methods, including a crowdsourcing step. The results show that users' externalized structures are able to represent a given dataset comprehensively and to a high degree of detail. While these knowledge representations are highly subjective and show various individual differences, we could identify structural similarities between individuals. In addition to the insights about how users externalize their tacit knowledge during data exploration, we propose design guidelines for (knowledge-assisted) visual analytics systems.", pages = "80", address = "Favoritenstrasse 9-11/E193-02, A-1040 Vienna, Austria", school = "Research Unit of Computer Graphics, Institute of Visual Computing and Human-Centered Technology, Faculty of Informatics, TU Wien", keywords = "Knowledge Externalization, Knowledge-Assisted Visualization, Visual Analytics, Unstructured Data, Concept Maps, Mental Models, User Study, Data Exploration", URL = "https://www.cg.tuwien.ac.at/research/publications/2024/irendorfer-2024-uat/", }