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Kurzfassung

In dieser Arbeit werden die Auswirkungen verschiedener Seitenverhältnisse auf die
Wahrnehmung von Winkelverhältnissen und Linien in Parallelen Koordinaten untersucht.
Parallele Koordinaten sind eine Visualisierungstechnik zur Darstellung multivariater
Daten, bei der jede zu untersuchende Variable als eine parallele Achse dargestellt wird
und Datenpunkte durch Linien verbunden werden, die sich durch diese Achsen ziehen.
Diese Methode ermöglicht die gleichzeitige Visualisierung von mehr als zwei Variablen
und die Interpretation von Korrelationsmustern innerhalb eines Datensatzes.

Die Zuverlässigkeit und Genauigkeit der Interpretation kann jedoch durch das Seitenver-
hältnis des Plots erheblich beeinflusst werden. Das Ziel dieser Arbeit ist es daher, den
Einfluss von Variationen des Seitenverhältnisses auf die Genauigkeit und das Vertrauen
der Benutzer bei der Wahrnehmung von Korrelationen in Parallelen Koordinaten zu
untersuchen.

Der methodische Ansatz umfasst drei Komponenten: die Entwicklung eines webbasierten
Visualisierungswerkzeugs, eine statistische Analyse der Linien- und Winkelparameter,
sowie eine empirische Nutzerstudie. Das Visualisierungswerkzeug ermöglicht die Dar-
stellung Paralleler Koordinaten in verschiedenen Seitenverhältnissen und die Analyse
geometrischer Eigenschaften der Linien im Plot. Die statistische Analyse zeigt, dass das
Seitenverhältnis signifikante Korrelationen mit den minimalen und maximalen Linienwin-
keln in parallelen Koordinaten aufweist, was die visuelle Wahrnehmung und Interpretation
der Daten beeinflusst. Diese Ergebnisse werden durch eine webbasierte Benutzerstudie
bestätigt, die darüber hinaus aufzeigt, dass bestimmte Seitenverhältnisse präzisere und
zuverlässigere Korrelationsschätzungen liefern. Die Ergebnisse verdeutlichen den bewuss-
ten Einsatz von flexiblen Seitenverhältnissen, um Verzerrungen zu minimieren und die
Zuverlässigkeit der visuellen Interpretation in Parallelen Koordinaten zu gewährleisten.
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Abstract

This thesis investigates the impact of different aspect ratios on the perception of angles
and lines in parallel coordinates. Parallel coordinates are a visualization technique for
representing multivariate data where each variable is drawn as a parallel axis, and data
points are connected by lines across these axes. This method allows for the simultaneous
visualization of more than two variables and enables the interpretation of correlation
patterns within a given dataset.

However, the reliability and accuracy of this interpretation can be significantly influenced
by the aspect ratio of the plot. This thesis aims to explore how variations in aspect
ratios affect the accuracy and confidence of users in perceiving correlations within parallel
coordinates.

The methodological approach comprises three components: the development of a web-
based visualization tool, a statistical analysis of line and angle parameters, and an
empirical user study. The visualization tool enables users to display parallel coordinates
in various aspect ratios and analyze the geometric properties of the lines in the plot. The
statistical analysis reveals that aspect ratios significantly correlate with the minimum and
maximum angles in parallel coordinates, which in turn affects the visual perception and
interpretation of the data. These findings are validated through a web-based user study,
demonstrating that specific aspect ratios lead to more accurate and reliable correlation
estimates. The results underscore considerate usage of flexible aspect ratios to minimize
distortion and ensure the reliability of visual data interpretation in parallel coordinates.
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CHAPTER 1
Introduction

Parallel coordinates are a powerful visualization technique for representing datasets
with multiple variables. By arranging axes in parallel rather than perpendicularly, as
in traditional Cartesian coordinates [1], this method allows the visualization of more
than two variables simultaneously. As visualized in Figure 1.1, each axis corresponds
to a variable, and data points are displayed as lines intersecting each axis at points
corresponding to their respective values [1].

Figure 1.1: Example of a parallel coordinates plot, visualizing various characteristics of
automobiles. The highlighted subset emphasizes cars with four cylinders, medium to low
horsepower, and medium acceleration rate. Image taken from Ilievski [2].
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1. Introduction

This parallel axes arrangement can be used for interpretation of data patterns between
variables, which are otherwise challenging to gauge in other visualization techniques.
Therefore, one of the most valuable features of parallel coordinates is the ability to
identify correlation patterns in variable pairs. This works by analyzing the angles and
intersections of lines between axes, which tend to form interpretable patterns. These
visual cues can reveal relationships such as how closely related two variables are and
whether the relationship is direct or inverse. Since correlations are manifested through
these patterns, parallel coordinates are especially useful for visual correlation estimation.

Parallel coordinates are widely adopted in various visualization libraries and applications
due to their ability to visually display complex datasets. Although traditionally used in
fields like demographics or finance, they have also found recent usage in fields like machine
learning, where understanding the complex relationships between many hyperparameters
is valuable for model fine-tuning [3].

Parallel coordinates remain a promising visualization technique for gathering information
on datasets that might be difficult to uncover using other methods. As a result, they
continue to be a popular choice for researchers and data analysts.

1.1 Motivation and Problem Statement
The reliability of parallel coordinates can significantly vary with their representation –
notably with the aspect ratio. The aspect ratio defines the proportion between the width
and height of a visualization and can have noticeable effects on the visual dynamics of
these plots [4].

Previous research has shown, aspect ratios’ influences on angles between lines and axes
in visualizations, misleading viewers about the true nature of data. For example, altering
the aspect ratio in line charts can significantly affect slope perception, leading viewers to
either exaggerate or understate trends [5][6].

Despite its significance, the aspect ratio is often unintentionally altered in responsive
user interfaces. As users adjust application window sizes or interact with multi-view
dashboards, the aspect ratios of parallel coordinates may shift unpredictably. While
beneficial for layout customization, this flexibility can unintentionally distort the critical
visual cues for accurate data interpretation (see Figure 1.2).

While it is well-established that aspect ratio affects the perception of slopes and angles
in traditional visualizations, its specific impact on the perception of angular parameters
in parallel coordinates remains unexplored. This gap in research motivated our study, as
we aimed to investigate how different aspect ratios influence the accuracy and reliability
of interpreting correlation patterns in parallel coordinates.
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1.2. Research Question

Figure 1.2: The same parallel coordinates plot with different aspect ratios: the left image
shows a wide aspect ratio (4:3), while the right one is narrower (3:4). Note how the
chosen aspect ratio has noticeable effects on the perception of line angles within the plot.

1.2 Research Question
Our research sought to close this gap by answering the following research question:

RQ: How does aspect ratio influence the perception of correlation in parallel coordinates?

To thoroughly investigate this topic, we focused on exploring how varying aspect ratios
affect the user’s ability to accurately judge correlations between variables. Given that
angles and lines are key indicators of relationships in parallel coordinates, we argued
that changes in aspect ratio might distort these visual indicators, leading to incorrect
interpretations. Moreover, this study sought to bridge the gap between existing knowledge
on the effects of aspect ratios in traditional visualization techniques and their effects on
parallel coordinates.

1.3 Goal and Expected Results
To answer the proposed research question, the goal of this thesis was to provide statistical
and empirical evidence for understanding how different aspect ratios influence correlation
perception in parallel coordinates. To achieve this, the thesis focused on generating the
following results:

Visualization Tool: A web-based application capable of adjusting parallel coordinates
across a range of aspect ratios, equipped with features for analyzing and capturing
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1. Introduction

underlying geometric properties such as line angles and correlation.

Statistical Analysis: A statistical analysis investigating the relations between aspect
ratio variations and the geometric properties of parallel coordinates. This includes
identifying specific properties that correlate with the aspect ratio in order to validate our
initial hypothesis.

Quantitative Analysis: The results of a web-based study providing a quantitative
analysis of human perception of relationships between variables under different aspect
ratios. This analysis may empirically answer our research question and suggest which
aspect ratios were most effective for accurate visual correlation estimation.

1.4 Methodological Approach
We developed a methodological approach aimed at contributing to a better understanding
and improved utilization of parallel coordinates. We began with an extensive review of
related literature on correlation analysis and data visualization, with a particular focus
on parallel coordinates and the influence of aspect ratios. This phase was intended to
establish fundamental concepts and gather findings from previous studies related to the
field.

Following this research, we formulated hypotheses based on the results from our literature
review. These hypotheses focused on how aspect ratios might affect users’ perception of
correlations within the plots.

The next step involved developing a web-based visualization tool. This tool allowed users
to interactively adjust and analyze parallel coordinates with varying aspect ratios, serving
as the primary means for visual experimentation and data collection in subsequent stages.
Further, we conducted a statistical analysis using data collected from the web application.
This analysis focused on how different geometric properties correlate with the aspect
ratio. Based on this preliminary analysis, first findings regarding the influence of aspect
ratio on the geometric properties of parallel coordinates were gathered.

The next phase involved the generation of datasets designed to evaluate our hypotheses.
Once the datasets were ready, the experimental setup was configured, ensuring all
necessary tools and systems were in place for conducting the user study. This included
integrating the web application with data collection mechanisms to track user interactions
and responses.

A user study was conducted to collect empirical data. Participants used the developed
web-based visualization tool to interact with parallel coordinates, and their responses
regarding the perceived correlations and self-confidence were captured. The collected
data was evaluated and based on these results, conclusions were drawn to either accept
or reject the formulated hypotheses.
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CHAPTER 2
Fundamentals and Related Work

The following chapter covers the fundamental concepts and related work necessary to
understand correlation analysis, data visualization, parallel coordinates, and the effects
of aspect ratios in data visualization. Following, will take a closer look at correlation
analysis and explore its different manifestations, measures like the Pearson’s correlation
coefficient, and important distinctions between correlation and causation. We also look
at methods for assessing statistical significance and potential errors in hypothesis testing.

Next, we move to data visualization, outlining common and novel taxonomies for their cat-
egorization and describe the data visualization pipeline. Further, we examine techniques
for visualizing different types of datasets, highlighting their key distinctions and individual
use cases. We then focus on how parallel coordinates represent complex datasets, which
interaction techniques they offer and illustrate their relevance by exploring selected case
studies. Finally, we explain the role of aspect ratios in graphical representations and
discuss proposed solutions for counteracting its effects.
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2. Fundamentals and Related Work

2.1 Correlation Analysis
Correlation analysis is a discipline in descriptive statistics that aims to understand how
variables relate to each other. More specifically, it denotes the magnitude and nature of
the relationship between two or more variables [7]. Understanding these relationships
involves several key concepts.

2.1.1 Variance
Variance measures the dispersion of points in relation to an underlying mean value [7]. It
describes how much the values in a dataset deviate from this mean value. For a given
sample of n observations x1, x2, . . . , xn, the variance Var(X) is calculated as:

Var(X) = 1
n

n�
i=1

(xi − x)2

where x is the sample mean for variable X:

x = 1
n

n�
i=1

xi

As shown in Figure 2.1, high variance is present in datasets where data points are largly
scattered away from the center. On the other hand, lower variance suggests that data
points are closer to the center [7] [8].

Figure 2.1: Scatterplots of datasets with low (left) and high variance (right). The
horizontal axis represents variable X, and the vertical axis represents variable Y .

Variance is a fairly important metric for understanding the degree of variability within a
dataset and is often used in scientific research as for evaluating experimental results.
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2.1. Correlation Analysis

2.1.2 Covariance
Unlike variance, covariance describes the linear relationship between two variables. Figure
2.2 highlights the characteristics of covariance within two different datasets. Essentially,
covariance describes the extent of concurrent or opposite trends within two given variables
[7] and can be expressed by:

σxy =
�N

i=1(xi − x)(yi − y)
N − 1

Where xi and yi are individual data points from two variables X and Y, x and y are
their respective means, and N is the number of data points.

Figure 2.2: Scatterplots depicting datasets with strong positive and negative covariance.
The left plot illustrates a positive covariance, where X and Y increase together, while
the right plot displays negative covariance, where Y decreases as X increases.

Covariance describes a positive or negative value, which expresses the nature of the
linearity between variables X and Y.

2.1.3 Types of Relationships
Closer examining the covariance’s sign gives us a more nuanced look into the different
manifestations of relationships. As visualized in Figure 2.3, researchers generally divide
relationships into three categories.
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2. Fundamentals and Related Work

Figure 2.3: Scatterplots illustrating three types of linear relationships: positive covariance
(left), negative covariance (center), and no covariance (right). The red lines indicate the
trend direction for each relationship, highlighting how X and Y vary together (positive
or negative covariance) or show no consistent trend (no covariance).

Positive Relationship

A positive relationship exists if an increase in variable X leads to an increase in variable
Y. This means that the variables move in the same direction. A typical example in this
context is the relationship between hours studied (X) and exam results (Y ) [9]. Generally,
as the number of hours studied increases, the exam scores also increase, reflecting a
positive relationship. In terms of covariance, this means σxy > 0.

Negative Relationship

Negative relationships, where σxy < 0, are present if an increase in variable X leads to a
decrease in variable Y, indicating that the variables move in opposite directions. In the
exam case, a negative relationship would be represented by the number of hours spent
playing video games and exam grades. As the number of hours spent on distractions
increases, the examination scores tend to decrease, describing a negative relationship.

No Relationship

Whenever covariance nears 0 (σxy ≈ 0), it can be assumed that no underlying relationship
is present. In this case, changes in variable X do not predictably affect variable Y. In
other words, the variables do not exhibit any consistent linear trend. To illustrate this,
one could argue that there is no real relationship between the number of hours studied
and the amount of rainfall in a city.

2.1.4 Correlation
Since covariance can manifest as arbitrarily high positive or negative values, researchers
often aim for a normalized measurement to make further calculations easier [7]. To do
this, the covariance is divided by the product of the standard deviations:
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2.1. Correlation Analysis

ρxy =
�N

i=1(xi − x)(yi − y)��N
i=1(xi − x)2 �N

i=1(yi − y)2

This value, also known as the Pearson product-moment correlation coefficient [7], results in
a normalized expression between -1 and 1. The Pearson correlation coefficient essentially
attempts to determine the degree of linear relationship between two variables. As
previously illustrated in 2.3, it indicates how accurately the association between the two
variables can be expressed using a linear equation in the form of y = ax + b [10].

In practical terms, a strong linear relationship is represented by ρxy being very close
to either 1 or -1. In contrast, values close to 0 imply a weaker or non-existent linear
relationship.

2.1.5 Correlation Coefficients
Similar to the Pearson correlation coefficient, researchers can employ several other
coefficients to describe the relationship between variables within a dataset. These
coefficients can be broadly classified based on the criteria they pose on a given dataset,
as well as the scale level of the underlying variables. In literature, they are commonly
referred to as parametric and non-parametric [11][7].

Parametric correlation coefficients are used if the variables are measured on an
interval or ratio scale [7]. These coefficients assume specific characteristics about the
data distribution, such as linearity, normality, and homoscedasticity1. They are sensitive
to deviations from these assumptions and may not necessarily provide accurate results if
these assumptions are violated. The Pearson correlation coefficient is usually the most
commonly used parametric measure [7].

Non-parametric correlation coefficients, on the other hand, are suitable for variables
measured on an ordinal scale or if the data does not meet the assumptions required
for parametric methods. These coefficients do not make strict assumptions about the
underlying data distribution, making them more robust for non-normally distributed
data. Examples of non-parametric measures include Spearman’s rank correlation and
Kendall’s tau [7].

2.1.6 Significance
Statisticians conduct tests to reliably deem a correlation significant enough to be impor-
tant. Testing for significance is vital since researchers must collect statistical evidence to
make sense of data. When conducting a significance test, researchers are essentially saying
that the observed correlation in a given sample is unlikely to have occurred randomly [7].

1Homogenity of variance, i.e., the distribution of the yi values must have the same variance for all
groups of xi [12].
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2. Fundamentals and Related Work

When testing for significance in correlation analysis, standardized t- or z-tests are used.
For both, the population is defined as a baseline of comparison. Note that the method
employed for significance testing is dependent on the underlying population correlation
coefficient ρ.

t-Test for ρ = 0

The t-test [7] effectively answers the question of whether a given sample correlation,
e.g., the Pearson correlation between two variables, significantly differs from zero (given
it is known that ρ = 0), which indirectly tests whether there is any correlation in the
population at all. This can be calculated as follows:

tN−2 = r
√

N − 2√
1 − r2

where r is the sample correlation coefficient, and N is the number of paired observations.
The hypotheses for the t-test are:

• Null hypothesis (H0): The sample correlation r is not significantly different from
zero.

• Alternative hypothesis (H1): The sample correlation r is significantly different from
zero.

The test statistic |tN−2| is compared to the critical value tα/2,N−2 from the t-distribution
with N − 2 degrees of freedom at a chosen significance level α. If |tN−2| > tα/2,N−2, H0 is
rejected, concluding that there is a statistically significant correlation in the population.
If not, H0 is not rejected, meaning that the evidence is insufficient to conclude that the
correlation is different from zero.

z-Test for ρ ̸= 0

Alternatively, if it is known that ρ ̸= 0, researchers encounter either right-skewed (ρ > 0)
or left-skewed (ρ < 0) sample score distributions. To handle this skewness and to test
the significance of the correlation, Fisher’s Z-transformation is typically applied, followed
by a z-test [7].

1. Fisher’s Z-transformation:
Z = 1

2 ln
1 + r

1 − r


where r is the sample correlation coefficient.

2. Mean of the Fisher’s Z-transformed values:

µz = 1
2 ln

1 + ρ

1 − ρ


10



2.1. Correlation Analysis

where ρ is the population correlation coefficient.

3. Standard error of Z:
σz = 1√

N − 3
where N is the number of paired observations.

4. z-score:
z = Z − µz

σz

After applying the transformation and calculating z, researchers set up the following
hypotheses:

• Null hypothesis (H0): The sample correlation r is not significantly different from
the population correlation ρ.

• Alternative hypothesis (H1): The sample correlation r is significantly different from
the population correlation ρ.

Similar to the t-test, the calculated z-score is compared to the critical values from
the standard normal z-distribution. If |z| > zα/2, H0 is rejected, concluding that the
correlation is statistically significant. Otherwise, H0 is not rejected, suggesting that the
sample correlation differs from the population correlation.

2.1.7 Error Types
When conducting hypothesis tests, researchers aim to reduce two primary types of errors:
Type I and Type II errors [7]. A Type I error, also known as a false positive, occurs when
H0 is rejected if it is actually true. This error leads to the incorrect conclusion that there
is a significant effect or correlation when there is none.

The previously selected significance level α controls the probability of making a Type
I error. This expression indicates that there could be a α = 5% chance of rejecting H0
when it is true.

On the other hand, a Type II error (false negative) occurs when H0 is not rejected
despite being actually false. This error leads to the incorrect conclusion that there is
no significant effect or correlation when there is one. The probability of making a Type
II error is denoted by β. In addition to that, the statistical power of the test, 1 − β,
represents the likelihood of correctly detecting an effect if it truly exists.

In decision-making regarding which error to optimize for, it is generally recommended
to consider the consequences of Type I and Type II errors in the context of the specific
problem or domain [13]. If the consequences of a false positive are more severe, it would
make sense to set a lower significance level to minimize the probability of this error.
Conversely, if a false negative poses a greater risk, efforts should be made to increase the
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power of the test. This can be done e.g., by increasing the sample size or reducing the α
level.

2.1.8 Correlation and Causation
Another critical distinction in statistical analysis is understanding the difference between
correlation and causation. A common fallacy of correlation and data analysis is the
assumption of an inherent causal relationship between variables that can be deduced by
the correlation alone [7][14].

An often-cited [15][16][17] example in discussions of correlation versus causation is the
relationship between chocolate consumption and the number of Nobel Prize winners in
various countries [18]. Messerli [19] found a significant positive correlation between a
country’s per capita chocolate consumption and the number of Nobel winners it produces.

Figure 2.4: Correlation between chocolate consumption and Nobel Prize winners per 10
million population. Image taken from Messerli [19].

The study’s reported correlation results suggest that countries with higher chocolate
consumption tend to have more Nobel Prize winners. As illustrated in Figure 2.4, the
author pointed at a linear relationship between the two variables. The peak was marked
by Messerli’s home country [20], Switzerland, known for a considerable number of Nobel
laureates and exceptionally high chocolate consumption [19], further underlining this
trend.
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2.1. Correlation Analysis

However, these assumptions were solely drawn from correlation patterns and are not
backed by further investigation. The author even pointed out that "[...] a correlation
between X and Y does not prove causation but indicates that either X influences Y, Y
influences X, or X and Y are influenced by a common underlying mechanism" [19].
In this particular study, Messerli proposed some potential hypotheses to explain his
observations; however, controlled experiments or longitudinal studies are required to
move from correlation to causation effectively. Ultimately, this study, perfectly illustrates
the issues of inferring causation from correlation.

2.1.9 Spurious and Confounding
In this context, understanding spurious associations and confounding variables as contex-
tual factors is also important when interpreting correlations [14]. These phenomena can
significantly distort our understanding of the relationship between variables, leading to
false conclusions if not carefully considered [21]. The interconnected relationship between
confounder, spurious associations and the variables involved can be seen in Figure 2.5.

Figure 2.5: Illustration depicting the relationship between the confounding variable (high
temperature) and spurious correlations with variable A (ice cream sales) and B (shark
attacks). Image taken from Das [22].

Spurious Association: Spurious associations, or correlations, refer to a perceived
high relationship between variables that occurs by chance or due to the influence of an
external factor, leading to misleading conclusions about the actual relationship. The
findings of the proposed study by Messerli [19] illustrate such a phenomenon.

Confounding Variable: A confounding variable is an external factor that influences
both variables under study, creating a spurious association. For instance, a positive
correlation between physical fitness and academic performance might be influenced by
socioeconomic status, a confounding variable that affects both fitness opportunities and
educational resources [23].
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2. Fundamentals and Related Work

The interplay between confounding and observed variables, especially in bivariate corre-
lation analysis, is never fully transparent [22]. However, considering additional variables
when interpreting correlation patterns drawn from observed data, can already help reduce
false conclusions. Confounding variables, in particular, need careful consideration as
they can mask genuine relationships between the variables under study or suggest a
relationship where none exists.

To effectively address these phenomena, researchers can employ restrictions or randomiza-
tion to isolate the effects of the variables of interest [21]. If additional variables or data
are available, running a multivariable regression analysis can further help in reasoning
about underlying relationships [22].

2.2 Data Visualization
Data visualization is used as a means of visually presenting insights gathered from data.
By translating data into graphical representations, characteristics in the data sets can be
visualized that may not be apparent from raw numbers alone. [1].

To understand and develop effective visualization techniques, it is crucial to categorize
them systematically. Tory et al. [24] claim this is due to two factors; First, taxonomies
help user classify visualizations in order to guide them in effectively describing, using
and thinking about them. Secondly, they advance the field as a whole by providing a
meaningful way of organization, which serves as a foundation for research and discussion.
For this purpose, various categorization schemes have been proposed over the years, each
focusing on different aspects.

2.2.1 Categorizations
One common approach is categorizing visualizations by application area [25]. Especially,
scientific and information visualization are coined terms in this field (see Figure 2.6).

Scientific visualizations typically focus on illustrating physical or mathematical phenomena
with particular consideration for an accurate representation. It often involves data that
has spatial or physical properties, such as medical imaging [26] or fluid dynamics [27].
In contrast, information visualization primarily deals with non-spatial data, such as a
large corpus of text or numerical data, where the inherent goal is to make the underlying
information more accessible, understandable, and usable.

Another framework for categorizing visualizations was presented by Shneiderman [28].
His taxonomy introduced the "Visual Information-Seeking Mantra"; with overview first,
zoom and filter, then details on demand, as a guiding principle for designing graphical
user interfaces. This taxonomy classifies visualizations based on seven data types (one-
dimensional, two-dimensional, three-dimensional, temporal, multi-dimensional, tree, and
network data) and seven tasks (overview, zoom, filter, details-on-demand, relate, history,
and extract). By integrating these data types and tasks, the framework provides a more
granular approach on categorization of the different types of data visualizations.
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There are also categorization methods that solely focus on the interaction techniques
used in visualizations. The taxonomy by Yi et al. [29] identified several fundamental
interaction techniques that are essential for an effective visualization: select, explore,
reconfigure, encode, abstract/elaborate, filter, and connect. Each technique addresses a
different aspect of how users engage with visual data. Notably, this categorization heavily
emphasizes the importance of user intent and interaction in the visualization process.

Figure 2.6: Examples of scientific and information visualizations. The left image represents
a scientific visualization showing a topographical map with color-coded areas displaying
geophysical measurements. The right image is an example of information visualization,
depicting a treemap that categorizes music themes across decades. Images taken from
Hengl et al. [30] and Chen [31].
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2.2.2 Novel Taxonomies
Ongoing discussions in visualization research question the prevalence and necessity of
existing classifications in visualization. A notable example was the panel discussion on
the established distinctions within the field, hosted by Rhyne in 2003 [25]. The discussion
included several key researchers from different areas. It was aimed at debating over
maintaining separate categories for scientific and information visualization, questioning
whether such distinctions are really needed [25].

Building on this debate, Tory and Möller proposed a novel taxonomy for classifying visu-
alization techniques "[...] based on the design models of algorithms rather than the data
itself" [24]. This model-based taxonomy emphasizes the human aspect of visualization,
considering both the assumptions made by designers and the conceptual models held
by users. The authors argue that common categories like scientific and information
visualization are often ambiguous and overlapping, hindering the understanding and
development of hybrid visualization techniques [25]. Instead, they classify design models
as either discrete or continuous and analyze to the use of display attributes such as
transparencies or color.

Tory and Möller’s taxonomy is meant to offer a flexible framework that can accommo-
date a broader range of visualization techniques as a result of challenging the existing
categorization approaches.

2.2.3 Data Visualization Pipeline
A central aspect of data visualization is the data visualization pipeline [32]. This pipeline
proposes a step-wise process of transforming raw data into visual representations. It
involves stages that process data, convert them into visual formats, and render them in
ways that users can easily interpret (see Figure 2.7).

The term Data Visualization Pipeline and its conceptual framework were introduced
and popularized by Card et al. [32]. This framework has since become a foundational
concept in data visualization, guiding the design and implementation of effective data
visualization applications. In the following, we discuss the different stages of the pipeline
and outline their influence on the final representation.

Data Transformation

The initial stage in the pipeline is data transformation, which involves converting data
into a structured and organized format suitable for visualization. Generally, this step is
meant to both reduce and enhance the information contained in raw data [32].

According to Card et al. [32], data transformations can be classified into four types.
First, he mentions transformations that can derive new values from existing ones through
mathematical operations, i.e., calculating means or sums. These operations are mostly
used to enhance the information contained in raw values.
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Figure 2.7: Illustration of the data visualization pipeline. Key stages include: transforming
raw data into structured tables, mapping these tables into abstract visual structures, and
finally generating views for user interaction. Human interaction influences the pipeline
at various stages. Image taken from Card et al. [32].

Data transformations can also modify the structure of the data itself, such as reorganizing
it into tables, which can be used to compare or classify. This step is more steered toward
changing the representation of data and allowing for a structured look on them.

Third, the created structures can be used to generate new derived values. This can
mean extracting aggregations or ranges from the organized data structures. These
transformations consume and convert the structured organization of data to generate
higher-level information that is not visible in the raw data or derived values alone.

Finally, transformations can derive new structures from existing one, which in turn
provide a different perspective or highlight different relationships in the data. Card et al.
give an example of this, where they take a table of ranges and transform it into a binary
table. In this case, existing ranges are used to define criteria for binarization, where each
cell in the binary table represents whether a specific data point falls in a given range or
category.

In essence, all these transformations try to ensure that the data is in an "idiosyncratic
format" [32]. This means they are optimized for subsequent stages of the visualization
pipeline.

Visual Mapping

Visual mapping is the core of the visualization process. In this stage, the derived structures
and values within data tables are mapped to visual glyphs using a specific function F [33].
This function takes the structured data as input and produces a visual representation as
output. The goal is to create a visual form that users can easily interpret.
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A well-designed visual mapping function must be computable, meaning it can be executed
algorithmically. It also has to be invertible, allowing users to reconstruct data from the
visual representation. Additionally, the function or its inverse must be understandable
to users and should aim to minimize the cognitive load required to interpret the visual
representation [33].

According to Card et al. [32], the visual mapping process involves two sub-steps: mapping
data entities to visual glyphs2 and assigning data attribute values to the visual properties
of these glyphs (e.g., size, color, and shape) [32]. Since this step builds on several aspects
of human perception, concepts like visual structures and Gestalt principles are crucial for
making these visualization effective.

View Transformation

After the visual forms are created, they are embedded into views. Views display these
visual forms on the screen and enable various transformations such as zooming, panning,
and rotating to adjust the perspective [33].

View transformation involves affine view transformations, which allow the user to focus on
different parts of the data. Multiple views might be created to show different aspects of
the data, and synchronization ensures that interactions in one view are reflected in other
related views. The goal is to present the visual forms in an accessible and interpretable
way, focusing on better understandability and providing some degree of exploration.

Interaction

Interaction is a crucial part of the visualization pipeline, enabling users to manipulate the
visualization and generate meaning through exploration. Common interaction techniques
include selecting, filtering, linking, and rearranging or remapping [33].

Selecting involves marking specific data entities or subsets to view detailed information
or perform further analysis.

Filtering reduces the quantity of data in the display, allowing users to focus on the
information of interest.

Dynamic queries enable users to adjust query parameters and see filtered results in
real-time.

Linking relates information between multiple views to show users how selections in
one view correspond to data in another one.

2In a more general sense, Ward [34] defines glyphs as a "graphical entity" that encodes additional
information found in the data with the help of visual cues.
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Rearranging and remapping provides tools for changing the visual mapping or
choosing different mappings to explore various aspects of the data.

The underlying reasoning for the effectiveness of interactivity can generally be attributed
to a concept referred to as Human in the Loop [35]. This approach underlines the vital role
of human judgment and expertise in the analytical process. Human in the Loop systems
involve continuous feedback between the user and the system, where users iteratively
refine data analysis and visualization based on their evolving understanding of the data
at hand.

Although having its roots in fields such as artificial intelligence and machine learning,
where human oversight is essential to guide a system’s performance [35], Heer and
Shneidermann specifically pronounced interactivity and exploration as a central aspect
of supporting the sense-making process within visualization [36].

2.2.4 Data Visualization Techniques

Different types of data require different visualization techniques to appropriately convey
the underlying information. Understanding the nature of the data therefore heavily
guides the selection of appropriate visualization methods [1].

There are several ways to categorize visualization techniques. The most common ap-
proaches are distinctions by:

• Problem: This approach categorizes visualizations based on the specific problem
they aim to solve, such as communication, exploration, or confirmation.

• Data Type: Visualizations can be categorized based on the type of data they
handle, such as categorical, numerical, or time-series data.

• Dimensions: This refers to the number of dimensions (univariate, bivariate,
multivariate) represented in the data visualization.

• Data structure: Visualizations can be classified based on the structure of the
data (linear, hierarchical, circular)

• Interaction: This category separates visualizations based on the level of interac-
tivity they offer, such as static, interactive, or dynamic visualizations.

In the following sections, we will further examine data visualization techniques classified
by dimension and how each of these techniques highlight different characteristics in the
data.
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Univariate Data

Univariate data consists of observations on a single variable, and its visualization usually
aims to understand the data’s distribution, central tendency, and dispersion [1]. Central
tendency describes the center or typical value of the data. The most common measures
include the (weighted) mean, median, and mode [7]. Although each of those measures
focuses on highlighting different subtleties in a given dataset, all of them help summarize
aspects of the data with a single representative value.

As mentioned earlier, dispersion (variance) quantifies how much the data values deviate
from the central tendency. Typically, certain variability in data is highlighted using
measures like ranges, percentiles, and standard deviations [37].

The distribution of univariate data shows how variable values are spread, which in larger
populations is generally assumed to be normally distributed. However, this must not
always be the case. Visualizations in this regard often then focus on illustrating data
points’ relative or cumulative frequencies. As shown in Figure 2.8, various techniques are
employed to visualize univariate data effectively [38]:

Histograms are graphical representations of data distributions, where the data is
divided into bins of equal width, and the height of each bin reflects the frequency of data
points within it. This technique helps understand the shape of the data distribution,
whether it is skewed, uniform, or normal [37].

Bar charts are another popular method for displaying univariate data, especially if
dealing with categorical data. Each category is represented by a bar, with the length of
the bar corresponding to the frequency of observations in that category.

Box plots, also known as box-and-whisker plots, summarize the data distribution
through five main statistics: the minimum, first quartile, second quartile (median), third
quartile, and maximum [39].

Bivariate Data

Bivariate data involves observations on exactly two variables, and its analysis aims to
uncover relationships between them. As outlined in the previous sections on correlation
analysis, the primary goal is to identify the nature and strength of associations. There
are various visualization techniques that are used to visualize bivariate data [38][7], as
illustrated in Figure 2.9.

Scatterplots are widely used to display the relationship between two variables. Each
point on the scatterplot represents a single observation, with its position determined by
the values of the two variables X and Y. Scatterplots can reveal patterns such as linear
or non-linear relationships and are particularly suited for visualizing clusters or outliers
[37].
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Figure 2.8: Data visualization techniques for univariate datasets using three common
methods: histograms, bar charts, and box plots. The histogram (top) displays the
frequency distribution of continuous data, revealing the shape and spread of the data.
The bar chart (bottom left) is used for categorical data, where each bar represents the
frequency of a given category. The box plot (bottom right) summarizes the data’s central
tendency and variability.

Line graphs are ideal for visualizing the relationship between two variables if one of
them is a time variable [38]. This technique is commonly used to display trends over
time, with data points connected by lines to show the time-series progression of values.
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Heatmaps use a spectrum of color to represent the values of two variables within a
matrix. This technique is effective for dealing with large amounts of data, as it provides
a clear visual representation of areas with higher or lower concentrations of values [37].

Figure 2.9: Examples of scatterplots, line graphs, and heatmaps as key data visualization
techniques for bivariate data. The scatterplot (top) visualizes the relationship between
two variables. The line graph (bottom left) plots time-series data, showing trends over
time by connecting data points with lines. The heatmap (bottom right) presents values
of two variables across a grid, effectively displaying color-encoded patterns.
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Multivariate Data

Multivariate data involves more than two variables, and visualizing such data requires
techniques that can display complex relationships and interactions among them. If
working with multivariate data, the goal is generally to uncover details that are not
visible by examining each variable in isolation.

Figure 2.10: Examples for multivariate datasets employing scatterplot matrices, radar
charts and parallel coordinates. The scatterplot matrix (top) displays pairwise scatterplots
for multiple variables. The radar chart (bottom left) visualizes data across multiple
axes. The parallel coordinates plot (bottom right) shows relationships between multiple
variables across different axes.

Scatterplot matrices, also known as pair plots, display multiple scatterplots in a grid
format, where each plot shows the relationship between a distinct pair of variables. This
method helps identify pairwise relationships and potential correlations among several
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variables simultaneously. This type of visualization can quickly become overwhelming if
increasing the number of plots to compare [37].

Radar charts, stardinates [40], or star plots represent multivariate data on a circular
layout with each variable corresponding to a spoke, meaning rays being projected from
the center [41]. The length of each spoke reflects the variable’s value and the points are
connected to form a polygon. Radar charts are usually used for comparing the profiles of
different observations across multiple variables.

Parallel coordinates, are a method of visualizing high-dimensional data by plotting
each variable on a separate parallel axis. Each observation represents a polyline crossing
each axis at the corresponding value [1]. This becomes important for visually gauging
correlations and patterns across multiple variables [1]. Parallel coordinates are the central
visualization technique explored in this thesis and are further explained in Section 2.3.

Hierarchies and Structures

Hierarchical data consists of elements organized in parent-child structures. These can be
visualized in various forms, as illustrated in Figure 2.11. They generally aim to represent
various levels of relationships from the root to the leaves. This organization reflects
nested relationships where higher-level elements encompass lower-level ones.

File systems are a typical example of hierarchical data, where files and folders are
organized in a tree-like structure. Visualizing file systems helps users navigate and
manage data by showing the hierarchical relationships and organization of files. This
metaphor is very common mental model and can be found across all nearly all modern
operating systems.

Cone trees are 3D representations of hierarchical data, where the hierarchy is visualized
in a cone shape, with the root at the top and leaves at the base. Cone trees provide
an intuitive way to explore large hierarchical structures by allowing users to rotate and
zoom into different parts of the hierarchy.

Botanical trees represent hierarchical data using a tree metaphor, where branches
represent the hierarchy and leaves represent the individual elements. This visualization
method effectively shows the overall structure and relationships within the hierarchy.

Treemaps are space-filling visualizations that display hierarchical data as nested
rectangles. Each rectangle represents an element in the hierarchy, with its size proportional
to a specified attribute, such as file size or value. Treemaps are suitable for comparing the
relative sizes of elements within the hierarchy and for identifying patterns and outliers.
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Figure 2.11: Hierarchical data structures represented with three different techniques.
The top image depicts a traditional file system hierarchy, showcasing the nested folder
structure in a directory tree. The bottom left image displays a treemap that visualizes
stocks in the S&P 500 index with rectangle sizes based on market capitalization. On the
bottom right, the image displays a cone tree, a three-dimensional visualization method
used to present complex hierarchical data with a focus on depth and layering. Images
taken from Mazza [1] and Finwiz [42].

Networks and Graphs

Network data often consists of entities (nodes) and the relationships (edges) between
them. Visualizing network data helps understand the structure and dynamics of the
relationships within them. The visualization possibilities for this technique are mainly
rooted in network and graph theory and are often used for modeling complex social
phenomena [43] or networks [44]. As showcased in Figure 2.12, these techniques usually
employ different visual techniques like annotations or expansion to further contextualize
information within them.
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Figure 2.12: Examples of data visualization techniques for network data. A traditional
node-link diagram is depicted at the top and shows entities as annotated nodes and their
relationships as edges. The bottom image illustrates a force-directed tree layout in a
social network, with nodes radiating out from central roots. Images taken from Mazza
[1].

Adjacency matrices are another commonly used method for representing graphs (see 2.13).
In an adjacency matrix, the rows and columns represent nodes, and the matrix entries
indicate whether there is an edge between corresponding nodes [45]. This matrix-based
approach results in a more compact, tabular view, which can be beneficial for visualizing
dense graphs [46]. Alternatively, adjacency lists are also frequently used to represent
network relationships. An adjacency list stores the same information as a matrix but
in a more space-efficient way by keeping track of each node and the nodes it is directly
connected to. This type of visualization is well suited for sparse graphs.
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Figure 2.13: Depiction of a relational mapping from a graph (left) to an adjacency matrix
(center) and adjacency list (right). Images taken from Kale et al. [45].

Knowledge graphs focus on reflecting semantic relationships. They organize informa-
tion by connecting nodes, which represent entities or concepts, through labeled edges
that define the relationships between them [47]. These graphs are particularly valuable
for organizing and representing complex relationships and interdependencies derived
from various sources, such as text data or databases. Figure 2.14, for example, shows a
knowledge graph depicting a fraction of the interconnected page network on Wikipedia.

Figure 2.14: An example of a knowledge graph as generated from the Wikipedia page on
the city of Winterthur in Switzerland. Images taken from Chaudhri et al. [47].

Concept maps and mind maps serve as visual tools for organizing information, but
compared to knowledge graphs, differ in scope and structure. Concept maps highlight
relationships between ideas, where the connections are also labeled to explain how different
concepts relate to one another. However, unlike knowledge graphs, concept maps are
generally used for educational or ideation purposes, showing how broader concepts are
connected [48]. Mind maps, on the other hand, start with a central idea and branch into
related subtopics, using lines and images to organize information hierarchically.
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2.2.5 Geographic Representations

Geographic representations visualize spatial data by mapping the relationships between
data and locations [49]. Geographic Information Systems (GIS) can overlay various data
layers on a map or other geographic structures to provide enhancing information based
on geographic proximity (see Figure 2.15).

Figure 2.15: Data visualization techniques for GIS data. The top image depicts a network
of connections across the US, highlighting the relationships between different locations
through a 3D representation. The bottom left and right images both show visualizations
of global internet network traffic using color gradients. Images taken from Mazza [1].

3D graphs allow for the visualization of network data in three dimensions, providing
a more immersive perspective on network structures. This technique is suitable for
understanding complex networks with many interconnected nodes and edges, as it
reduces overlap and enhances the clarity of relationships.
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2.3 Parallel Coordinates

Parallel coordinates provide a unique perspective on representing complex datasets on a
two-dimensional plane (see Figure 2.16). Unlike traditional Cartesian coordinates [37],
which struggle to represent more than three dimensions effectively, parallel coordinates
can handle numerous dimensions simultaneously, making them ideal for multivariate data
analysis [1].

Figure 2.16: Comparative visualization of a multi-dimensional dataset using scatterplot
matrices (top) and parallel coordinates (bottom). Note that both plots visualize the
same dataset, but provide two distinctly different ways of exploration. Images taken from
Pezzotti [50].
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2.3.1 Mathematical Framework
First conceptualized by Inselberg in the 1980s [1][51], the theoretical foundations of
parallel coordinates date back to the work of the several key figures, including d’Ocagne
[52], Gannet [53] and Guerry [54]. They laid the groundwork for this visualization
technique by introducing the concept of data representation using a system of coordinates
that allowed the simultaneous display of variables on parallel axes.

From a mathematical standpoint, when talking about parallel coordinates, we consider a
dataset with n observations and m variables. Each observation can be represented as a
vector in an m-dimensional space [51]:

xi = (xi,1, xi,2, . . . , xi,m) for i = 1, 2, . . . , n

2.3.2 Geometric Construction
Each vertical axis corresponds to one of the m variables, arranged in parallel and
equidistant from each other. The position of the axes is critical for the interpretation of
the data, as adjacent axes can only easily reveal relationships between themselves [55]. To
ensure comparability across variables with different units or scales, each observation xj

is further normalized to a standard scale [56], typically to [0, 1], using Min-Max Scaling
[57]:

x′
i,j = xi,j − min(xj)

max(xj) − min(xj)

where min(xj) and max(xj) are the minimum and maximum values of the j-th variable,
respectively. For each observation xi, a polyline is drawn so that it intersects the vertical
axis j at the heigh corresponding to the normalized value x′

i,j . The ployline then connects
the points (j, x′

i,j) for j = 1, 2, . . . , m.

2.3.3 Correlation Analysis
Parallel coordinates are especially useful for visually assessing correlations between
variables. The interpretation of these plots is typically limited to adjacent axes. Only cor-
relations between consecutive variables are directly observable, as the polylines connecting
these axes show whether two variables move in a similar or opposite direction.

As illustrated in 2.17, the nature and strength of correlations can be inferred by observing
the patterns manifested between adjacent axes:

Positive Correlation: If two variables are positively correlated, the polylines between
the corresponding axes tend to be parallel and move in the same direction. This means
that as one variable’s value increases, the other variable’s value also increases.
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Figure 2.17: Correlation patterns manifested in parallel coordinates. The top plot shows
a strong positive correlation (r ≈ 0.96), where lines between the axes are mostly parallel
and move in the same direction. The bottom left plot represents a strong negative
correlation (r ≈ −0.96), in which lines cross, indicating an inverse relationship between
the variables. The bottom right plot shows no correlation (r ≈ −0.02) with lines not
following a clear pattern.

Negative Correlation: A negative correlation is indicated by distinct lines that cross
each other and run in opposite directions. This pattern suggests an inverse relationship.

Missing correlation: If there is no apparent correlation between two variables, the
lines between the corresponding axes appear more random, with no consistent pattern of
parallelism or crossing. This randomness suggests that changes in one variable do not
systematically relate to changes in the other one.
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2.3.4 Clusters and Outliers

Clusters of observations appear as groups of polylines that follow similar paths across the
axes. These clusters indicate subsets of the data with similar profiles [55]. In real-world
use cases, detecting clusters can help identify segments in the data that share common
characteristics, such as demographic groups or customer segments.

On the other hand, outliers are identifiable as polylines that diverge significantly from the
majority. These outliers represent observations that noticeably differ from the average
data pattern, which can also be of particular interest, depending on the use case.

2.3.5 Visual Clutter

Plotting an arbitrary number of observations in a single visualization also comes with
challenges. Traditional parallel coordinates face issues with over-plotting, where too many
overlapping data points obscure important details in the plot, making it overall difficult
to read. This visual clutter can significantly reduce the effectiveness of the visualization,
requiring specialized techniques to manage the complexity [58].

Over time, researchers proposed several ways of counteracting this issue. Early optimiza-
tions for this problem especially focused on the use of curved lines instead of straight
lines for visually seperating parts of the data in order to improve readability.

Figure 2.18: Depiction of different clustering weights applied to parallel coordinates. The
axes represent different variables, with each line connecting corresponding data points
across the variables. The varying curvature of the lines indicates the degree of clustering
applied. Image taken from Zhou et al. [59].
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Zhou et al. [59] proposed a novel visual clustering algorithm based on energy minimization
to reduce clutter by deforming and bundling lines as clusters. Specifically, the method
optimizes the arrangement of curved lines through minimizing their curvature and
maximizing the parallelism of adjacent edges, leading to more organized visual clusters.
This geometric bundling is performed during plotting, allowing users to control the
clustering level dynamically through weight parameters in the energy function (see Figure
2.18).

Furthermore, the authors incorporated color and opacity enhancements to highlight
different aspects of the clustered data. By assigning color and opacity according to
the local density of polylines, users can distinguish clusters more effectively. The
authors demonstrated the effectiveness of their approach through experiments on several
representative datasets, showing how visual clutter is reduced.

Johansson et al. [60] proposed a solution for over-plotting by using high-precision textures
to represent clusters, preserving visualization clarity by adjusting intensity ranges based
on data overlap. A key part of their approach is the use of transfer functions, which map
data values to opacity. By adjusting these functions, different aspects of the data can be
highlighted.

Figure 2.19: Managing over-plotting using different transfer functions. The first image
uses a square root function to bring out outliers in areas where data points are tightly
clustered. The second image employs a linear function, which simplifies the visualization
and makes the overall data structure more visible by reducing the intensity in more
populated regions. Images taken from Johansson et al. [60].
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For example, a linear transfer function helps provide a clear overview by reducing the
visual complexity in dense areas, while a square root transfer function emphasizes outliers,
making them stand out even in regions with many data points. They also provide the
flexibility for users to create custom transfer functions, allowing more control over what
features of the data are emphasized. The effectiveness of this method is illustrated in
Figure 2.19, which shows how two different transfer functions are applied to enhance the
visibility of structures in the clustered data.

2.3.6 Interaction
Interaction techniques play a crucial role in enhancing the utility of parallel coordinates,
enabling viewers to explore and analyze multivariate data more effectively [36]. The
following techniques are commonly implemented with this specific type of visualization
[61][58][55]:

Brushing is one of the most widely used interaction techniques. It allows users to
select and highlight specific ranges of data on one or more axes, making it easier to focus
on particular subsets of the data.

Axis Reordering is another important interaction technique. The order of axes
in a parallel coordinates plot can significantly influence the visibility of patterns and
relationships in the data. By allowing users to interactively reorder axes, they can explore
different perspectives and uncover details or structures that may not be visible with a
static axis order.

Axis Inversion involves flipping the direction of an axis, which can help in identifying
patterns, such as negative correlations that may not be easily visible in the default
orientation. This technique can be fairly useful for analyzing datasets with both positive
and negative correlations.

Density Adjustments increasingly enhance the readability of parallel coordinates,
especially if dealing with large datasets. By using varying degrees of semi-transparent lines
or density-based rendering, users can better understand the distribution and concentration
of data points, reducing visual clutter and highlighting prominent patterns.

Coordinated Multiple Views allow for the integration of parallel coordinates with
other types of visualizations. An approach, known as brushing-and-linking, enables users
to select data points in one view and see the corresponding points highlighted in other
views, providing a better understanding of the data across multiple dimensions.
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2.3.7 Case Studies
In this section, we focus on practical applications of parallel coordinates through detailed
case studies. These studies highlight the versatility and effectiveness of parallel coordinates
in various domains, as well as showcasing their strengths and weaknesses compared to
other visualization methods.

Lanzenberger et al. [40] presented a detailed comparative study of two information
visualization techniques: stardinates and parallel coordinates. Their research aimed to
assess the effectiveness of both methods in visualizing complex datasets (see Figure 2.20).
The authors conducted an empirical study with 22 participants to evaluate the techniques
based on several criteria: time taken for interpretation, accuracy of information extracted,
and subjective feedback from the users. The study involved two distinct visualization
tasks.

Figure 2.20: Comparison of the two techniques used for visual estimation tasks. The
top image shows psychotherapeutic data using stardinates, highlighting patient ID 2 in
orange. The bottom image presents the same data using parallel coordinates. Images
taken from Lanzenberger et al. [40].

In the first task, participants were asked to identify whether there had been a collision
between aircrafts, which acted as a basic test of their ability to interpret data. This
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scenario was selected for its simplicity, allowing participants to become familiar with
both visualization techniques without needing extensive background knowledge.

The second task, which involved psychotherapeutic data, was more complex. Here,
participants needed to identify patterns and changes in patients’ conditions over time, a
more challenging task given the participants’ lack of prior familiarity with this specific
dataset, increasing the difficulty of the analysis.

To guide their evaluation, the researchers focused on several research questions, including
how easily users could find information at first glance, their ability to identify critical
details, and the extent to which the visualization techniques supported them in their
decision.

The results of the study revealed that stardinates were more effective for the in-depth
interpretation of highly structured data, leading participants to report on more detailed
observations. Participants using stardinates were better at spotting nuanced changes
and relationships in the psychotherapeutic data. On the other hand, parallel coordinates
excelled in offering an immediate understanding of the data, enabling viewers to quickly
extract information at a glance. These findings suggest, that parallel coordinates are
especially useful if the goal is to gain a broad overview of complex data without diving
into finer details.

Bok et al. [62] introduced the parallel histogram plot, a novel visualization technique
designed to enhance traditional parallel coordinates (see Figure 2.21). Parallel histogram
plots integrate histograms with parallel coordinates. They developed this technique to
provide an enhanced overview of data – without the scalability and cluttering issues
that usual parallel coordinates suffer from. Each histogram displays a color-coded data
ranking in relation to a selected attribute, making it easier to examine relationships
between attributes even when displayed far apart.

Figure 2.21: Example of a parallel histogram plot, visualizing histograms with parallel
coordinates to overlay correlations across multiple attributes. Correlations are inferred
by comparing color patterns across axes: similar colors indicate positive correlations
while contrasting colors suggest negative correlations. Images taken from Bok et al. [62].

The authors presented real-world applications of this technique and a controlled user
study to evaluate its performance in estimating correlations between attributes. The
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authors demonstrated that viewers using the histogram overlays consistently performed
high in correlation estimation tasks, highlighting its effectiveness in addressing parallel
coordinates’ limitations.

Li et al. [63] conducted a comparison between scatterplots and parallel coordinates, as
shown in Figure 2.22, to evaluate their effectiveness in visual correlation assessment.
Participants were tasked with estimating correlations while varying the visualization
method, sample size, and display time.

Figure 2.22: Comparison of correlation patterns in scatterplots and parallel coordinates.
Scatterplots (top) visualize correlations through linear trends. Parallel coordinates
(bottom) indicate correlations by patterns in line sets between adjacent axes. Image
taken from Li et al. [63].

The results showed that users were more effective at identifying different levels of
correlation using scatterplots compared to parallel coordinates Scatterplots provided
higher accuracy and consistency, allowing users to make more reliably estimate correlations
across different sample sizes and visualization durations. In contrast, parallel coordinates
often led to an underestimation of correlation, particularly for weaker correlations, and
users exhibited greater variability in their judgments. This case study was pivotal because
it systematically evaluated the effectiveness of parallel coordinates against scatterplots,
providing an understanding of their strengths and limitations in visual correlation
analyses.
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2.4 Aspect Ratio

The aspect ratio, defined as the ratio of the width to the height of a visual representation
[4], has a strong impact on how information is perceived and interpreted. As shown in
Figure 2.23, aspect ratio can introduce various phenomena that affect the readability,
interpretability, and overall effectiveness of visual data presentations.

Figure 2.23: Visualization of a linear slope under three different aspect ratios: 1:2, 1:1,
and 2:1. In the 1:2 aspect ratio (left), the slope appears to have a gentle incline, whereas,
in the 2:1 aspect ratio (right), the same slope appears much steeper. Image taken from
Christodoulou [4].

The aspect ratio of a plot can significantly influence our perception of data. In line charts,
altering the aspect ratio by manipulating the axes can change visual cues within the
plot. Extending vertical axis limits creates a taller aspect ratio with steeper slopes, while
shrinking them results in a wider aspect ratio with shallower slopes [5].

Aspect ratios also influence the perception of trends and patterns in data. An optimal
aspect ratio can enhance trend detection, making it easier to see patterns. Conversely, a
suboptimal aspect ratio can obscure important patterns, making it difficult to discern
them. The distortion caused by inappropriate aspect ratios can lead to misinterpretations
of the data, as noted in studies examining the effects of visual presentation on data
interpretation [6].

2.4.1 Case Studies

Optimizing the aspect ratio is crucial for effective data visualization. Various methodolo-
gies have been developed to select and optimize aspect ratios based on use-case specific
criteria.
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Earlier work in this field surrounds the concept of Banking to 45° as introduced by
Cleveland et al. [5]. Banking to 45° changes the aspect ratio of a given chart so that the
average absolute line orientation is 45 degrees, thereby maximizing the discriminability
between line segments. According to Cleveland et al., this change enhances the perception
of trends, making it easier for viewers to interpret.

Heer et al. [64] proposed two extensions to Cleveland’s technique. They introduced
optimizations designed to further improve the perception of line segments and additionally
developed a Multi-Scale Banking method based on spectral analysis and Cleveland’s
Banking to 45 degrees [5].

Their enhanced method analyzes a given chart at different frequencies in order to find
underlying data trends. In detail, it applies a discrete Fourier transformation to the data
to find noticeable periodic trends and compute aspect ratios that optimize the display
of these trends. From this, they generate charts for each of those derived frequencies,
effectively revealing patterns for different scales. The Multi-Scale Banking technique
automates the identification of scales of interest, reducing the need for a manual, iterative
adjustment.

Heer et al. [64] illustrated their approach with a few use cases. One use case leverages
CO2 measurements from the Mauna Loa observatory, in which Multi-Scale Banking
automatically identified aspect ratios that best display trends at different scales. As
illustrated in Figure 2.24, a broader aspect ratio made yearly oscillations more visible in
one plot, while another aspect ratio highlighted a long-term accelerating increase in CO2
levels.

Fink et al. [65] explored the impact of aspect ratio on the readability of scatterplots.
The authors argued that selecting an appropriate aspect ratio was crucial because it
directly affected the accuracy with which users interpreted the underlying data. They
developed a method to compute aspect ratios based on optimizing the plot using Delaunay
triangulation based on six specific geometric criteria: maximizing the minimum triangle
angle, minimizing total edge length, maximizing triangle inradius, minimizing squared
angles, maximizing triangle compactness, and minimizing triangle uncompactness. In this
context, minimizing uncompactness just meant ensuring that the points are distributed in
a way that looks more natural and less distorted, avoiding shapes that are too stretched
or compressed.

Their approach relied on the idea that the geometric properties of a scatterplot could guide
the selection of an effective aspect ratio. To validate this idea, the authors conducted
an empirical study involving 64 participants, who selected aspect ratios for 18 different
scatterplots. The study compared the participants’ choices with the results produced by
their optimization criteria.

The authors concluded that minimizing the total edge length and minimizing the un-
compactness of the triangles in their approach resulted in aspect ratios that closely
matched those selected by human participants, demonstrating the effectiveness of these
two measures.
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Figure 2.24: Two charts with monthly atmospheric CO2 measurements, highlighting both
yearly oscillations (top) and long-term accelerating increase (bottom) through Multi-Scale
Banking. Image taken from Heer et al. [64].

In addition, the authors compared their optimization approach to existing techniques,
including Cleveland’s Banking to 45° (see Figure 2.25). Their comparative analysis showed
that each method had its strengths and weaknesses, depending on the characteristics of
the data.

Cleveland’s [5] Banking to 45° performed well if the data exhibited strong linear trends,
making the slopes easier to interpret by adjusting the aspect ratio to align the median
slope with 45°. However, this method did not perform as well on scatterplots with distinct
clusters, as the focus on slope alignment sometimes distorted the appearance of clusters,
making them harder to recognize.
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Figure 2.25: Comparison of three different aspect ratio selection methods for scatterplots.
This image demonstrates the visual impact of the chosen optimization techniques on
data interpretation. Image taken from Fink et al. [65].

Compared to the other approaches, Fink et al.’s [65] proposed method provided a balanced
solution, performing well in both cluster recognition and trend detection. This balance
made their method more robust across a wider variety of scatterplot types, as it did not
overly emphasize trends or density, but instead maintained the geometric properties of
the scatterplot.

Recently, research has increasingly focused on directly inferring the optimal aspect ratio
from the visualization image itself. Talbot et al. [66] laid the groundwork for an image-
based approach on aspect ratio selection using an isoline-based method, which focuses on
visualizing optimal density fields.

Building on this, Wang et al. [67] introduced an enhanced image-based method that
simplifies the process by directly utilizing density fields. By bypassing the isoline
extraction, their approach significantly reduces computational overhead, providing a
more efficient solution compared to previous methods (see Figure 2.26).
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Figure 2.26: Comparison of the proposed image-based approach and traditional workflows
for selecting aspect ratios in visualizations. Note that the proposed method bypasses
the need for intermediate isoline representations, and instead directly works with density
fields. Image taken from Wang et al. [67].

The authors compared their approach to existing methods and user studies. Their
results indicate, that their method better reflects the actual distribution of the data and
produces a clearer picture of underlying patterns. Additionally, their approach could also
be applied to any non-negative and unnormalized use cases, extending its applicability.
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CHAPTER 3
Methodology

The foundation of this thesis was built on the central research question regarding the
influence of aspect ratios on the perception of parallel coordinates. While extensive
research exists on the general effects of aspect ratios in traditional data visualization
contexts [64][67][65], there remained a notable gap in understanding how these effects
manifest in this specific type of visualization technique. To address this gap, our research
focused on exploring the visual and cognitive effects of varying aspect ratios on users’
ability to gauge correlation patterns in these plots. In detail, we aimed to answer the
following question:

RQ: How does aspect ratio influence the perception of correlation in parallel coordinates?

In this chapter, we detail the research methodology employed to answer this question. We
begin by explaining the rationale behind adopting an exploratory approach and further
introduce the central hypotheses that guided our investigation. Following this, we present
the development of a visualization tool that enables interactive exploration of parallel
coordinates. We discuss the requirements, key features, and implementational choices.

Next, we describe the statistical analysis procedures, including the selected datasets and
metrics we explored. We outline the hypothesis testing process and the expected impact
of this pre-analysis. Lastly, we outline the design of the user study, covering the proposed
objectives, participant recruitment, preparation, procedure, timeframe, and subsequent
analysis.
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3.1 Rationale
The decision to adopt an exploratory approach for this study was driven by the com-
plexity of the visual and cognitive processes involved in interpreting parallel coordinates.
Traditional visualizations, such as line charts, have been extensively studied in terms of
how their aspect ratios influence perception [5]. However, parallel coordinates differ in
their structure and representation of multidimensional data, making it unclear whether
existing knowledge directly applies to them.

Given the lack of prior research on aspect ratio effects specifically in parallel coordinates,
an exploratory methodology was deemed necessary to understand these dynamics in more
detail. Therefore, we first conducted a statistical pre-analysis to calculate key metrics,
such as correlations between variables and geometric properties (e.g., angles between
data points), across various aspect ratios. This analysis helped identify which metrics
were most influenced by aspect ratio changes, providing preliminary insights into how
these variations affect the interpretability of parallel coordinates.

Following the statistical analysis, we conducted a user study to further investigate how
users perceive correlation patterns under different aspect ratios. The combination of these
two methods — statistical analysis and user evaluation — enabled us to understand how
aspect ratio manipulations impact correlation estimation tasks in parallel coordinates.
By exploring the impact from both a theoretical and empirical standpoint, we ensured
that the study was more robust and comprehensive.

3.2 Hypotheses
Our methodological approach was structured around two main hypotheses, designed to
be tested through statistical analysis and empirical evaluation:

H1: Aspect ratio has a significant impact on the interpretability of parallel coordinates.

H2: Aspect ratios that minimize visual distortion result in improved accuracy and
confidence in interpreting parallel coordinates.

Our first hypothesis (H1) argued that aspect ratio has a noticeable effect on the inter-
pretability of parallel coordinates. This hypothesis was based on the premise that a plot’s
visual layout and proportion can significantly influence how users perceive and interpret
the data.

Studies have shown that data representation can affect users’ performance in graph
reading tasks [68][5]. Aspect ratios unoptimized for the problem domain may distort the
visual representation, making it harder to interpret. Applied to parallel coordinates, these
effects may lead to issues in accurately interpreting the relationships between variable
pairs.
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Our second hypothesis (H2) suggested that aspect ratios, which inherently have less
distortion, lead to better accuracy and higher confidence in data interpretation. This
hypothesis was supported by research indicating that minimal distortion allows for a
more accurate visual representation of data, enhancing users’ ability to discern patterns
and trends. Cleveland’s concept [5] of Banking to 45°, Heer et al.’s [64] Multi-Scale
Banking method, and Wang et al.’s [67] image-based approach to aspect ratio selection
all highlight the importance of optimal aspect ratios in improving visual accuracy and
interpretability.

Although the mentioned methods aimed to optimize the aspect ratio based on intrinsic
properties or specific metrics, our assumption for this hypothesis was that maintaining a
balanced aspect ratio of 1:1 ensures that the data’s natural proportions are preserved,
leading to higher visual accuracy and interpretability.

3.3 Visualization Tool
Addressing the research questions of this thesis involved creating a dedicated visualization
tool. The "Editor", the tool developed for this study, was crucial for interactively exploring
parallel coordinates and extracting key metrics (see Figure 3.1).

3.3.1 Requirements and Features
The primary objective of the Editor was to load, visualize, and interact with multivariate
datasets using parallel coordinates. The Editor allowed to visually explore and experiment
with different datasets and aspect ratios. To achieve this, the Editor had to include
several features:

• Interactive Data Loading and Visualization: The Editor had to enable users
to load multivariate datasets in standard formats such as CSV or JSON. Once
loaded, the data had to be visualized interactively, enabling users to explore the
relationships between variables.

• Aspect Ratio Adjustment: The Editor needed to allow users to adjust the
aspect ratio of the parallel coordinates dynamically. This functionality was crucial
for studying how different aspect ratios impact the perception of data correlations.

• Data Interaction and Highlighting: The Editor needed to enable users to
interact with the plots by highlighting specific data points or variable axes and to
dynamically hide or show variable pairs.

• Metric Extraction: The Editor needed to be capable of calculating and displaying
metrics for the visualized data. These metrics included aspect ratio, maximum angle,
minimum angle, median angle, mean angle, and correlation. These metrics were
essential for the subsequent statistical analysis, providing quantitative measures of
the geometric properties of the plots.
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Figure 3.1: Screenshot of the Editor showing a dataset, correlation and angle metrics,
and an interactive sidebar for toggling variables and adjusting aspect ratio selection.

46



3.3. Visualization Tool

3.3.2 Implementation Details
The Editor was implemented as a web-based application accessible from a browser.
It aimed to be a dynamic and responsive web interface and was developed using a
combination of React, Next.js, and D3.js.

React

React is a JavaScript library for building web-based user interfaces, especially suited for
single-page applications handling complex state and data flow using its component-based
architecture [69]. This architecture allows developers to subdivide the UI into reusable
components, enabling efficient data handling and management. Each component can
maintain its state, simplifying the development and debugging of complex interfaces by
isolating functionality and making tracking and managing changes easier.

React’s virtual DOM1 is an important feature that optimizes rendering performance. The
virtual DOM is a minimal in-memory representation of the actual DOM, allowing React
to efficiently compute the necessary changes needed to update the real DOM. When state
changes, React first updates the virtual DOM and then compares it to the actual DOM
to identify the changes required to perform [70]. This process, known as reconciliation,
noticeably enhances performance by minimizing the effort of direct manipulations to the
real DOM, which can be slow and resource-intensive.

The virtual DOM’s optimization is particularly beneficial for applications with dynamic
and interactive elements that require frequent updates. By reducing the performance
overhead associated with DOM manipulations, React ensures responsive user interfaces
even in scenarios involving large datasets and complex visualizations. This performance
efficiency makes React a good choice for building the Editor’s interactive components.

Next.js

Next.js is a robust framework built on top of React, designed to enhance the development
process of React applications by offering a set of features. One of its core strengths is
its file-based routing system, which simplifies navigation within applications [71]. This
routing system supports layouts, nested routing, loading states, and error handling,
allowing developers to create well-structured and efficient navigation by specifying routes
via files and folders.

Next.js also provides extensive support for various styling methods, including CSS
modules, pre-processors, and CSS-in-JS, giving developers the flexibility to choose their
preferred approach to styling. For Editor’s styling, we are relying on Tailwind CSS [72]
in combination with the minimal component library shadcn/ui [73], which are both fully
integrated with Next.js.

1The Document Object Model (DOM) is an interface for web documents that represents the structure
of a document as a hierarchical tree of nodes. It provides a standardized way for accessing and manipulating
the elements of a webpage using JavaScript.
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Furthermore, Next.js offers enhanced support for TypeScript, including a custom Type-
Script plugin and type checker. It also comes with a robust development environment,
offering features like hot module replacement, which allows developers to see changes in
real-time without a full page reload.

D3.js

D3.js [74], or Data-Driven Documents, is a JavaScript library known for its ability to
produce complex and dynamic data visualizations. It binds data to DOM elements
and then applies data-driven transformations to these elements [75]. This makes D3.js
exceptionally powerful for creating more complex visualizations that are interactive to
user input.

For the Editor, D3.js manages and renders parallel coordinates. Its interactive nature
allows users to manipulate these plots, such as by highlighting specific data points,
filtering dimensions (i.e., the variables or axes), and dynamically adjusting the visual
representation based on user interactions.

D3.js’s extensive API exposes helpful interfaces and functions around plotting in general,
which are essential for building data visualizations. In combination with React, it enables
the creation of reusable and efficient visualization components that can react to data
manipulation in real-time.

3.3.3 Calculations
D3.js additionally comes with helper functions for data handling and calculation. These
functions are particularly useful if working with data in the native D3.js format, as
they simplify complex mathematical operations. The following algorithms were used to
calculate line angles, correlations, and key metrics.

Line Angles

Calculating the angular relationships between lines defined by pairs of data points was
necessary for analyzing the geometric relationships in a visualizations. The line angle
became particularly important in later stages when we aimed to statistically analyze the
data.

For determining the minimum, maximum, median, and mean angles for each variable
pair we will first need to calculate the individual line angles. The function displayed in
Listing 3.1 demonstrates how to calculate the angle between the vertical axis and a line
established by two points:
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const ca l cu l a t eAng l e = ( point1 : Point , po int2 : Point ) => {
const deltaY = point2 . coords [ 1 ] − point1 . coords [ 1 ] ;
const deltaX = point2 . coords [ 0 ] − point1 . coords [ 0 ] ;
const angleRadians = Math . atan2 ( deltaX , deltaY ) ;

r e turn angleRadians ∗ (180 / Math . PI ) − 90 ;
} ;
Listing 3.1: Function to calculate the angle between the vertical axis and a line formed
by two points based on their coordinates.

Pearson’s Correlation

D3.js’s mean and sum functions were leveraged to calculate the correlation coefficient
between two variable pairs as detailed in Listing 3.2:

const c a l c u l a t e C o r r e l a t i o n = ( pointsA : number [ ] , pointsB : number [ ] ) => {
const meanA = d3 . mean( pointsA ) ;
const meanB = d3 . mean( pointsB ) ;

const numerator = d3 . sum(
pointsA .map( ( pointA , i ) => ( pointA − meanA) ∗ ( pointsB [ i ] − meanB ) ) ,

) ;

const denominator = Math . s q r t (
d3 . sum( pointsA .map( ( pointA ) => Math . pow( pointA − meanA, 2 ) ) ) ∗

d3 . sum( pointsB .map( ( pointB ) => Math . pow( pointB − meanB , 2 ) ) ) ,
) ;

r e turn numerator / denominator ;
} ;
Listing 3.2: Function to calculate the Pearson correlation coefficient between two sets of
data points.

Key Metrics

Calculating the key metrics between variable pairs was essential for understanding the
dataset’s general properties in the data points. The function in Listing 3.3 computes
various angle metrics, including the maximum, minimum, median, mean angles, and the
Pearson correlation coefficient between two selected variables.
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const c a l c u l a t e M e t r i c s = (
datase t : Dataset ,
s e l e c tedDimens ions : string [ ] ,
xSca le : d3 . Sca lePoint <string >,
ySca le : Record<string , d3 . Sca leL inear <number , number>>,
he ight : number ,

) : Metr ics | n u l l => {
// Ensure e x a c t l y two dimensions are s e l e c t e d f o r comparison
i f ( s e l e c tedDimens ions . l ength !== 2) re turn n u l l ;

// Extrac t the data po in t s f o r each dimension
const pointsA : number [ ] = datase t .map(
( data ) => +data [ s e l e c t edDimens ions [ 0 ] ] ,
) ;
const pointsB : number [ ] = datase t .map(
( data ) => +data [ s e l e c t edDimens ions [ 1 ] ] ,
) ;

// Ca l cu l a t e ang l e s based on the s e l e c t e d dimensions
const ang l e s = datase t .map( ( data ) => {

const po in t s = se l ec t edDimens ions .map( ( dim : string ) => ({
coords : [

xSca le (dim ) ,
isNaN(+data [ dim ] ) ? he ight : ySca le [ dim](+ data [ dim ] ) ,

] ,
} ) ) as Point [ ] ;

r e turn ca l cua l t eAng l e ( po in t s [ 0 ] , po in t s [ 1 ] ! ) ;
} ) ;

// Compute s t a t i s t i c a l metr i c s from the ang l e s
const max = d3 . max( ang l e s ) ;
const min = d3 . min ( ang l e s ) ;
const median = d3 . median ( ang l e s ) ;
const mean = d3 . mean( ang l e s ) ;
const c o r r e l a t i o n = c a l c u l a t e C o r r e l a t i o n ( pointsA , pointsB ) ;

r e turn { max , min , median , mean , c o r r e l a t i o n } ;
} ;

Listing 3.3: Function to calculate various metrics from a dataset based on selected
dimensions.
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3.4 Statistical Analysis
For the statistical analysis, our primary objective was to calculate key metrics for
each sample in a dataset, including the correlation between each pair of variables and
the minimum angle, maximum angle, median angle, and mean angle between data
points. These calculations were performed for several aspect ratios and exported into a
spreadsheet.
Specifically, we sought to identify which of these metrics most strongly correlate with the
chosen aspect ratio. By doing so, we were directly testing Hypothesis H1, which claimed
that aspect ratio has a significant impact on the interpretability of parallel coordinates.
If our analysis revealed that certain metrics are strongly influenced by changes in aspect
ratio, it would support H1 by demonstrating that the aspect ratio significantly affects
the geometric properties of the plots. This impact on the geometric properties would be
crucial, as it influences how easily and accurately users can interpret the relationships
depicted in the plots. Such findings would confirm the hypothesis that the aspect ratio is
a key factor in the interpretability of parallel coordinates.

3.4.1 Key Metrics
The line angle metrics — minimum, maximum, median, and mean — were chosen
because we deemed them essential indicators for how aspect ratio influences the visual
interpretation of data. The median and mean angles offered a more general overview of
the data’s typical angular distribution, helping us identify potential systematic biases
introduced by different aspect ratios. The minimum and maximum angles helped us
understand the extremes in the data’s visual representation, showing how the steepest
upward and steepest downward angles between lines might distort perception.
This focus on angles was particularly important with regard to research on graphical
perception, which suggests that humans are not equally adept at interpreting all visual
encodings. Foundational studies by Cleveland and McGill [76] demonstrated that while
people are generally proficient at perceiving certain visual elements, such as positions
along a common scale, they are less accurate when interpreting others, particularly angles,
areas, and volumes.
Their research suggests that perceptual accuracy decreases if users only have to rely on
angular cues, which are inherently more challenging to judge precisely. This implies that
when angles in a visualization become increasingly extreme — either highly acute or
obtuse — these perceptual difficulties are likely to be intensified, potentially leading to
misinterpretations of the data relationships being represented.

3.4.2 Datasets
We selected three diverse datasets for the initial statistical analysis, each with multiple
variables and varying numbers of data points. These datasets spanned different domains,
providing a broad basis for our analysis.
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Cars Dataset

The cars dataset [77] offered detailed information on various car models, including
attributes like engine size, horsepower, weight, and miles per gallon (see Figure 3.2).
With over 400 data points and eight performance-related variables, it is a commonly used
dataset for prediction tasks.

Figure 3.2: Cars dataset visualized in the Editor. This dataset has the smallest number
of data points among the used datasets, which is underlined by a relatively low amount
of visual clutter.
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Diabetes Dataset

Another selected dataset involved medical information for patients, such as age, BMI,
blood pressure, and various blood test results [78]. As shown in Figure 3.3, the dataset
contained around 770 data points with nine variables and was generally used for examining
the relationships between health markers and the presence of diabetes.

Figure 3.3: The Editor displaying the diabetes dataset. Note how this dataset is much
denser compared to the cars dataset.
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Liver Disorders Dataset

The third dataset [79] comprised medical test results related to liver disorders, focusing
on metrics like albumin or bilirubin levels and enzyme activities (see Figure 3.4). With
over 580 data points and 11 variables, this dataset helped explore correlations between
biochemical indicators and liver disorders.

Figure 3.4: Parallel coordinates plot of the liver disorder dataset displayed in the Editor.
A medium-sized dataset with densely packed lines.
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3.4.3 Significance Testing
We created a correlation matrix for each dataset to quantify the relationships between
aspect ratio and underlying angular metrics. As correlation values range between -1 and
1, we considered correlations with an absolute value above 0.3 (r ≥ |0.33|) as relevant.

Additionally, we performed significance tests for each correlation coefficient to determine
if the observed correlations were statistically meaningful. For this, we run a t-test using
an alpha level of 0.05 with the following hypotheses:

• Null Hypothesis (H0): There is no significant correlation between the metric
pair.

• Alternative Hypothesis (H1): There is a significant correlation between the
metric pair.

p-values less than 0.05 were considered statistically significant, indicating that the
correlation was unlikely to be due to random chance.

3.4.4 Expected Results
By performing initial hypothesis testing through statistical means, we could ensure
that subsequent experiments are not solely grounded in assumptions but supported by
empirical data. This approach allowed us to establish a quantitative baseline, which was
helpful in validating the results obtained in the later stages of the research.

3.5 User Study
We aimed to extend our findings from the statistical analysis with quantitative results
acquired by a dedicated user study. For this purpose, we enhanced the Editor web
application to support various functionalities necessary for conducting the study.

3.5.1 Technical Aspects
In developing the infrastructure to support our user study, we focused on creating a
robust system that could efficiently manage and process user data. This section describes
the underlying technical aspects of the implementation, detailing the technologies used
to extend the Editor.

Key aspects of our technical implementation include the use of a PostgreSQL database
for reliable data storage, Prisma ORM for streamlined database interactions, and React’s
Zustand for efficient state management in the application. Additionally, we implemented
specific API routes to facilitate the dynamic functionality required for the study, such as
randomizing image selection and securely handling user submissions.
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Database: PostgreSQL

We utilized a PostgreSQL database to store user study entries. The database schema
included tables for user demographics and responses capturing all data necessary for later
analysis.

Prisma

Prisma served as an ORM2 client to interact with the PostgreSQL database. It simplified
database access by providing an intuitive API, ensuring type safety, and automating
query generation [80]. Prisma’s integrated migration tools were used to manage database
schema changes efficiently, supporting more rapid development and iteration. Within
the Prisma schema (see Listing 3.4), we outlined the following models for storing study
related data in our PostreSQL database:

// Model r e p r e s e n t i n g a p a r t i c i p a n t in the s tudy
model Pa r t i c i pan t {

id St r ing @id @default ( nanoid ( ) )
createdAt DateTime @default (now ( ) )

age St r ing
educat ion St r ing
occupat ion St r ing
expe r i ence St r ing

submiss ion Submission ?
}

// Model r e p r e s e n t i n g a submiss ion made by a p a r t i c i p a n t
model Submission {

id St r ing @id @default ( nanoid ( ) )
createdAt DateTime @default (now ( ) )

p a r t i c i p a n t Par t i c i pan t @re la t i on (
f i e l d s : [ p a r t i c i p a n t I d ] , r e f e r e n c e s : [ id ] , onDelete : Cascade

)
p a r t i c i p a n t I d St r ing @unique

answers Answer [ ]
Answer model

}

2Object Relational Mapper (ORM) is an additional layer of abstraction between a database’s and
application’s system design. It allows for query generation using an object-oriented interface, providing a
more accessible way of writing queries compared to raw SQL [80].
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// Model r e p r e s e n t i n g an answer submi t t ed in response to a submiss ion
model Answer {

id Int @id @default ( autoincrement ( ) )
createdAt DateTime @default (now ( ) )

c o r r e l a t i o n St r ing
con f id ence St r ing

submiss ion Submission @re la t i on (
f i e l d s : [ submiss ionId ] , r e f e r e n c e s : [ id ] , onDelete : Cascade

)
submiss ionId St r ing

image St r ing
}
Listing 3.4: Database schema for all user study related entries modeled with Prisma’s
proprietary syntax.

Zustand

To manage the state of the user study, including demographics and user answers, we
employed the Zustand [81] library. Zustand is a small, fast, and scalable state-management
library for React applications. It allowed us to maintain all states related to the user
study, making it easy to handle user interactions and data flow in the application without
the complexity of more heavyweight state management solutions.

API Routes

Since we had decided to build the application with Next.js, adding backend functionalities
was straightforward. The following server-side API routes were introduced for the user
study:

• /api/images: This endpoint returned 25 random images from a pre-generated
image pool, effectively randomizing each test run.

• /api/submit: This endpoint handled the submission of user results. It stored user
responses, including their correlation judgments and confidence levels, ensuring
that all data required for subsequent analysis was securely saved.

• /api/results: With this endpoint, the server returned all submissions with partici-
pant information and converted the individual entries into an Excel sheet.
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3.5.2 Objectives
The primary objective of this study was to understand whether users can accurately
identify correlations between pairs of variables in parallel coordinates and how various
randomly chosen aspect ratios affect their judgments. Additionally, we aim to measure
participants’ confidence levels in their correlation judgments to gauge the subjective
certainty influenced by aspect ratio variations.

3.5.3 Participants
The study was targeted toward participants knowledgeable about visualizations or inter-
preting parallel coordinates. We aimed for a statistically sound sample size, considering
the variability in data visualization literacy, with a minimum of 30 participants.

3.5.4 Preparation
Randomization was a crucial aspect of this experimental design, aimed at minimizing
biases and ensuring that the results are generalizable. By randomly generating images
for our study, we ensured a diverse and unbiased data collection.

In total, we generated 135 images for the study. These images were broken down as
follows:

• 5 different aspect ratios (16:9, 4:3, 1:1, 3:4, 9:16)

• 3 different positive correlations (≈ 0.6, 0.8, 1.0)

• 3 different negative correlations (≈ −0.6, −0.8, −1.0)

• 3 different non-correlations (≈ 0)

We focused on the following aspect ratios for the parallel coordinates to be created:

• 16:9: Common for widescreen displays and presentations.

• 4:3: Traditional display ratio.

• 1:1: Square aspect ratio for equal visual space.

• 3:4: Taller than wide, the inverse of 4:3.

• 9:16: Vertical display, generally less suitable for parallel coordinates.
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These aspect ratios were selected to cover a broad range of standard formats, ensuring
that our study captured how different proportions affect user interpretation in various
contexts. Essentially, the selected ratios aimed to replicate common scenarios users might
encounter in responsive real-world applications. In the plots (see Figure 3.5), variables of
interest were highlighted to ensure they were visible and interpretable by the participants.

Figure 3.5: Two different plots with varying aspect ratios (9:16 & 16:9) from the pool of
generated images.

We ensured that the area displaying the images remained constant. Additionally, we
incorporated variations in sample size, noise, and outliers to make the datasets more
realistic.

The images included only a distinct variable pair labeled with x and y. Although
displaying only a single variable pair in parallel coordinates isn’t entirely realistic, we
chose to do this in order to isolate the specific effects of aspect ratios. By focusing
on a single variable pair, we could better control the experiment’s conditions, ensuring
that participants’ performances were directly related to aspect ratio rather than due to
complexity induced by additional variables.

3.5.5 Procedure

Participants received an introduction to the study’s topic, outlining key concepts in
interpreting parallel coordinates without revealing the specific focus on aspect ratios (see
Figure 3.6). Following this, they underwent a training phase where they were shown
examples of plots with clear positive, negative, and non-correlations. This familiarization
step ensured that participants understood the task at hand.
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Figure 3.6: Screenshot of the briefing phase in which basic principles on parallel coordi-
nates and visual correlation estimation were introduced.

Before the central part of the study, participants answered questions related to their
demographics. As shown in Figure 3.7, this included experience with data visualization,
current occupation, higher education, and age.

Participants were then presented with a series of randomly selected plots in the main task
(see Figure 3.8). For each plot, they were asked to categorize the correlation between
a specified variable pair as positive, negative, or non-existent. They also rated their
confidence in their categorization on a textually encoded 4-point Likert scale, where 1
indicated high confidence and 4 represented low confidence. This process helped gather
objective accuracy and subjective confidence data across different aspect ratios.
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Figure 3.7: Screenshot of the initial questionnaire, which prompted users to specify
information on demographic data (e.g., higher education, occupation, experience with
data visualization).
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Figure 3.8: Screenshot of the main task during the user study. Participants were exposed
to a random selection of pre-generated images, asked to give a visual correlation estimation,
and report on their confidence.
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3.5.6 Timeframe
The user study was conducted over six weeks. This timeframe allowed for thorough
participant recruitment, ensuring a diverse and representative sample. Additionally,
the extended duration provided a buffer for addressing potential technical issues (e.g.,
deployment and unwanted response caching) during the study, ensuring the integrity and
reliability of the collected data.

3.5.7 Analysis
We analyzed the user study data in several steps. Initially, we calculated the accuracy of
correlation judgments against known correlations in the datasets, comparing perceived
correlations with the ground truth. We then analyzed confidence ratings about judgment
accuracy and aspect ratios, comparing average confidence ratings for correct and incorrect
judgments.

Subsequently, we assessed how different aspect ratios of the parallel coordinates affected
judgment accuracy and confidence. This involved a detailed comparison of accuracy and
confidence ratings across the various aspect ratios. Lastly, we clustered the results into
demographic groups to understand if certain demographic aspects additionally influence
both accuracy or confidence ratings. To determine if the differences in accuracy and
confidence across different aspect ratios were statistically significant, we performed a
single-factor analysis of variance and a post-hoc Scheffé test.

Analysis of Variance

Analysis of Variance (ANOVA) is a statistical method used to compare means across
more then two groups, generally giving an idea about whether there are statistically
significant differences in their means [82][83]. ANOVA is aimed to work with data having
three or more groups. The rationale behind ANOVA is to assess the general impact of
one or more factors by comparing the means of different samples.

More generally, ANOVA operates under the null hypothesis H0 that all group means
are equal, while claiming the alternative hypothesis H1 that at least one group mean is
different. The test involves calculating the F-statistic; the ratio of variance estimates is
defined as:

F = Variance between groups
Variance within groups

The steps in ANOVA include calculating the group means and overall mean, computing
the sum of squares (Between-Group Sum of Squares (SSB) and Within-Group Sum of
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Squares (SSW)), determining the mean squares (MSB and MSW), and finally calculating
the F -statistic [83]:

SSB =
k�

i=1
ni(x̄i − x̄)2

SSW =
k�

i=1

ni�
j=1

(xij − x̄i)2

MSB = SSB

k − 1

MSW = SSW

N − k

F = MSB

MSW

Where x̄i is the mean of the i-th group, x̄ is the overall mean, ni is the number of
observations in the i-th group, k is the total number of groups, N is the total number of
observations, and xij is the j-th observation in the i-th group.

If the group means x̄i are very different from each other compared to the variability
within the groups, the F -value will be rather large, indicating that at least one group
mean is significantly different from the others [83].

This F-statistic is then used in two ways:

1. P-value (p): The p-value is determined by looking up the calculated F -statistic
in the F-distribution, which depends on the degrees of freedom. It indicates the
probability that the observed differences occurred by chance – a smaller p-value
provides stronger evidence against the null hypothesis. If the p-value is below
the significance level (e.g., α = 0.05), we reject the null hypothesis, indicating
significant differences between the group means.

2. Critical F-value (Fcrit): Fcrit is obtained from the F-distribution table using the
significance level α and the degrees of freedom (k). If the calculated F -value exceeds
Fcrit, we reject the null hypothesis, also indicating significant differences. If it does
not exceed Fcrit, we fail to reject the null hypothesis, suggesting no significant
differences.
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Scheffé’s Test

Following the ANOVA test, we employed a post-hoc Scheffé test to pinpoint specific pairs
of aspect ratios that show significant differences. Scheffé’s test is a conservative post-hoc
analysis that controls the Type I error rate when making multiple comparisons [84].

The conservativeness of Scheffé’s test arises from the fact that it adjusts the critical value
used to assess significance based on the number of comparisons being made [84]. This
adjustment increases the threshold required to declare a result as significant, thereby
reducing the likelihood of falsely identifying a difference as statistically significant if no
such difference exists. This makes Scheffé’s test particularly useful in situations where
all possible comparisons are of interest, as it maintains the overall error rate across the
set of comparisons, unlike multiple t-tests, which increase the cumulative risk of Type I
errors with each additional comparison [7][85].

We calculated the Scheffé statistic for each pair of group means, comparing the differences
with the Scheffé critical value. The formula for the Scheffé statistic Fs is given by:

Fs = (x̄i − x̄j)2

MSW


1
ni

+ 1
nj


where x̄i and x̄j are the means of groups i and j and MSW is the within-group mean
square error from the ANOVA test. ni and nj are the number of observations in groups
i and j.

Further, we needed to calculate the critical Scheffé value S, which was obtained by taking
the degrees of freedom (between-groups) df and multiplying it with the critical F-value
Fcrit from the ANOVA test.

S = df × Fcrit

To determine whether the difference between the group means is significant, we compared
the calculated Fs-value with the critical Scheffé value S:

• If Fs is greater than the critical Scheffé value S, the difference between the group
means was considered statistically significant.

• If Fs is less than or equal to S, the difference was considered not statistically
significant.
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CHAPTER 4
Results

This chapter covers the results of our evaluations. It is divided into two main parts:
statistical analysis and empirical user study.

We begin with the description of the results of the statistical analysis, examining the
results of evaluating three diverse datasets to identify correlations between aspect ratio
and angular metrics in the plots. This section includes the results of correlation analyses
and significance tests, highlighting the relationship between aspect ratio and geometric
properties.

Following the statistical analysis, we present the outcomes of our web-based user study.
This study empirically evaluated how different aspect ratios affect users’ accuracy and
confidence. We describe the significance of accuracy and confidence ratings, using
ANOVA and Scheffé post-hoc tests to determine the statistical significance of the observed
differences.

Further, we discuss the implications of our findings regarding the impact of aspect ratios
on the perception of correlations in parallel coordinates. We interpret the results from
both the statistical analysis and the user study, reflect on our hypotheses, and consider
the practical implications of our findings.
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4.1 Statistical Analysis
The statistical analysis aimed to quantitatively identify which metrics most strongly
correlate with changing aspect ratios across all datasets. By examining the three selected
datasets and evaluating various angular metrics, we determined the magnitude and
significance of these correlations.

4.1.1 Correlation Matrix
As outlined in Section 3.4, the statistical analysis involved examining three datasets across
three different aspect ratios (16:9, 4:3, 1:1). Each dataset contained between 400 and
770 data points. We extracted metrics for each variable pair, focusing on the maximum,
minimum, median, and mean angles. We then calculated the Pearson correlation between
each metric pair and established a correlation matrix for each dataset.

Figure 4.1: Results of the statistical analysis on three selected datasets (cars, liver, and
diabetes). The matrices show the Pearson correlation coefficients r for all metric pairs.
Significant correlation pairs (r ≥ |0.33|) were highlighted in yellow.

.

As highlighted in Figure 4.1, the generated correlation matrices revealed notable correla-
tions of r ≥ |0.33| between aspect ratio and both maximum and minimum angle. This
indicates that changing the aspect ratio noticeably affects the angles between lines, espe-
cially at the extremes. These alterations affect the visual representation and perception
of the data, making it arguably easier or harder to identify patterns and correlations.

4.1.2 Significance
To determine the significance of the correlations, we performed a t-test on our findings.
The results across all datasets showed that the correlations between aspect ratio and
minimum/maximum angle were significant at a 0.05 confidence interval. This confirmed
that the observed correlations were not due to random chance and that aspect ratio
significantly alters the angles in parallel coordinates.

4.1.3 Geometric Impact
In retrospect, we could have calculated the angle metrics from the changed aspect ratio
directly. When the aspect ratio changes, it effectively stretches or compresses the visual
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elements along one axis relative to the other. This geometric transformation directly
influences the angular metrics, leading to the observed correlations. This, in turn,
reinforces our findings, demonstrating that the observed correlation is actually due to an
underlying functional relationship driven by the geometric effects of aspect ratio changes.

4.2 User Study
We further conducted a user study to investigate how aspect ratio influences users’
accuracy and confidence in identifying correlations. This study aimed to validate the
statistical results through empirical evaluation, focusing on user perception.

4.2.1 Demographics
The web-based user study involved 57 participants who were familiar with data visual-
izations and mostly had experience in interpreting parallel coordinates. As outlined in
Figure 4.2, participants were primarily between the ages of 25 and 34, which accounted
for 65% of the group. Smaller segments included those aged 35 to 44 and 45 to 54, with
the youngest and oldest age groups being the least represented.

Figure 4.2: Age distribution of participants in the study. The majority of participants
belong to the 25-34 age group, representing a significant portion of the sample.

The participants’ experience levels varied (see Figure 4.3), with a significant portion
(21 participants) being advanced users. Nearly equal parts of participants identified
themselves as intermediates or beginners, indicating a balanced mix of expertise in data
visualization.

Higher educational backgrounds were predominantly at the graduate level, with most
participants holding a Master’s degree (see Figure 4.4). Bachelor’s degree holders formed
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Figure 4.3: Level of experience with data visualization among participants. The distribu-
tion across advanced, intermediate, and beginner levels was fairly balanced.

the second-largest group, while fewer had achieved a PhD or higher. Only one participant
did not report having a higher educational qualification. This hints at an educational
bias in our study, as the majority of participants had advanced educational backgrounds.

Figure 4.4: Higher educational background of the participants. The majority of partici-
pants had an MS degree, followed by those with a BS degree. Fewer participants had a
PhD or no higher education.

The participants’ occupational distribution, visualized in Figure 4.5, included 25 profes-
sionals, 15 academics, 15 students, and 2 individuals in other occupations.
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Figure 4.5: Participants’ current occupations categorized by profession. The largest
group of participants were professionals, followed by academics and students, while a
small portion of participants fell into the "Other" category.

4.2.2 Mean Analysis
The accuracy of participants’ correlation judgments was determined by comparing their
answers to the known correlations in the datasets. The same was done for the confidence
ratings. The insights presented in the next sections are based on the mean values
calculated for all participants. In Section 4.2.3, we will take a closer look at the data,
exploring our findings beyond just central tendencies.

Accuracy

The overall accuracy across all aspect ratios was 0.71. This level of accuracy suggests a
reasonably high degree of proficiency among the participants in interpreting the visual
data.

Taking a look at Figure 4.6, the 1:1 aspect ratio showed the highest accuracy at 0.77,
suggesting that the most "balanced" visual representation aids in better data interpretation.
The wider and taller aspect ratios, 16:9 and 9:16, resulted in lower accuracy at 0.67 and
0.66, respectively, indicating potential distortion in data perception. The aspect ratios
4:3 and 3:4 had accuracies of 0.71 and 0.73, demonstrating moderate performance.

Regarding accuracy per experience level, detailed in Figure 4.7, advanced users had the
highest accuracy at 0.75, while beginners and intermediate users had accuracies of 0.69
and 0.68. This suggests that, in this study, more experienced users better interpreted
correlations in parallel coordinates.

Accuracies per occupation showed that academics had the highest accuracy at 0.80,
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Figure 4.6: Mean accuracy of participants ranked by aspect ratio. The 1:1 aspect ratio
achieved the highest accuracy, while the accuracy steadily decreases for other aspect
ratios.

Figure 4.7: Participant accuracy grouped by experience level in data visualization. Results
indicate a similar performance across all experience levels, with advanced users showing
a marginally higher accuracy compared to beginners and intermediates.

followed by professionals at 0.68 and students at 0.67. This indicates that participants
with academic backgrounds, arguably more exposed to analysis and visualization tasks,
generally perform slightly better (see Figure 4.8).

Figure 4.9 shows the accuracy per education level. Participants with a PhD or higher
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Figure 4.8: Participant accuracy based on occupation. Academics exhibited the highest
accuracy, followed by professionals and students.

had the highest accuracy at 0.74, followed by participants with a Master’s degree at 0.73,
a Bachelor’s degree at 0.69, and no higher education at 0.20. This trend suggests that,
on average, participants with higher education levels show better accuracy in interpreting
parallel coordinates.

Figure 4.9: Participant accuracy according to educational background. Individuals with
a PhD or MS degree performed similarly and achieved the highest accuracy, while those
with a BS degree performed slightly lower.

Among the groups we invited to participate in this study, we included members of VRVis
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as well as fellow student colleagues. Consequently, many of these participants had prior
experience and training in interpreting complex visual data, which likely contributed to
higher accuracy rates.

Confidence

In addition to accuracy, participants rated their confidence in their correlation judgments.
This self-reported measure provided insight into how participants felt about their own
assessments. Confidence was originally rated on a 4-point Likert scale. Ratings of 1 and
2 were categorized as confident, while ratings of 3 and 4 were grouped as not confident.
For consistency, we also normalized the results to a value between 0 and 1.

The average confidence rating was 0.69, indicating that while participants generally
trusted their interpretations, they were still somewhat uncertain about their selection.
For the confidence per aspect ratio (see Figure 4.10), the 16:9 aspect ratio had the highest
ranking at 0.72, followed by 4:3 at 0.70, 9:16 at 0.69, 1:1 at 0.67, and 3:4 at 0.66. This
suggests that participants felt slightly more confident with specific aspect ratios despite
their actual accuracy.

Figure 4.10: Participant confidence levels compared across different aspect ratios. The
16:9 aspect ratio led in confidence, while confidence ratings on the other aspect ratios
were gradually decreasing.

As seen in Figure 4.11, with confidence per experience level, advanced users reported the
highest confidence at 0.74, while intermediate and beginner users had confidence levels
of 0.67 and 0.64. Thus, more experienced users performed slightly better and felt more
confident in their judgments.

For confidence per occupation (see Figure 4.12), it is important to mention that the
highest accuracy was observed in the "Others" category, but this is not representative as
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Figure 4.11: Confidence levels of participants based on their experience with data
visualization. Advanced users reported the highest confidence, as opposed to slightly
lower confidence levels for the intermediate and beginner participants.

it consisted of only one person. Among the more representative groups, professionals
had the highest confidence at 0.71, followed by academics at 0.68 and students at 0.66.

Figure 4.12: Participants’ confidence categorized by occupation. Confidence was mostly
consistent across occupations, with only minor differences.

As Figure 4.13 indicates, participants with a PhD or higher reported the highest confidence
at 0.78, followed by those with a Master’s degree at 0.70. Participants with either a
Bachelor’s degree or no university education both ranked similarly at 0.64. Trendwise,
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higher education levels seemed to rank slightly higher in confidence with respect to
interpreting parallel coordinates.

Figure 4.13: Confidence ratings of participants categorized by educational background.
Individuals with a PhD or higher expressed the greatest confidence, while participants
with Master’s, Bachelor’s, or no degree demonstrated somewhat lower levels of confidence.

4.2.3 Significance Analysis
We also aimed to determine whether the differences in accuracy and confidence across
various aspect ratios were statistically significant. For this, we performed a single-factor
ANOVA test. The significance level was set to 0.05 for all statistical tests. If significance
was found, we further identified which specific pairs of aspect ratios had significant
differences using a Scheffé post-hoc test.

4.2.4 Accuracy
As detailed in Section 3.5.7, the ANOVA test was employed to analyze whether the mean
accuracy across different aspect ratios in our study varied significantly. We needed this
since insights from mean values alone generally do not provide a complete understanding
of the differences between groups. The ANOVA test allowed us to assess whether any
observed differences in accuracy are statistically significant, rather than just being due
to random variation.

ANOVA Test

The input for the ANOVA consisted of accuracy measurements collected from participants
as they interacted with visualizations under different aspect ratios. The output of the
ANOVA includes summary statistics as shown in 4.1, as well as the ANOVA table
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with the F-statistic F and p-values (see Table 4.2), which help determine whether
there are statistically significant differences between the group means by comparing the
between-group variance to within-group variances.

In the summary table 4.1, accuracy scores refer to the proportion of correct interpretations
made by participants when observing the visualizations and the calculated summary
statistics are bases on the respective data points for each aspect ratio group.

Groups Count Sum Average Variance
16:9 275 184 0.6691 0.2222
4:3 292 207 0.7089 0.2071
1:1 300 232 0.7733 0.1759
3:4 291 211 0.7251 0.2000
9:16 267 175 0.6554 0.2267

Table 4.1: Summary statistics for accuracy per aspect ratio. This table provides the
count, sum, average, and variance of accuracy scores for each aspect ratio group.

Source of Variation SS df MS F p Fcrit

Between Groups 2.5199 4 0.6300 3.0632 0.0159 2.3782
Within Groups 292.0373 1420 0.2057
Total 294.5572 1424

Table 4.2: ANOVA single factor analysis for accuracy per aspect ratio. This table contains
the results of a one-way ANOVA test, comparing accuracy across different aspect ratios.

The ANOVA table generates various statistics related to the analysis of variance and
reads as follows:

• SS (SSB/SSW): The total variability in the data.

• df (Degrees of Freedom): The number of independent values in the analysis.

• MS (MSW/MSB): The average of the sum of squares.

• F : The ratio of the variance between the groups and within the groups. The higher
the F -statistic, the greater the disparity between group means.

• p: The probability that the observed results occurred by chance. A p below 0.05
typically suggests statistical significance.

• Fcrit: The critical value that the F -statistic must exceed to reject the null hypothesis
at the 0.05 significance level.
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For accuracy, the ANOVA results show a p-value of 0.015, which is below the alpha level
of 0.05. This allows us to reject the null hypothesis that the mean accuracy across all
five aspect ratios is the same and instead accept the alternative hypothesis that there
are significant differences in accuracy across the different aspect ratios. Comparing the
F -statistic of 3.0632 to the critical value Fcrit = 2.3782 further supports the presence of
significant differences between the accuracy levels across the different aspect ratio groups.

Scheffé Post-Hoc Test

Following the ANOVA test, a Scheffé post-hoc test was conducted. The Scheffé test
was particularly useful for making multiple comparisons between group means while
controlling for Type I errors (see Section 3.5.7). The input for the Scheffé test consists of
the same accuracy data used in the ANOVA, and its output highlights which specific
pairs of aspect ratios show significant differences in accuracy.

Comparison Fs

16:9 vs 4:3 1.0915
16:9 vs 1:1 7.5810
16:9 vs 3:4 2.1555
16:9 vs 9:16 0.1229
4:3 vs 1:1 2.9867
4:3 vs 3:4 0.1856
4:3 vs 9:16 1.9391
1:1 vs 3:4 1.6720
1:1 vs 9:16 9.5487
3:4 vs 9:16 3.2849

Table 4.3: Scheffé Test results for accuracy per aspect ratio. This table summarizes
the pairwise comparisons of variances in accuracy results between aspect ratios using
the Scheffé test. The F-statistic (Fs) for each comparison is calculated to determine
the significance of differences between groups. Statistically significant differences in
accuracies between aspect ratios are marked by a bold Fs value.

The Table 4.3 displays the results for the Scheffé post-hoc test. It contains the pairs of
aspect ratios being compares and the computed Scheffé F-statistic for each comparison.
A higher Fs-value indicates a greater difference between the groups. To be considered
significant, this value must exceed the critical Scheffé value S of 9.5128 (S = df × Fcrit).

The results indicate that comparing the 1:1 and 16:9 aspect ratios revealed a significant
difference, with the 1:1 aspect ratio leading to notably higher accuracy, as evidenced
by an Fs-value of 9.5487, which exceeds the critical Scheffé value. This suggests that
the balanced 1:1 aspect ratio provides a clearer and more proportional view of the data,
minimizing distortions that can mislead users.
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4.2.5 Confidence

ANOVA Test

As shown in Tables 4.4 and 4.5, the ANOVA results for confidence show a p-value of 0.55,
which is well above the threshold of 0.05. This leads us to retain the null hypothesis
that the mean confidence across all five aspect ratios is the same. The F -value of 0.7570,
which is below the Fcrit-value of 2.3782, also supports the conclusion that there are no
significant differences in confidence across the different aspect ratios.

Groups Count Sum Average Variance
16:9 275 197 0.7164 0.2039
4:3 292 205 0.7021 0.2099
1:1 300 200 0.6667 0.2230
3:4 291 192 0.6598 0.2252
9:16 267 185 0.6929 0.2136

Table 4.4: Confidence summary per aspect ratio. The averages and variances are relatively
consistent across the aspect ratios, with 16:9 having a slightly higher average and 3:4
displaying the highest variance.

Source of Variation SS df MS F p Fcrit

Between Groups 0.6520 4 0.1630 0.7570 0.5534 2.3782
Within Groups 305.7579 1420 0.2153
Total 306.4098 1424

Table 4.5: ANOVA results comparing confidence across aspect ratios. The test shows
an F -value of 0.7570 and a p-value of 0.5534, which suggests no statistically significant
difference in confidence between the aspect ratio groups.

This shows that the aspect ratio of parallel coordinates does not significantly influence
users’ confidence in identifying correlations. Regardless of the aspect ratio, participants’
confidence levels remain relatively consistent, suggesting that while aspect ratio affects
accuracy, it does not strongly impact how confident users feel about their interpretations.

Scheffé Post-Hoc Test

Since the ANOVA test did not show significant differences in confidence across aspect
ratios, the Scheffé post-hoc test was unnecessary. In this case, the lack of a significant
ANOVA result means we can conclude there are no statistically notable differences in
confidence between any pairs of aspect ratios.
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4.2.6 Correlation Type Differences
In addition to our previous analyses, we conducted a further investigation into whether the
type of correlation displayed (positive or negative) affects users’ accuracy and confidence
when interpreting parallel coordinates. Specifically, we performed t-tests to compare the
accuracy and confidence for user judgments on both positive and negative correlations.

Accuracy

The t-tests showed a statistically significant difference in accuracy between positive and
negative correlations, with a p-value of p = 1.79581 × 10−5, which is well below the 0.05
threshold. As indicated by the results, participants were more accurate when interpreting
negative correlations. The mean accuracy for negative correlations was higher (0.8151)
compared to positive correlations (0.6975), suggesting that users found it easier to detect
more distinguishable patterns in negative correlation visualizations.

Confidence

Similarly, the confidence ratings for positive and negative correlations differed significantly,
with a p-value of p = 0.0279. However, in contrast to accuracy, participants reported
higher confidence in their judgments for positive correlations (0.7878) compared to
negative correlations (0.7276).

4.3 Discussion
In the following section, we discuss the results of our findings regarding the impact of
aspect ratios on the perception of correlation in parallel coordinates. We interpret the
results from both the statistical analysis and the user study, reflect on our hypotheses,
and consider the practical implications of our findings. The interpretation of our results
is divided into three subsections: accuracy, confidence, and reflections on our hypotheses.

4.3.1 Accuracy
Our user study found that the aspect ratio of parallel coordinates significantly influences
the accuracy with which users interpret correlations. The 1:1 aspect ratio (see Figure
4.14), which provides a balanced visual representation, leads to the highest accuracy
rates. This suggests that maintaining a proportional view minimizes visual distortions,
allowing users to correctly identify correlation patterns in the plots.

In contrast, wider or taller aspect ratios such as 16:9 and 9:16 (see Figure 4.15) result
in lower accuracy, implying visual misrepresentation and users’ difficulty in interpreting
skewed data presentations. Additionally, intermediate aspect ratios, 4:3 and 3:4 (see
Figure 4.16), induce moderate accuracies.

The user study results also align with the findings in the statistical analysis. A 16:9 aspect
ratio, which is much wider than tall, tends to stretch the lines in the plot horizontally,
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Figure 4.14: Parallel coordinates with an aspect ratio of 1:1, displaying a correlation of
r ≈ −0.96. This aspect ratio was identified as the most effective for visual correlation
estimation in our user study.

Figure 4.15: Parallel coordinates (r ≈ −0.96) with aspect ratios of 16:9 (left) and 9:16
(right). According to our user study, these aspect ratios resulted in the least accurate
visual correlation estimations.

making it harder for users to perceive the actual angles between data points. This
horizontal stretching can cause users to overestimate or underestimate the strength of
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Figure 4.16: The 4:3 (left) and 3:4 (right) aspect ratio plots, with r ≈ −0.96, introduced
moderate distortion. However, these distortions were less severe than those observed
with 16:9 and 9:16 ratios.

correlations, leading to inaccurate conclusions. Similarly, the 9:16 aspect ratio, much taller
than wide, compresses the lines horizontally, causing similar interpretative challenges.

The data also suggest that the moderate aspect ratios (4:3 and 3:4) provide a compromise
between the "extreme" ratios and the balanced 1:1 ratio. While these ratios do introduce
some level of distortion, it is less pronounced than with the 16:9 or 9:16 ratios. This
means that users can still interpret the data reasonably, though likely less effectively
than with the 1:1 ratio.

4.3.2 Confidence

Interestingly, while accuracy varies with aspect ratio, user confidence does not significantly
differ across the various aspect ratios. Participants reported similar confidence levels
regardless of whether the aspect ratio was balanced or not. This indicates a potential
disconnect between perceived and actual accuracy. Users might feel equally confident in
their judgments, even if the aspect ratio compromises their accuracy. This finding suggests
that users’ subjective confidence may not be a reliable indicator of their performance in
interpreting parallel coordinates with varying aspect ratios.

Moreover, the consistent confidence levels across aspect ratios suggest that users are not
aware of the distortive effects of different aspect ratios. This could stem from a general
assumption that visualizations are accurate representations of data without recognizing
the subtleties introduced by design choices such as aspect ratio. In this regard, if users
had been aware of the study’s focus, their accuracy and confidence ratings could have
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differed, as they might have paid more attention to the potential distortions caused by
the different aspect ratios.

4.3.3 Reflection

Our study was structured around two main hypotheses, each addressing how aspect
ratios influence the interpretation of parallel coordinates. In this section, we want to
reflect on these hypotheses in the light of our findings.

Hypothesis H1 proposed that aspect ratios have a noticeable effect on the interpretability
of parallel coordinates. Our results support this hypothesis, as we observe significant
variations in accuracy across different aspect ratios. In this study, the 1:1 aspect ratio, in
particular, was the most effective for accurate data interpretation. This finding aligns
with previous research that suggests maintaining balanced proportions can minimize
visual distortions and enhance data interpretability.

Hypothesis H2 proposed that aspect ratios with less distortion generally lead to better
accuracy and higher confidence in data interpretation. This hypothesis is partially
supported. While the 1:1 aspect ratio improved accuracy, it did not significantly impact
user confidence. This partial support potentially indicates that while users can interpret
data more accurately with optimal aspect ratios, they may not recognize the improved
accuracy, most likely due to a lack of awareness about the effects of aspect ratios as a
whole.

4.3.4 Practical Implications

Our study’s findings have several practical implications for designing and using parallel
coordinates in data visualization. Understanding these implications can help practitioners
make more informed decisions that improve the effectiveness and accuracy of visual data
interpretations.

Firstly, our study demonstrates that – when viewing variable pairs – balanced aspect
ratios, such as 1:1, can help enhance the accuracy of data interpretation by minimizing
visual distortions and helping users to identify correlations in the data. However, we can
only confirm the significance for the 1:1 aspect ratio, which suggests that further research
is needed to conclusively determine the optimal range of aspect ratios for accurate data
interpretation. Designers should be cautious when using aspect ratios with high degrees
of distortion, as these influence data perception and lead to misinterpretation, potentially
resulting in false conclusions.

Secondly, given the disconnect between accuracy and confidence, it is essential to educate
users about the potential distortions caused by different aspect ratios. Practitioners and
decision-makers should know the importance of aspect ratios and other design elements
in influencing perception. By emphasizing these factors, they can develop a more critical
eye when working with visual data.
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Moreover, instead of allowing fully responsive interfaces that dynamically change the
viewport, users might benefit from locked views where the aspect ratio remains constant,
but only the scale of the entire plot changes. This could provide a consistent alternative
to responsive views. Locking the aspect ratio could ensure that the visual proportions
of the data remain unchanged, preventing misinterpretations arising from stretching or
compressing the visualization.

More generally, by locking the aspect ratio and adjusting only the scale, users can
maintain a consistent frame of reference while viewing data in a fixed aspect ratio that
the designer has determined to be optimal.
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CHAPTER 5
Conclusion

This thesis investigated the impact of aspect ratios on the perception of correlations
within parallel coordinates. We developed a visualization tool to enable the interactive
exploration of datasets, allowing for the dynamic adjustment of aspect ratios. Through
a combination of a statistical analysis and an empirical user study, we explored how
different aspect ratios influence the users’ ability to interpret multivariate data.

Our study revealed that aspect ratios significantly affects the accuracy in data inter-
pretation, with the 1:1 aspect ratio proving to be the most effective one. For visual
correlation estimation tasks isolated to two variables, our results suggest that a balanced
aspect ratio helps users to give more accurate estimations. Our findings align with
existing literature on data visualization, which emphasizes the importance of generally
maintaining proportionality.

However, results also indicate that user confidence did not vary significantly across
different aspect ratios, revealing a disconnect between perceived and actual performance.
This suggests that users are often unaware of how aspect ratios influence their interpretive
accuracy. This unawareness could result from a general assumption that all visualizations
are equally effective, regardless of the aspect ratio, highlighting a critical area for
education.

In practical terms, these results imply that designers of data visualization tools should
prioritize balanced aspect ratios to improve the accuracy of data interpretation. Addi-
tionally, we suggest that users may benefit more from interfaces with fixed, predefined
aspect ratios for data interpretation tasks.

5.1 Limitations
While providing valuable insights into the impact of aspect ratios, our study’s design
has some limitations. Firstly, the scope of our research was constrained by the specific

85



5. Conclusion

aspect ratios we investigated. We focused only on a limited set of aspect ratios for the
statistical analysis (16:9, 4:3, 1:1) and the user study (16:9, 4:3, 1:1, 3:4, 9:16). While
generally representative, this may not cover all possible variations that could affect data
interpretation.

Another area for improvement is the reliance on self-reported confidence levels, which
may not accurately reflect the participants’ true confidence or understanding. Although
we used these self-reports to gauge subjective confidence, there could be discrepancies
between reported confidence and actual comprehension.

Lastly, we did not integrate the impact of sample size or data density in this study.
Higher data densities may introduce visual clutter and make it more difficult to interpret
correlations accurately, this variable was not considered in our analysis.

5.2 Future Work
Building on our study’s findings, some areas for future research arise. To address the
limitations of our work, further research should explore a wider range of aspect ratios
beyond those we examined. Investigating more varied aspect ratios could provide a more
nuanced understanding of how different visual proportions affect data interpretation.

Additionally, research should incorporate more objective quantitative measures of user
confidence and understanding, such as task completion times. In this context, collecting
qualitative data, which provides a more detailed picture of how participants felt during
the study, may also be valuable. These additional data points could complement self-
reported confidence levels and provide a better assessment of how aspect ratios impact
performance.

As mentioned in the limitations, further research should also aim to integrate the influence
of sample size and its effects. A similar approach to our study, incorporating datasets
with a broader range of observation counts, could be a good starting point.
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CORRELATION MATRIX r N t p

Aspect Ratio & Max Angle -0,41 63 -3,4862579 0,00091399
Aspect Ratio & Min Angle 0,43 63 3,6836589 0,00048986
Aspect Ratio & Median Angle 0,01 63 0,08664414 0,93123817
Aspect Ratio & Mean Angle 0,00 63 -0,0331696 0,97364761
Aspect Ratio & Correlation 0,00 63 5,7473E-17 1
Dimension & Max Angle -0,03 63 -0,248985 0,8042088
Dimension & Min Angle -0,10 63 -0,7461635 0,45843465
Dimension & Median Angle -0,29 63 -2,3869756 0,02010311
Dimension & Mean Angle -0,22 63 -1,7332565 0,08810271
Dimension & Correlation 0,11 63 0,82752317 0,4111663

Statistical Analysis Results (Cars Dataset)
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CORRELATION MATRIX r N t p

Aspect Ratio & Max Angle -0,33 108 -3,5426338 0,00059044
Aspect Ratio & Min Angle 0,37 108 4,05576032 9,5677E-05
Aspect Ratio & Median Angle 0,07 108 0,70778549 0,48063185
Aspect Ratio & Mean Angle 0,05 108 0,51046039 0,61079035
Aspect Ratio & Correlation 0,00 108 -1,417E-17 1
Dimension & Max Angle 0,06 108 0,59755494 0,55141137
Dimension & Min Angle -0,23 108 -2,4758547 0,01487465
Dimension & Median Angle 0,14 108 1,43644764 0,15381989
Dimension & Mean Angle -0,03 108 -0,3384469 0,73569589
Dimension & Correlation -0,10 108 -1,0216625 0,30926674

Statistical Analysis Results (Diabetes Dataset)

107



CORRELATION MATRIX r N t p

Aspect Ratio & Max Angle -0,37 135 -4,625233 8,76385E-06
Aspect Ratio & Min Angle 0,36 135 4,508505 1,4176E-05
Aspect Ratio & Median Angle -0,01 135 -0,0862362 0,931408344
Aspect Ratio & Mean Angle -0,03 135 -0,2884916 0,773419553
Aspect Ratio & Correlation 0,00 135 1,345E-16 1
Dimension & Max Angle 0,07 135 0,86221984 0,390118531
Dimension & Min Angle -0,22 135 -2,5522173 0,011834075
Dimension & Median Angle 0,03 135 0,34005258 0,734353393
Dimension & Mean Angle -0,14 135 -1,6795603 0,095390522
Dimension & Correlation 0,30 135 3,59590963 0,000454408

Statistical Analysis Results (Liver Dataset)
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Prisma ERD (User Study)
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Submission ID Participant Occupation Participant Higher Education Participant Experience Participant Age
vW3diM2TXzC2DqGgmMruF Student MS Intermediate 18-24
k7VU7GOTSpubLt_xyC2p_ Academic MS Intermediate 25-34
StKDApFyBpBIY_4e7WeNa Professional MS Advanced 35-44
gSZrWhSgzxZNixJ2pIWEE Professional MS Intermediate 25-34
nBEUULFfrrAxzEYqh09TO Professional MS Beginner 25-34
tSDlqZvVWK8LmnWWqNUSv Professional MS Advanced 35-44
gSThpIgRtEo3vAX5YqTx_ Academic MS Intermediate 45-54
HS1Lf3ICZ9L2l_h1vS-3n Academic MS Intermediate 25-34
7lCFp9tnM6UX_RfrETy9G Other PhD or higher Advanced 35-44
iz56PMP0h0ogogI7XXIKd Student BS Beginner 25-34
mBhKdE5SrVoUGstMNOEVc Professional PhD or higher Intermediate 55-64
p7KfCpMG82N30IcrVIY-5 Academic MS Advanced 35-44
RjCjiC4-rPSbmg8kUXouE Professional MS Beginner 25-34
szHnQWByGa2bne80a6QhW Professional PhD or higher Advanced 35-44
d5tOfoa92gPBlbHz7SnQx Academic PhD or higher Advanced 18-24
netRBaSsl_FVye0P6tEfD Professional MS Beginner 25-34
TASD5_5aUGTLzYWkZifQ4 Student MS Intermediate 35-44
h6fyVxVCymZBGTDUdoF1L Professional MS Intermediate 45-54
zin1JcgkrUJlDA1YGvFPA Student BS Intermediate 25-34
7dgv38DZ-vGPXDzW7QgLd Professional MS Beginner 25-34
l1S1AstXxK698khZXhLxz Student BS Intermediate 25-34
7AGs_9e8Ab6maSqgpn-xp Student BS Beginner 25-34
yg8O0IXY9JCH6gpmPG3RJ Student BS Intermediate 25-34
ZRHi7IdFmPNLSY7K48NLN Student BS Beginner 25-34
BbFMxgzjfGf6HqKGMN8WK Professional MS Beginner 35-44
OmcKjy-OOCr-MCSp9a4Hr Student MS Advanced 25-34
PuN2bv4Ad3f8gv1XJpj5c Professional BS Beginner 25-34
TpEO0DrbtqcIs3MA5ebQp Professional BS Intermediate 25-34
TBoiVcUHBQDHHD5ny-FjW Academic MS Advanced 25-34
prxqktCiEqAmNK4QMqrZa Academic PhD or higher Advanced 25-34
oESe26shyXjn-pel7oJhl Academic MS Intermediate 25-34
ZH3bwOj9e74NRVhvXELdF Academic MS Advanced 25-34
iVlI83PB3BCbIbbjwqElU Student None Intermediate 18-24
Ow6-ZukebMu-Fe6wUp87m Professional MS Beginner 25-34
FmNzl-tGE-3tRUPp6E4NB Professional BS Advanced 45-54
x0OsO-J1DRKQpiKnCwmhn Academic PhD or higher Advanced 25-34
8_TwFrwIQCCLf_hio7vcy Academic MS Advanced 25-34
i3uIJxhv8CNMNP-ekBreJ Professional MS Beginner 25-34
nhw8yydLRamFdmrm-rIPr Other BS Beginner 25-34
57CQrODrygx7IEqieVxXh Academic BS Beginner 25-34
y9cjTe2gVQzHkHM3Eo32s Student BS Beginner 25-34
YEqXJo9U6PF4fYp6zT3zy Professional BS Beginner 25-34
0clgyr3-DAkjYRKdmtLs_ Professional BS Intermediate 18-24
V31MZmlayzjgYOapT8bV6 Professional BS Beginner 25-34
sXtV5x5bat1Afeup1g9QA Professional MS Advanced 35-44
l2XwUpdbw_bx4lwvda0rS Professional PhD or higher Advanced 45-54
lbXoWVuZmiEMPsO3imG7z Professional BS Beginner 25-34
6P3qWUe0eyi4b85WTLsV5 Student BS Intermediate 25-34
HS-wF_dpKftwkiNTCw-Gq Professional MS Advanced 25-34
BjWProM49Hb5_yWKFs-Ql Student MS Advanced 35-44
1Ike47jfP-evCqddxrva4 Academic MS Advanced 25-34
wBtfHECMKs59ZytWfJmYb Professional BS Intermediate 45-54
HwYR7GJUCNdtYM7fVRJLR Academic MS Advanced 25-34
ASEbpdK2LzNKnJeSY0Rrv Student BS Intermediate 25-34
GkCYcnwOUWPAIDjmaFKLq Professional MS Advanced 25-34
d7MvgGVN91-zbiCe8dqFT Student BS Intermediate 25-34
06vyKIzc0WBViFBD8qxo3 Academic MS Advanced 25-34

User Study Participants
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0,71 0,69

Accuracy per AR Confidence per AR
16:9 0,67 16:9 0,72
4:3 0,71 4:3 0,70
1:1 0,77 1:1 0,67
3:4 0,73 3:4 0,66
9:16 0,66 9:16 0,69

Accuracy per EXP Confidence per EXP
Beginner 0,69 Beginner 0,64
Intermediate 0,68 Intermediate 0,67
Advanced 0,75 Advanced 0,74

Accuracy per OCP Confidence per OCP
Student 0,67 Student 0,66
Professional 0,68 Professional 0,71
Academic 0,80 Academic 0,68

Accuracy per EDU Confidence per EDU
None* 0,20 None 0,64
BS 0,69 BS 0,64
MS 0,73 MS 0,70
PhD or higher 0,74 PhD or higher 0,78

Accuracy per AGE Confidence per AGE
18-24 0,57 18-24 0,81
25-34 0,72 25-34 0,67
35-44 0,76 35-44 0,68
45-54 0,71 45-54 0,66
55-64 0,48 55-64 0,80
65+ - 65+ -

AR = Aspect Ratio
EXP = Experience
OCP = Occupation
EDU = Education
AGE = Age

Color encoding: Green (highest value); Yellow (lowest value)

*only one sample

T-Tests for Correlation types

Accuracy Confidence
MEAN POSITIVE MEAN POSITIVE
0,697478992 0,787815126

MEAN NEGATIVE MEAN NEGATIVE
0,815109344 0,727634195

T-Test (p) T-Test (p)
1,79581E-05 0,027874696

Overall Accuracy Overall Confidence

User Study Results (Means)
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α value 0.05

Null Hypothesis (H0)
The mean accuracy across all 5 aspect ratios is the same
Alternative Hypothesis (Ha)
The mean accuracy across all 5 aspect ratios is different

Is Significant?
TRUE

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

16:9 275 184 0,66909091 0,22221632
4:3 292 207 0,70890411 0,20706821
1:1 300 232 0,77333333 0,17587514
3:4 291 211 0,72508591 0,2000237
9:16 267 175 0,65543071 0,22669032

ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 2,51990595 4 0,62997649 3,06319314 0,01586431 2,378195108
Within Groups 292,037287 1420 0,20566006

Total 294,557193 1424

Critical Scheffé 9,51278043

Numerator DenominatorFs
16:9 4:3 0,00158509 0,00145217 1,09153259
16:9 1:1 0,01086648 0,00143339 7,58097646
16:9 3:4 0,00313544 0,00145459 2,15554857
16:9 9:16 0,0001866 0,00151812 0,12291607
4:3 1:1 0,00415112 0,00138985 2,98674563
4:3 3:4 0,00026185 0,00141105 0,1855714
4:3 9:16 0,0028594 0,00147458 1,93913439
1:1 3:4 0,00232781 0,00139227 1,67195675
1:1 9:16 0,01390103 0,0014558 9,54874776
3:4 9:16 0,00485185 0,001477 3,28493791

Color coding: 
Green Significant Differences (Fs > Critical Scheffé value)

User Study Results (ANOVA Accuracy)
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α value 0.05

Null Hypothesis (H0)
The mean confidence across all 5 aspect ratios is the same
Alternative Hypothesis (Ha)
The mean confidence across all 5 aspect ratios is different

Is Significant?
FALSE

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

16:9 275 197 0,71636364 0,20392833
4:3 292 205 0,70205479 0,20989267
1:1 300 200 0,66666667 0,22296544
3:4 291 192 0,65979381 0,22523996
9:16 267 185 0,6928839 0,21359579

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0,65196011 4 0,16299003 0,75695792 0,55336103 2,378195108
Within Groups 305,757864 1420 0,21532244

Total 306,409825 1424

User Study Results (ANOVA Confidence)
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