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Distributed Surface Reconstruction
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(a) Point cloud input. (b) Reconstructed surface, for δ = 1.35, l = d
200 .

Figure 1: Reconstructed surface of the eclepens dataset.

Abstract
Recent advancements in scanning technologies and their rise in availability have shifted the focus from reconstructing surfaces
from point clouds of small areas to large, e.g., city-wide scenes, containing massive amounts of data. We adapt a surface
reconstruction method to work in a distributed fashion on a high-performance cluster, reconstructing datasets with millions of
vertices in seconds. We exploit the locality of the connectivity required by the reconstruction algorithm to efficiently divide-and-
conquer the problem of creating triangulations from very large unstructured point clouds.

CCS Concepts
• Computing methodologies → Point-based models;

1. Introduction

Recent advances in scanning abilities, together with the increase
in popularity of digital twins usage, created the tools to generate
and, respectively, the need to process massive scans of real-life el-
ements. Hence, we are now facing the question of how to quickly
process amounts of data that easily exceed millions of points while
still creating a faithful representation of the initial surfaces.

To answer this question, we distribute a surface reconstruction
algorithm [POEM24] that filters the Delaunay triangulation by the
intersection ratio of the Voronoi balls and removes long triangles,
by taking advantage of this local connectivity condition. We split
the input into tiles and add a parameter-based padding to each tile
to create an overlap. This ensures that no surface data is missing in
the final reconstruction while minimizing the amount of duplicate
information and the data transfer between nodes.

2. Related Work

Numerous methods to parallelize the Delaunay triangula-
tion [PMP14, CMYB19] have been developed recently, as it rep-
resents a first step in many surface reconstruction methods. The au-
thors introduce various paddings to ensure that the node-computed
triangulation agrees with the global one. Our method, even though
it uses the Delaunay triangulation, does not require a global trian-
gulation of the input points as it imposes a maximum edge length
of triangles in the output, condition we exploit in our work.

Recently, the state-of-the-art surface reconstruction - Poisson
Reconstruction [KBH06], has been adapted for out-of-core us-
age [KH23]. However, our method does not require any preprocess-
ing of the point cloud or additional information such as normals.

3. Method

We adapt the recent curve and surface reconstruction algorithm
Ballmerge [POEM24] to work distributedly. Its surface recon-
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struction method has two variants: global and local, both start-
ing from a Delaunay triangulation of the input. While the Global
Ballmerge merges overlapping regions obtaining a manifold, water-
tight mesh, the Local Ballmerge filters triangles based on the
following criteria: the intersection ratio between their respective
Voronoi balls is less than a threshold δ, and the longest edge of the
triangle is shorter than a predefined l. We will only concern our-
selves with the Local version, as it is faster and easier to distribute.
Moreover, point clouds with a magnitude of millions are usually
scans of outdoor scenes for which, due to scan shadows or scan
resolution, it is infeasible to enforce a manifold output.

3.1. Splitting

To be able to run the Delaunay triangulation and subsequently,
the Local Ballmerge in parallel on each cluster node, we need to
split the input data. We choose to split the input along a three-
dimensional regular grid due to its simplicity and ease of paral-
lelization. Surface reconstruction can be performed in each grid cell
individually. Since triangles might be shared between cells, the re-
construction might miss important parts of the surface. To mitigate
this, we introduce padding around each cell.

Since we filter triangles with edges longer than l, we pad the
cells with l in the positive directions so no possibly valid trian-
gles are missed in the triangulation. We also ensure that if points
are in different cells, their Voronoi balls intersection ratio is larger
than the predefined δ. To push the points sufficiently far away that
their Voronoi balls are empty of samples, we additionally pad with

2l√
(4δ−δ2)

in all directions. We omit the proof due to length con-

straints but have verified it experimentally as well. Following the
original algorithm, we use l = d

200 , where d is the diagonal of the
bounding box, and change their default δ = 1.85 value to δ = 1.35
in our experiments, as this value improved the resulted quality.

3.2. Distributed Version

The regularly subdivided tiles are assigned and distributed to nodes.
Each node performs surface reconstruction on its assigned tiles by
locally executing Local Ballmerge. As points obtained from real-
world scans usually are not distributed uniformly, the number of
points within tiles may vary greatly. To balance out the load, we as-
sign tiles to nodes using longest-processing-time-first list schedul-
ing, based on the number of points in the tiles, which is an effi-
cient and good approximation of the optimal solution to the load-
balancing problem. Merging is trivially done by taking the union
of all local results. Because of the padding, the overall result is
guaranteed to be the same as when running Local Ballmerge on the
entire input. Expected run time complexity for points sampled on
a surface is O(n/c+(n logn)/p) in the best case of uniform input
point distribution, worst is O(n/c+n logn) as in the original, for n
points, p reconstruction nodes and c cores for splitting.

4. Results

Splitting is done on the GPU using CUDA on a single node, while
the reconstruction is distributed via MPI to up to 32 CPU nodes.
We have evaluated our implementation on the VSC3+ HPC cluster,
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Figure 2: Run time comparison between original and distributed
version using datasets with 16 and 32 million points on 1-32 nodes.

varying input sizes and numbers of nodes. We used truncated ver-
sions of an aerial photogrammetry scan to simulate increasing input
size - Figure 1. Increasing the number of nodes with a fixed input
size and subdivision shows timings close to the linear speedup (the-
oretical maximum) - Figure 2. By using 16 nodes and scaling up the
input size, the run times of both original and distributed versions in-
crease according to their expected behavior of O(n logn). However,
the distributed version exhibits much slower growth, peaking at a
speedup factor of 5 for 32 million points and 32 nodes due to data
duplication. While varying the number of nodes for a fixed num-
ber of points, finer subdivisions allow for better work distribution,
resulting in potentially lower run times. However, choosing finer
subdivisions results in significantly more duplicated points, even-
tually canceling out any speed gains from adding more nodes.

5. Conclusion and Future Work

Our method adapts a surface reconstruction algorithm to work dis-
tributedly, with minimal data duplication, achieving speedups close
to linear for various configurations. We plan to investigate other
data-splitting approaches, as well as the possibility of parallelizing
Local Ballmerge on a node level. Moreover, we aim to evaluate our
method in more scenarios and compare it to recent work.
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