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Kurzfassung

Viele Deep-Learning-Anwendungen basieren auf Graphdaten, um Beziehungen oder
Strukturen zu analysieren. Das Annotieren dieser Daten ist teuer und erfordert oft Exper-
tenwissen. Im Kontext von Graphen-Bündelung erzeugt die Stand-der-Technik-Methode
GraphDINO Graphen-Repräsentationen durch Selbst-Überwachung und bündelt diese in
einem nachgelagerten Prozess. Wir beobachten an einem besonders anspruchsvollen Neu-
ronendatensatz, dass diese Methode nicht zu zufriedenstellenden Bündelungsergebnissen
führt. Daher verwenden wir die von GraphDINO erzeugten Graphen-Repräsentationen
als Ausgangspunkt um die Modell-Architektur und das Modell-Training zu verbessern.
Dazu haben wir das Visual-Analytics-Framework NetDive entwickelt. Die Benutzer*in
kann die Graphen-Repräsentationen analysieren und einzelne Neuronen kennzeichnen,
die falsch zugeordnet sind. Diese Annotationen werden daraufhin zum Trainieren eines
semi-überwachten Modells verwendet. Wir haben die Netzwerk-Architektur GraphPAWS
entwickelt, welche die Annotationen verarbeitet. GraphPAWS enthält Komponenten
von GraphDINO und der semi-überwachten Netzwerk-Architektur PAWS. Das Modell-
Training kann aus der Visual-Analytics-Anwendung NetDive heraus gestartet werden,
und die resultierenden Graphen-Repräsentationen sind in NetDive verfügbar, sobald das
Training abgeschlossen ist. Wir demonstrieren, wie wir das Modell mit NetDive und
GraphPAWS iterativ trainieren, und vergleichen die Ergebnisse unseres Modells mit den
Ergebnissen mit dem selbst-überwachten Stand der Technik für unseren Datensatz.
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Abstract

Many deep learning applications are based on graph data in order to explore relationships
or to analyze structures. Labeling this data is expensive and often requires expert
knowledge. For the application of graph clustering to neuron data, the SOTA method
GraphDINO generates self-supervised graph embeddings combined with the downstream
task of clustering these embeddings. We observe on a particularly challenging neuron
dataset that this method does not lead to satisfying clustering results. Therefore we use
the graph embeddings generated by GraphDINO as an initial starting point to improve
the network and to guide the network training. To achieve this, we developed the visual
analytics framework NetDive. The user can analyze the graph embeddings and label
single neurons that are falsely clustered. This annotation information is then used to
train a semi-supervised model. To this end, we developed a network architecture, named
GraphPAWS, that assembles components of GraphDINO and of the semi-supervised
network architecture PAWS. The model training can be started from within the visual
analytics application NetDive and the resulting graph embeddings are available in NetDive
as soon as the retraining is completed. We demonstrate how we iteratively train the
model using NetDive and GraphPAWS and evaluate our model against the self-supervised
SOTA for our dataset.
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CHAPTER 1
Introduction

1.1 Problem Statement

Many deep learning applications are based on graph data in order to explore relationships
or to analyze structures. The use case investigated in this thesis is to cluster unlabeled
spatial graph data that represents drosophila melanogaster larval Level 1 neurons to
reproduce meaningful cell types. This use case poses the challenge of clustering data
without initially having labels to train the deep learning model with a supervised objective
function. Furthermore we initially do not know what the network should learn, but we
want to be able to steer the training while gathering new knowledge about the resulting
clusters. We disassemble and describe the use case in the following paragraphs:

Unlabeled Data

Training techniques that do not depend on labeled data are an interesting alternative
to supervised learning, as depending on the label type and the domain, labels can
require expert knowledge, can be costly, and can be noisy and biased. The network
either learns to extract information from the input data distribution or the network
developer can steer the network training using self-supervised learning strategies like
contrastive learning, which derive supervisory signals from the input data to guide the
learning process. Contrastive learning aims to ignore specific data features while learning
representations based on the remaining features themselves. This task to guide the
training with domain knowledge encoded in the network architecture is cheaper than
generating labels for supervised learning in some cases. At the same time it is difficult to
improve the self-supervised trained network performance, if the network does not output
the expected results. While supervised learning can often be improved by increasing the
amount of training data (while ensuring that the training data is not biased), improving
a contrastive learning setup requires an analysis of the input data and domain knowledge
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1. Introduction

in order to identify the features that should be irrelevant to embed an input sample as
expected and to further process the input sample in a downstream task.

Biological Motivation

The biological motivation for the thesis roots in the objective of neuroscience to understand
the correlation between nerve cells, also named neurons, and behavior [Nat89, mw:,
WPB+23]. One step to meet this objective is to assign a cell type to each neuron
correlating to functionalities in the brain. The European Human Brain Project and the
American BRAIN initiatives announced cell type classification to be one of their highest
priorities in order to complete a comprehensive cell census of the human brain [AA15].

Figure 1.1: The compartments of a nerve cell [SMS09].

Cell Types

The cell type is an annotation that a neuron receives based on predefined features.
However, the feature selection that specifies the classification varies and therefore no
universal definition of a cell type exists. Despite this lack of an unambiguous specification,
cell types are fundamental to reveal organizational patterns. Key features are morphology,
genetic markers, the neuron position within the nervous system, connectivity and intrinsic
electrophysiological signatures [CMO+16]. In this thesis we cluster the neurons solely
based on their morphology and aim to find correlations to meaningful cell type assignments.
The morphology of a prototypical neuron is depicted in figure 1.1. The figure also displays
the compartments that compose the neuron, namely the soma, the axon, and dendrites.
The soma is the cell body of the neuron and from there branches reach out to transport
information. The dendrites receive information and transport it to the soma. The
branch forwarding information is called axon. Neurons are not physically connected with
each other. Instead the information is released in form of neurotransmitters into the
synaptic gap between neurons from where multiple neighbouring neurons can collect the
information.

2



1.1. Problem Statement

Cell Type History

Cell type annotations were initially performed using visual criteria by experts [DLCBP+13].
Nowadays, due to the complexity and magnitude of the neuron data that is available,
manual cell type assignment is infeasible [SESM+20, WHLE21] and shows a high variance
of annotations depending on the expert [DLCBP+13].

This led to algorithms like the segment-wise similarity comparison of neurons implemented
by NBLAST [CMO+16] and to machine learning solutions based on predefined features,
e.g., diameter, length, and angles of the neurons [SPA08], and node statistics [Ham20].
The features and statistics are processed using kernel functions, e.g., the Weisfeiler-
Lehman kernel [Ham20]. Yet, predefined features encode biases and are often not
adaptable to other species [WHLE21]. Deep learning models on the other hand can be
adapted using transfer learning and model refinement and can find correlations using
feature learning that are not intuitive to experts.

Drosophila Melanogaster

Figure 1.2: The four stages of the drosophila melanogaster life cycle: embryo, larva, pupa
and adult [FMFKG07].

Figure 1.2 depicts the four stages of the drosophila melanogaster. The larval stage is
divided in three morphological stages, titled Level 1 (L1), Level 2 (L2), and Level 3
(L3). The brain structures between the stages remain homologous and the neuronal
connectivity stays almost stable within the larval stages [WPB+23].

The drosophila melanogaster, commonly known as fruit fly, is a simple organism compared
to humans [MP19, WPB+23]. A human brain contains around 86 billion neurons, while
the drosophila melanogaster carries approximately 250 thousand neurons. This number
reduces to 8000 neurons in the L3 drosophila melanogaster larval brain and to 3000 in
the earlier L1 drosophila melanogaster larval stage. Also the number of connections

3



1. Introduction

varies drastically between species and between morphological stages. At the same time
60 percent of the drosophila melanogaster genes correlate to human genes and for genes
known to cause health issues the percentage goes up to 90. Exploring the biological
structure of the drosophila melanogaster therefore is of great interest for science. Other
reasons are the short reproduction cycle of the drosophila melanogaster and better
conditions for species-appropriate keeping compared to the keeping of other animals for
scientific reasons [mp].

Figure 1.3 depicts three rendered graph representations of drosophila melanogaster larval
neurons, taken from www.larvalbrain.org.

Figure 1.3: Rendered graph representation of three drosophila melanogaster larval neurons.
The images depict screenshots from www.larvalbrain.org.

4
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1.2. Aim of the Thesis

The drosophila melanogaster graphs that form the basis of the thesis are unregistered.
The process of registering data entails embedding the data in a standardized coordinate
system. In the case of the drosophila melanogaster larval neurons, it describes the process
of mapping neurons to a standardized brain volume, to discard the shape variance of
different specimen of drosophila melanogaster larvals that were used to trace the neuron
graphs. Registered data is often easier to process, however, registered data is not always
available.

1.2 Aim of the Thesis

The aim of the thesis is to train a network on the drosophila melanogaster neuron
graph representation data and to cluster the network latent embeddings, such that the
clusters represent cell types. We solely train on the graph morphology, i.e., we dismiss
compartment information encoded in the neuron graphs and we do not have a ground
truth available.

Therefore we defined the problem statement of improving the network training for graph
data with initially no labeled data by iteratively guiding the training. Our use case is
applicable to a broader range of graph clustering tasks. The approach we take in this
thesis addresses the issue of incrementally improving a model based on new knowledge
about the underlying data. This approach is data type agnostic and therefore applicable
also to representations of other input data types.

1.3 Contribution

To improve the results of self-supervised graph clustering without performing an exhaus-
tive analysis of the graph input data, we investigate how to iteratively improve the model.
We start out by training on our dataset with self-supervised training and improve the
results by adding labels for data subsets and train a semi-supervised model that processes
the labels.

We adapt the self-supervised deep learning architecture GraphDINO [WPLE23], discussed
in Section 3.3.1, and the semi-supervised deep learning architecture PAWS [ACM+21],
discussed in Section 3.3.2. GraphDINO is implemented to cluster the neuron graph repre-
sentations of mice and rats, namely the Allen Brain Atlas (ABA) dataset and respectively
the Blue Brain Project (BBP) dataset. PAWS is a semi-supervised architecture that
computes a similarity score between the latent embeddings of input samples and provided
support samples. We develop a semi-supervised network architecture GraphPAWS that
adopts the graph encoder of the self-supervised deep learning architecture GraphDINO
and the processing of support samples of the semi-supervised deep learning architecture
PAWS.

The resulting graph latent embeddings are visualized in a visual analytics (VA) web
application we title NetDive that we developed to analyze the embeddings, to iteratively

5



1. Introduction

add new support samples if needed and to retrain a model with this new information.
We evaluate our method analytically on a manually labeled subset of the drosophila
melanogaster dataset that we get from the collaborative annotation toolkit for massive
amounts of image data (CATMAID) [SCHT09]. We combine the analytical evaluation
with visual inspection and comparative analysis enabled by the VA application.

1.4 Outline

The thesis broadly divides into the topics deep learning and visual analytics. Chapter 2
covers related work in the fields of deep learning and visual analytics (VA). Chapter 3
first discusses our methodology to set up the pipeline including the network architecture
GraphPAWS to train the graph latent embeddings. The chapter follows up with the
presentation of the visual analytics web application NetDive, developed to analyse the
training results and to start the retraining with the new support samples.

Chapter 4 focuses on implementation details, regarding data preparation, the ground
truth preparation, GraphPAWS and NetDive, and regarding the concept of interchanging
information between GraphPAWS and NetDive. Chapter 5 documents the data subsets,
i.e., specific lineages, we use for training and the experiments we conducted with self-
supervised or semi-supervised training. The chapter concludes with a demonstration of
NetDive to incrementally improve the network performance. Chapter 6 discusses the
results of the previously performed experiments and Chapter 7 provides a summary of
the findings in this thesis and an outlook on improvements and future work regarding
visual analytics and deep learning for graph clustering.

6



CHAPTER 2
Background and Related Work

This chapter is dedicated to the background and related work regarding the concepts
throughout the thesis. Section 2.1 covers topics regarding machine learning: Sub-
section 2.1.1 provides an overview of deep learning components and terminology, as well
as related work regarding regularization. Sub-section 2.1.2 discusses clustering algorithms,
as varying algorithms can produce different results, which is relevant to consider for the
cell type clustering. Sub-section 2.1.3 looks at state of the art research about supervised,
self-supervised, and semi-supervised learning. Sub-section 2.1.4 covers graph neural
networks and developments in the field and functionality of transformer networks.

Section 2.2 covers visual analytics (VA) topics relevant to this thesis. Sub-section 2.2.1
explains the concept of VA applications and Sub-section 2.2.2 highlights VA user inter-
actions. Sub-section 2.2.3 discusses applications of VA in deep learning, in particular
visualization of embeddings.

2.1 Machine Learning

AI was defined by Barr & Feigenbaum in 1981 as follows: "(AI) is the part of computer sci-
ence concerned with designing intelligent computer systems, that is, systems that exhibit
the characteristics we associate with intelligence in human behavior — understanding
language, learning, reasoning, solving problems, and so on" [BF81]. Figure 2.1 shows
the relation between machine learning and deep learning. Deep learning is embedded
in machine learning and both are types of artificial intelligence (AI). Machine learning
includes classical algorithms like support vector machines, decision trees and the k-nearest
neighbor algorithm. Another implementation of machine learning are artificial neural
networks, that are titled deep neural network if the networks consist of multiple layers.

7



2. Background and Related Work

Figure 2.1: The relationship between artificial intelligence, machine learning, and deep
learning [AZH+21] (left). Technologies associated with machine learning and deep
learning [JZH21] (right)

2.1.1 Deep Learning

Deep learning was first mentioned in the 1940s, had its first big application in speech
recognition after the GPU was developed by NVIDIA in 1999 [LBH15], and has been
increasingly referenced in paper submissions since the 2010s [HKPC19] with a break-
through in 2012, when the deep learning model AlexNet won the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) [KSH17] against hand-designed systems. Many
application fields evolved for deep learning, including visual object recognition, object
detection, speech recognition, and graph embeddings.

Deep learning is implemented with computational models consisting of an input layer,
an output layer and hidden layers that learn a representation of data. Each layer has

8



2.1. Machine Learning

neurons, representing computational units.

The number of hidden layers sets deep learning networks apart from artificial neural
networks. If a network consists of multiple hidden layers with multiple neurons on each
layer, the network is called deep.

Each neuron is represented by learnable parameters, which are coefficients of a linear
hyperplane representing the decision boundary. Parameters are composed by multiple
weights (w) and a bias (b). The parameters are applied to the input data (x) as a
weighted sum (z), with N being the number of connected input neurons:

z =
N�

i=1

wi ∗ xi + b. (2.1)

The activation function defines how significant z is for the prediction. Activation functions
are grouped in linear and non-linear activation functions. The first artificial neural network
was the Rosenblatt Perceptron, introduced 1969 by M. Minsky and S. Papert [MP69].
It includes an input layer, an output layer and a single hidden layer. The activation
function of the Rosenblatt perceptron is linear and therefore can only divide the input
space in two half-spaces separated by a hyperplane [LBH15]. It took 17 years until
the Rosenblatt perceptron was revolutionized by changing the activation function to a
non-linear function in 1986 [RHW86]. The substitution of the activation function made
an expansion of the single perceptron to a multiperceptron possible. The features learned
by the network neurons in a multiperceptron are titled low level features in the first
layers, which are combined to high level features in the subsequent layers.

The features are learned by iterative parameter updates. The parameters are usually
updated using backpropagation [LBH15]. After the network processes the input data,
a predefined optimization function is optimized and produces a surface in R

n, with n
being the number of parameters. The optimization function is also refered to as error
function, loss function, or training objective. The surface represents a comparison of the
predicted network outputs and the expected network outputs. Backpropagation attempts
to update the weights in the negative direction of the steepest gradient, such that the
network learns to find the global minimum of the optimization surface.

A common issue with deep learning training is overfitting. To avoid this, regularization
techniques are applied that support the generalization of the network. The optimal
regularization depends on the model architecture and input data. Dropout layers, for
example, randomly set a fraction of the neural network units to zero during training and
batch normalization normalizes layer outputs within a neural network. Early stopping
terminates the training if the training loss increases [SK23]. Another regularization
technique that is intrinsic to contrastive learning, discussed in Sub-section 2.1.3 and
throughout the thesis, are augmentations.

We will also look at regularization terms that are added to the optimization function
in this thesis. Popular terms are the L1 loss, which introduces a penalty based on the
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absolute values of the weights, encouraging sparsity by pushing some weights towards zero
and the L2 loss, which adds the square of the weights to the objective function to penalize
high weights [DKKAK11]. Other regularization terms are based on the output entropy.
This will be discussed in more detail in the following sections. Peer et al. [ACM+21]
also implement batch-entropy regularization. They apply it to address the degradation
problem, in which increasing the number of layers leads to a worse generalization.

Finding the optimal model architecture and hyperparameters is an iterative trial-and-
error process [PHG+18]. Recent research in the field of neural architecture research aims
to automate the design of neural networks.

2.1.2 Clustering

Clustering is a technique to separate data in groups of high similarity based on specific
properties. Clustering is applied in varying fields, including image analysis, pattern
recognition, statistics and graph theory [KGH+21].

Exclusive clustering, also called hard clustering, is a separation without overlapping,
whilst overlapping clustering techniques, also called soft clustering, allow data points to be
mapped to more than one cluster. If data points are overlapping they have a membership
degree assigned, that has a value between 0 and 1 representing the percentage with which
the data point belongs to a specific cluster [BG14].

This thesis focuses on exclusive clustering for the case study of neuron correspondences
as each neuron should get one cell type assigned. Clustering algorithms can be divided
into five categories: hierarchical clustering, partitional clustering, density-based clustering,
grid-based clustering, and model-based clustering [DW22].

Depending on the cluster algorithm and the parametrisation of the chosen algorithm
the cluster sets can significantly vary [KGH+21]. Scikit-learn [scia], a popular machine
learning library in Python, offers a comparison of different clustering algorithms on their
documentation website, referenced in Figure 2.2 that depicts how the choice of algorithm
affects the cluster results.

Hierarchical clustering aims to build a hierarchy of clusters, commonly visualized with a
tree-like structure [KGH+21], e.g., with a dendrogram. Relationships between hierarchy
levels in a dendrogram are visualized with edges that depict which clusters on a lower level
are merged on a higher level. Hierarchical clustering does not require the user to specify
the number of clusters upfront, which can be useful in situations where the number of
clusters is not known. While the algorithm can handle both continuous and categorical
data, we will use categorical data to assign cell types to neurons. Hierarchical clustering
is a good choice for exploratory data analysis, as it allows the user to easily identify
patterns and relationships in the data on different granularity levels. Michael Winding
[WPB+23] does apply hierarchical cell type clustering to the drosophila melanogaster
neurons and the publication NBLAST also applies hierarchical clustering for cell type
clustering [CMO+16].
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Figure 2.2: Scikit-learn, a popular machine learning library in Python, provides a
comparison of different clustering algorithms in the online user guide under sub-section
2.3.1 [scia].
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Partitional clustering algorithms are hard clustering algorithms based on the minimization
of an objective function [KGH+21]. A prominent example for partitional algorithms is
k-means.

The k-means algorithm partitions N data points into k clusters. Initially, k centroids
are chosen randomly, and then iteratively adjusted with the objective to minimize the
distances between each data point and its closest centroid. Each iteration consists of
two steps: the assignment step and the update step. During the assignment step, each
data point is assigned to its nearest centroid based on a distance metric, originally based
on the Euclidean distance. All data points assigned to the same centroid constitute a
cluster. In the subsequent update step, the centroids are recalculated by calculating the
mean over the data points within their respective cluster.

The algorithm terminates after a predefined number of iterations or after the objective
function converges. The original objective function that builds on the Euclidean distance
measure is called sum-of-squared error (SSE). Changing the objective function leads to
significant shifts in clustering behavior [FS19].

Scikit-learn optionally combines the Euclidean distance measurement with weighing
by sample weights [scia]. Other commonly used objective functions are built on the
Manhattan distance, the Chebyshev distance, the Minkowski distance, the Mahalanobis
distance, the angle cosine and the correlation coefficient. Also new distance measurements
are introduced, like the view-distance in 2022 for high-dimensional data spaces [ZL22].

The following limitations of k-means are under the assumption, that an Euclidean distance
is used, which is relevant for us as we use the scikit-learn k-means implementation: If the
cluster is non-circular and intersecting with another shape it is very likely that k-means
clustering fails. The density of shapes is not considered by k-means, such that clusters
that vary in density can not be distinguished.

An example for failing k-means is depicted in Figure 2.2 at the top of the first column.
The example fails, because the Euclidean distances between the centers and the data
points do not represent the patterns.

Model-based clustering refers to statistical techniques to cluster data [BS10]. An example
for model-based clustering are Gaussian Mixture Models (GMMs). While a GMM has
a higher computational cost than k-means clustering, it can reveal more fine-grained
patterns. K-means clusters data points based on the distance to the centroids and GMM
divides the data points into the underlying Gaussian distributions. Figure 2.2 depicts in
Row 4, that k-means can not find the elongated clusters while GMM succeeds.

2.1.3 Learning Strategies

Various learning strategies address different prerequisites regarding the available training
data and the task.
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Representation Learning

Representation learning describes the encoding of input data into a meaningful repre-
sentation at a lower dimension. The attribute meaningful sets representation learning
apart from other dimensionality reduction algorithms that do not learn a representation
that generalizes to new data samples. Phuc Le-Khac et al. [LKHS20] state that the core
principles of a good representation include abstraction, referring to deriving abstract
concepts from input data, invariance, referring to invariance towards small changes in
the input data, distribution, referring to a wide spectrum of representations that can
be expressed with the representation, and disentanglement, referring to a separation of
contributing features in the representation. The representations can be used for down-
stream tasks, such as classification and regression. Representation learning differs from
traditional machine learning techniques that required expensive and inflexible engineering
of hand-crafted features [ZCH+20].

Supervised Learning

Supervised learning is a machine learning technique, used to train a model to make
predictions or decisions based on labeled training data. The training data consists of a set
of input samples and their associated outputs. The model aims to learn a function that
maps the input samples to the expected outputs. The performance measure is encoded in
the optimization function that compares the expected output with the predicted output
[GBC16].

Unsupervised Learning

Unsupervised learning is used to train a model to discover patterns or relationships
in a dataset without requiring labeled training data. The advantage of using learning
strategies that are independent of labels is, that labels are often not available or expensive
to generate. Furthermore, labels can be noisy or biased. For example, an image showing
both a cat and a dog might only have a label for the cat. The model learns to find
relationships and structures in the data itself. One use case for unsupervised learning is
the reconstruction of the entire probability distribution that underlies a dataset [GBC16].
Autoencoders are usually trained unsupervised. They consist of an encoder that learns
a compact representation of the input data in a lower-dimensional latent space and a
decoder that reconstructs the original input from the latent representation [Bal11].

Evaluation techniques for unsupervised learning include internal evaluation metrics,
external evaluation metrics [VG20], visual inspection, comparative evaluation, and expert
evaluation. Each of these strategies has downsides or impediments in our use case. The
internal evaluation metrics are based on uncertainty of cluster assignments, by measuring
the distances to other cluster centers and measuring the similarity of the objects within
a cluster. But first we have to evaluate if the clusters even cluster graphs together that
indeed are similar. We do not know if the embeddings reflect relevant features for our
use case. External evaluation works under the assumption that we do have data labels
for the evaluation which in our case we do not have. Visual inspection of all neurons
to determine if the clusters are correct, can be very time consuming and even if we had
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experts to evaluate the clusters we have to prepare the output clusters in a way to make
the results easily accessible to the experts. Comparative evaluation is an additive step to
compare multiple clustering algorithms, clustering networks, and parameter settings to
find the best settings.

Self-Supervised Learning

Like unsupervised learning, self-supervised learning is based on unlabeled data. But it
involves the derivation of supervisory signals from the input data to guide the learning
process [LLH+22].

Contrastive learning belongs to the most successful self-supervised learning methods.
Contrastive learning dates back to the 1990s and has since then been applied to tasks in
the fields of computer vision, natural language processing, and audio processing. It is a
subcategory of representation learning.

Contrastive learning techniques optimize the model output by embedding the latent
representations of variations of the same input sample close to each other, while increasing
the distance between the embeddings of different input samples. The pairs of samples
that are either attracted or repelled by each other are denominated positive pair or
negative pair respectively [LLH+22]. Phuc Le-Khac et al. [LKHS20] explain, that
contrastive learning is not about learning from individual samples, but instead from
comparing multiple samples. Positive pairs are generated by applying data augmentations,
discussed in Sub-section 2.1.5, to an input sample to get variants of input data that are
considered similar. The original non-augmented input sample is called anchor view and
the augmented variant is referred to as the positive view. Negative pairs are generally
formed by comparing the anchor view with all the other input samples. If contrastive
learning is solely based on positive views [WHLE21], the model architecture needs to
ensure that the latent representations do not collapse to a single node in the embedding
space. This phenomenon is called node collapsing. Another force needs to increase the
space between different samples.

A contrastive model includes an encoder that maps the input view x ∈ X to a represen-
tation vector v ∈ R

d and a transform head h(v; Φh) : V → Z, with v ∈ V being the the
feature embedding, and where Φ represents the model parameters, that are either used to
aggregate features from multiple representation vectors or to reduce the dimensionality
of a feature representation vector [LKHS20].

An advantage of contrastive learning compared to other self-supervised learning methods
is, that it does not require a pretext task that has to be adjusted for transfer tasks
[LKHS20]. Prominent models that use contrastive learning to learn image representations
are SimCLR [CKNH20], MoCo [HFW+20], BYOL [GSA+20], SwAV [CMM+20], PIRL
[VMS+18], and DINO [CTM+21]. GraphCL [YCS+20] and GraphDINO [WHLE21] are
examples for contrastive models that process graph data.
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Semi-Supervised Learning

Semi-supervised learning leverages the benefits of supervised and self-supervised learning
by combining a large unlabeled training dataset Mdataset with a smaller labeled dataset
Ndataset, such that Ndataset ≤ Mdataset. The goal of a semi-supervised trained model is
to accurately predict the expected outputs for the labeled examples and generalize to the
unlabeled examples.

The datasets can be used simultanuously during the training, while the optimization
function considers the representations of both the self-supervised and the supervised
network stream. Additionally or instead the training can be split in pre-training and
fine-tuning. PAWS [ACM+21] uses both datasets M and N during pre-training and only
the labeled dataset N for fine-tuning. PAWS implements the semi-supervised method
Few Shot Learning. In few shot learning, each class is represented by just a few labeled
samples.

Supervised, unsupervised, and semi-supervised learning are all widely used machine
learning techniques, and they each have their own strengths and limitations. In general,
supervised learning is effective if a large amount of labeled training data is available and
the problem being solved is well-defined. Unsupervised learning is useful if there is a
large amount of data available but it is not labeled, and the goal is to discover patterns
or relationships within the data. Semi-supervised learning can be useful if there is a
limited amount of labeled data available, and it can often improve the performance of a
model compared to using either supervised or unsupervised learning alone [EGLH22].

This thesis will use semi-supervised learning. The semi-supervised technique that we use
is adapted from PAWS [ACM+21], discussed in Sub-section 3.3.2, and has characteristics
of few-shot learning.

2.1.4 Graph Neural Networks

Graph

Graph neural networks (GNNs) are a type of neural network that is designed to process
data that is organized in the form of a graph. A graph G = (V, E) is a data structure
that consists of a set of nodes, also known as vertices V = {vi}N

i=1vertices and edges E =
{eij = (vi, vj)} that connect these nodes. A simple graph has no multi-edges, i.e., each pair
of nodes is connected by at most one edge, and each edge is undirected. Many applications
of GNNs are based on simple graphs [Ham20]. Furthermore literature distinguishes
between heterogeneous data, i.e., data with node type and edge type information, and
homogeneous data without type information. Our use case of neuron graph representations
processed homogeneous simple graphs.

Graphs are represented with data structures that capture the feature information and
the structural information for deep learning. Common representations are the adjacency
matrix A, the Laplacian L in combination with a feature matrix F which stores features
of each node. The adjacency matrix stores for each node the relationship to each other
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node, i.e., 0 if there is no direct connection and 1 if the nodes are connected by an edge.
The Laplacian is defined as L = D − A, with D being the degree matrix that stores the
number of outgoing edges of each node in the diagonal. The normalized Laplacian has
the advantage, that it is real symmetric positive semi-definite and can be decomposed to
specify the eigenvalues and eigenvectors. It is calculated by Lnormalized = I − D−

1

2 AD−
1

2

[ZCH+20], with I being the identity matrix.

Applications

GNNs are most widely used for (1) node classification, (2) relation prediction, and (3)
graph classification [Ham20]. These tasks are embedded in social network analysis, net-
work compression, traffic prediction, e-commerce, combinatorial optimization [ZCH+20],
in chemistry for the analysis of molecular structures [GMP21], in neuroscience for neuron
classification [WHLE21] and brain connectome analysis [VCL+18, YJK+19].

Node classification assigns a label to each node of an input graph. Application examples
are the detection of bots in a social network or the classification of the function of proteins
in the interactome. Similar use cases apply to relation prediction. In a social network a
GNN model can suggest new friends or find new biological interactions in biomedical
datasets. The field of node classification and relation prediction covers clustering and
community detection to find nodes and relations that are similar depending on varying
metrices [Ham20].

While node classification and link predictions focus on the individual components of the
graphs, graph classification is applied to entire graphs. All node features are aggregated
and the representation embedding of the features is applied to the whole graph. The
embedding is a vector representation that encodes the topological graph information
[WPC+21]. Besides graph classification also graph regression and graph clustering are
common applications [Ham20]. In this thesis we train a deep neural network for entire
graphs.

Computational Modules

GNNs operate on graph data, i.e., data that is embedded in a non-Euclidean space. In
contrast, Euclidean data in the context of neural networks is arranged in an underlying
grid like images that are arranged in a 2D grid and text that is arranged as an 1D
sequence [VCL+18, WPC+21, ZCH+20, YCL+21]. To generalize neural networks to
process graph data, these grid-like Euclidean data structures can be considered to be
graphs.

Figure 2.3 depicts on the left side an image with 4 × 4 pixels represented as a graph. The
pixels are represented by nodes and each pixel is connected to the adjacent pixels with
edges. The light-blue circled subgroup of nodes in Figure 2.3 of size 3 × 3 pixels indicates
a convolution operation that aggregates the information from the image patch and uses
a pooling operation like mean, sum, or max to compute the new hidden representation
for the corresponding red node. Analogous to convolutions applied for image data,
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Figure 2.3: Image data visualized in a 2D grid and represented as a graph (left) and a
non Euclidean graph (right). With both data structures a selection of adjacent nodes is
used to perform a convolution to compute the value for the centered node that is colored
red [WPC+21].

convolutions can be generalized to graph data by aggregating the feature information of
neighboring nodes, visualized on the right side of Figure 2.3.

Bronstein et al. [BBL+17] use the term geometric deep learning to provide an overview
for deep learning problems, applications and challenges regarding non-Euclidean data,
including graphs and manifolds. Common computational modules to build GNNs are
summarized and grouped by Zhou et al. [ZCH+20]. Figure 2.4 provides an overview of
these modules and popular examples that implement them. The computational modules
are divided in propagation modules, sampling modules, and pooling modules.

Propagation modules aggregate information of neighboring nodes of node vi to encode
the feature information and the topological information. The convolutional operator
aggregates information about neighboring neurons over the course of multiple layers and
each layer learns its own parameters, i.e., weights and biases, to combine features from
the previous layer. The recurrent operator on the other hand iteratively uses the same
set of parameters to process the input data. The output is passed back into the feedback
loop until an equilibrium is reached [VCL+18]. The skip connection operation is used
to skip layers and to process information from historical layers to solve the problem of
exploding and vanishing gradients.

The convolutional operator is applied to spectral and to spatial representations of graph
data. The graph Fourier transformation transforms graph data in the spectral domain.
Spatial convolutions are directly applied on the graph data, more specifically on the
matrices representing the graph data like the Laplacian and the feature matrix.

The number of nodes and the importance of each node that is considered for the propaga-
tion of structural and feature information depends on the implementation. GraphSAGE
[HYL17] propagates information from a fixed-size set of neighboring nodes. Figure 2.5
depicts the node aggregation as implemented by GraphSAGE. In the image, the sample
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Figure 2.4: Overview of computational modules to process graph data [ZCH+20].

neighborhood is set to k=2, therefore all nodes that have a path length equal or smaller
than two are used for the feature aggregation. The aggregator functions that sum up the
information to compute the new representation of the red node vi are learned. Step 3
assigns a new label computed with the aggregator functions 1 and 2 to node vi. This
new label is stored in the next layer, such that each layer aggregates information of
neighboring nodes from the previous layer.

Attention-based operators assign different weights to the node features from neighboring
nodes, leading to adaptive aggregation. The graph attention networks (GAT) presented
by Vel̆icković et al. [VCL+18] follow a self-attention strategy. For each node pair (vi,
vj) an attention coefficient is learned that indicates the importance of vj for vi. To
consider the graph structure, a masked attention masks the relevant neighborhood for
each node, such that the attention coefficient is only computed for node pairs that share
a neighborhood. Vel̆icković et al. apply softmax and the nonlinear LeakyReLU activation
to the aggregated node features

−→
hi ,

−→
hj by
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Figure 2.5: Feature aggregation as implemented by GraphSAGE [HYL17]

αij = softmax(a(W
−→
hi , W

−→
hj)), (2.2)

where W is the weight matrix.

Figure 2.6 depicts the aggregation implemented by GAT. On the left, Equation 2.2 is
visualized and on the right, the Figure illustrates the multi-head attention for three heads
for node feature

−→
h1. Each attention computation is colored differently. The aggregated

features are then concatenated or averaged to receive
−→
h′

1.

The advantages of the self-attention are, that it is (1) parallelizable for the representation
computation of each node, (2) it can be applied to all nodes with varying node degrees
by adapting the edge weights and (3) the attention mechanism can adapt to previously
unseen graph data.

Sampling modules are usually required to perform feature propagation on large graphs
to address the neighbor explosion issue that arises if node features from multiple previous
layers are aggregated. The number of contributing features grows exponentially with
each additional layer dimension. Sampling reduces the number of nodes used for the
feature aggregation. Node sampling reduces the number of contributing nodes to a subset,
either stochastically or by using a predefined fixed number. Layer sampling reduces the
nodes on each layer, again by reducing the nodes to a fixed number by using importance
sampling or by using a trainable sampler that is conditioned on the former layer. The
third subsampling approach is to sample subgraphs and to propagate feature information
solely within these subgraphs.

Pooling modules extract information from nodes in order to create a subgraph or
graph representation. Direct pooling modules are in some cases referred to as readout
functions. They learn the subgraph / graph representation directly from a subset of the
node features. Hierarchical pooling leverages the hierarchy of the graph structure to
compute the subgraph / graph representation.
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Figure 2.6: Feature aggregation as implemented by GAT [VCL+18].

Graph Transformer

The transformer architecture was developed to overcome the RNN bottleneck of sequential
processing within the domain of natural language processing (NLP) by Google Research.
It achieves state-of-the-art performance on a wide range of NLP tasks, including text
analysis and translation [VSP+17, DB20, YCL+21]. The transformer architecture was
introduced in the paper Attention is All you Need [VSP+17] published in 2017. While the
attention mechanism was already used previously additional to convolutional or recurrent
operations, the transformer architecture is the first publication that relies entirely on
self-attention.

Figure 2.7 depicts the transformer architecture. It is a encoder-decoder architecture, the
left box displays the encoder and the right box contains the decoder network.

The encoder encodes the input sequence to a representation vector using N encoding
layers, each of which including a multi-head self-attention and a fully connected feed-
forward sub-layer. Vaswani et al. [VSP+17] use residual connections to improve the
network optimization. The residual connection is added to the processed signal and
normalized in the Add & Norm blocks.

The decoder generates an output using N decoding layers, using the attention sub-layer
and the feed-forward sub-layer analogous to the encoder and with an additional masked
multi-head attention sub-layer. The masking and the shift operation ensure that the
prediction for an output position relies solely on data that was already processed and
not on subsequent positions. The decoder is trained to generate the output sequence one
element at a time, based on the encoded input sequence and the previously generated
output elements.

Transformers can aggregate information across long contexts, due to the self-attention
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Figure 2.7: Transformer architecture [VSP+17].

mechanism. Each node potentially communicates to each other node. Vaswani et al.
[VSP+17] use a scaled self-attention, denoted by

Attention(Q, K, V ) = softmax(
QKT

√
dk

)V. (2.3)

The matrices Q (queries), K (keys) and V (values) are learned parameters. The queries
and keys have dimension dk, while the values have dimension dv. The classical self-
attention is divided with

√
dk to compensate for very large values of dk as softmax did

not perform well without the scaling. This leads to the name scaled self-attention.

The self-attention mechanism is invariant to input permutations and therefore ignores
structural information [MCSM21]. Vaswani et al. [VSP+17] add positional encodings
to each input token based on cosine and sine functions that add up to unique positional
encodings.

The transformer excels over recurrent and convolutional networks regarding the (1)
parallelisation of computations, (2) the computational complexity per layer, and regarding
(3) the communication between tokens of the input sequence that are far away from
each other. Ad (1): The parallelisation of computations is limited in recurrent and

21



2. Background and Related Work

convolutional networks, as the feedback loop of recurrent networks and the later layers of
convolutional networks depend on the previous computations. Transformers are able to
process input sequences in parallel, rather than sequentially. This makes them much more
efficient and allows them to scale to very large input sequences. Ad (2): The complexity
per layer is O(n2 ∗ d) for self-attention, O(n ∗ d2) for recurrent layers, and O(k ∗ n ∗ d2)
for convolutional layers, with n being the sequence length, d being the representation
dimension, and k being the kernel size of convolutions. Add (3): Recurrent networks
process the data sequentially and relations between tokens that are spatially far away
from each other are weakened. The same applies to convolutional layers in which local
neighborhoods are processed and combined to bigger neighborhoods in the subsequent
layers. Relationships on a lower scale between long-range dependencies are missed. On
the contrary, the transformer architecture sets every token in relation to all other tokens
in the input data [VSP+17].

Since the publication of Attention is all you need, the transformer architecture was widely
adopted for other large-scale language models, such as BERT and GPT-2, GPT-3, and
GTP-4. Following the success of transformers in NLP, transformer networks were applied
in other fields. The Vision Transformer (ViT) model proposed by Dosovitskiy et al.
[DBK+20] achieved state-of-the art performance in the image domain and recent research
adopts the transformer architecture for graph data.

As the self-attention mechanism ignores structural information, graph transformers add
positional encodings and structural encodings. The positional and structural encoding for
graphs is more complex than for sequential data since the concept of node positions in
graphs is ill-defined [MCSM21]. Structural encodings can be node features representing
the graph structure, while positional encodings store the node position within a graph.
Research differentiates between absolute position encoding as implemented in [VSP+17]
and relative positional encoding that encodes the distance between two elements [SUV18].

Rampasek et al. [RGD+22] propose a recipe for a general, powerful, scalable graph
transformer as they named their paper, that includes a summary of positional encoding
(PE) and structural encoding (SE) strategies and a categorization thereof in local, global
and relative encodings. Local PEs encode the embeddings of nodes within a local cluster.
This can be implemented with node distances from the local centroid. Global PEs
encode the global position of a node within the graph, for example implemented with
the adjacency matrix or the Laplacian. The relative PE can be expressed with pair-wise
node distance measurements. Local SE encodes the substructure, e.g, the node degree.
Global SE encodes the global structure of a graph that is for instance represented by the
eigenvalues of the Laplacian and the relative SE encodes the similarity measure between
two nodes.

GraphiT [MCSM21] uses relative positional encoding and local structural encoding to
solve classification and regression tasks. The relative positional encoding is implemented
with positive definite graph kernels. The local structural encoding is done with graph
convolutional kernel networks that capture small sub-structures.
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Dwivedi et al. [DB20] use eigenvectors of the graph Laplacian for the positional encoding
and apply the attention mechanism to neighboring nodes. They assign the first k
coordinates of the node eigenbasis of the normalized graph Laplacian to each node.
Dwivedi et al. called their positional embedding LapPE. The eigenvectors oscillate more
with decreasing eigenvalues and are interpreted as Fourier coefficients. The local attention
is analogue to a weighted message passing that is trained on node feature similarity.

Chen et al. [COB22] introduce the Structure-Aware Transformer that adapts the self-
attention to incorporate structural information. Therefore a subgraph is extracted for
each node to compute the attention.

The graph transformer network (GTN) [YJK+19] is trained on heterogeneous data
to generate new graph structures. GTNs transform the heterogeneous graph into a
homogeneous graph by encoding the type information in meta-paths. In previous
work the meta-paths were manually generated while GTN learns the meta-paths. Yun
et al. [KW17] use a graph transformer network to learn the meta-paths. The node
representations of the graph are learned with a graph convolutional network (GCN). The
authors describe their network as an ensemble of GCNs on multiple meta-path graphs
learned by GT layers.

Graphormer [YCL+21] also handles heterogeneous data by learning the edge type en-
codings. The graph structure is encoded using centrality encoding, that learns the node
importance within the graph and with a spatial encoding.

GraphBERT [ZZSX20], an adoption of the transformer network BERT for graph data,
is trained on sampled fixed-size linkless subgraphs instead of being trainined on the
whole graph. As the links are omitted (linkless subgraphs), GraphBERT encodes absolute
structural and relative positional information in the node representations.

2.1.5 Data Augmentation

Augmentations were previously mentioned in the context of contrastive learning. Aug-
mentations are also used for other learning strategies, to add variance to the training
data in order to ensure that the model generalizes, i.e., does not overfit to the training
data. Depending on the task, examples for applied augmentations in image processing
are geometric transformations, color space augmentations, kernel filters, mixing images,
random erasing, and feature space augmentation [SK19]. In graph processing, the aug-
mentations result in slightly changed graphs or synthetic graphs based on the input graph
[DXTL22]. Figure 2.8 depicts augmentation strategies for graphs.

Ding et al. [DXTL22] differentiate between structure-oriented, label-oriented, and feature-
oriented augmentation techniques. Techniques that we will use for our experiments are
node dropping, graph sampling and feature corruption.

Node dropping, also known as node masking, is the deletion of a set of nodes and the
associated edges. It is formally denoted with: Â = {V \V̂ , E\Ê}, with V, E being the
vertices and edges of the original graph and V̂ and Ê being subsets of the vertices and
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Figure 2.8: Taxonomy of Graph Data Augmentation techniques and applications proposed
by Ding et al. [DXTL22].24
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edges. In GraphDINO [WHLE21] this augmentation is implemented in the form of
branch deletion, such that not single nodes are randomly removed, but branches that are
connected to leave-nodes.

Graph sampling is implemented based on vertex sampling, edge sampling, or traversal
based sampling. Graph sampling commonly returns a connected subgraph induced from
the sampled nodes. Given a graph G = (A, X), where denotes the adjacency matrix
and X denotes the node feature matrix, it is formally denoted with: Ĝ = {Â, X̂} =
{A[idx, idx], X[idx, :]}, with idx being a list of indices to select elements from A and X.
GraphDINO implements graph sparsification by trying to retain the underlying structure
of the graph while reducing the graph to a predefined number of nodes.

Feature corruption adds noise to either the nodes or the graph. It is formally denoted by
x̂i = xi + ri with xi being a feature x at index i and ri being the noise added at index i.
GraphDINO implements node jittering, such that each node is perturbed in its position
with a random factor and translation, which is a fixed position vector that is added to
each node.

2.2 Visual Analytics in Deep Learning

2.2.1 Visual Analytics

Visual analytics (VA) is "the science of analytical reasoning facilitated by interactive
visual interfaces" [WT04]. Users can focus on certain aspects of the dataset or restructure
it in a way that new information is revealed by reducing the complexity of big datasets
and processes. Visual analytics aims to close the gap for tasks that are too dependent on
user judgement and interpretation to be solved exclusively analytically, but handle too
complex data to be solved exclusively visually [KBB+10].

Working with visual analytics consists of data collection, data preprocessing, visual
representation and incremental data manipulation that leads to visual updates [KBB+10].
Figure 2.9 illustrates the feedback loop for interaction with the visual representations.
The Figure depicts the components data, visualization, models, and knowledge. It
further includes the actions transformation, mapping, data mining, model building, model
visualization, user interaction, parameter refinement, and feedback loop.

The data component represents the unfiltered input data. The visualization is generated
by mapping the data to a visual application and the model is generated by applying data
mining techniques. Data mining is used to explore large, complex data with computational
methods in order to find patterns, to build models that describe the data, and to make
predictions based on these models [KT13]. In this thesis we use artificial intelligence
to find meaningful latent representations of the neuron graphs that encode important
information and we use clustering to group similar neuron graphs.

The analyst can interact with the visualization and apply analytical techniques to the
underlying model. The interaction techniques are described in Sub-section 2.2.2. Keim
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Figure 2.9: The feedback loop for user-interaction on visually represented data. Injected
data is mapped to a model and to a visualization. The user interacts with the visualization
and incrementally adjusts the model to make a decision or to gain insights on the data
[KBB+10].

et al. [KBB+10] call this combination of analytical and visual analysis advanced, while
both the visual and the analytical component themselves can be simple.

With iterative updates to the visualization that potentially lead to rebuilding the under-
lying model the user gains knowledge from both the visual and the analytical components
and can accordingly adapt the input data. In our use case, the adaptation of the input
data is performed by retraining the deep learning model with new labeled data.

2.2.2 User Interactions

Shneiderman defines the Visual Information-Seeking Mantra: Overview first, zoom and
filter, then details on demand [Shn96].

Overview First

We have to distinguish between varying visualization techniques. Commonly, data is
displayed in 2D [STN+16, ZCAW17, PHG+18] and 3D [STN+16]. While 2D visualizations
use icons and project the data to a mostly flat surface, 3D visualizations use stereographic
depth effects [AB12]. In this thesis we visualize the graph latent representations with 3D
scatter plots. If data is stored in a database, queries are linked to UI elements, including
buttons and selection-boxes to request, update, and delete information. This kind of

26



2.2. Visual Analytics in Deep Learning

interaction is referred to as dynamic query [Shn99]. We use this technique to load data
on demand according to parameter values that the user specified.

Zoom and Filter [and Other Analysis Methods]

A popular technique to analyse the data is brushing, which is the selection of a subset
of the original dataset. It is commonly used in combination with linking, that links
multiple views of the same data in the sense, that selections and changes made within
a view are reflected in the other view. For example, a user might use a scatter plot to
represent the underlying data model and in parallel they work with a region-map to
display the same data. If the user selects a subset of data-points in the scatter plot with
the brush, the region-map will have a visual selection applied as well [IF09].

Brushing and linking is common for various visualizations, e.g., heat map visualizations
[IF09], scatter plots [NMA+20, FH18], parallel coordinate plots [Eds03], and interactive
graph exploration [Guc17]. In the latter case, the user can rearrange the nodes to detect
patterns and correlations. The reassembly does not affect the relations between data
points.

The important criteria for brushing techniques are efficiency and accuracy. The user
should be able to select data fast, accurately, and in a fluid manner. The most common
brushing technique is brushing using simple geometries, i.e., selecting the points that
intersect with a geometric shape, for example a one-, two-, or three-dimensional line,
respectively bounding-box. Other techniques include lassoing that lets the user draw
a closed curve that encloses points, logical combinations to combine multiple brushing
techniques and iteratively refine the selection, and sketch-based brushing that applies
heuristics to a shape sketched onto a visualization [FH18].

While brushing and linking is used to analyse the visible data, filtering is used to focus
on specific data subsets and to hide insignificant data points. It is common, to analyse
huge data in smaller fractions [IZJ18].

Details on Demand

Details are usually presented in separated panels [STN+16] or with fish-eye enlargements
[YXL+22].

2.2.3 VA Application in Deep Learning

While deep learning opens up new possibilities in research, it sparks new research questions
as well. A deep learning network in general is a black box, which is difficult to interpret.
Enlightening the black box is interesting for many applications, as the results need to be
comprehensible in order to be reliable and to avoid misjudgement due to an encoded bias.

Hohman et al. [HKPC19] define the following questions to design and evaluate a VA
application for deep learning:
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1. Why do we want to use visualizations in deep learning? Why and for what purpose
would one want to use visualization in deep learning? This question can be answered
with Interpretability & Explainability [STN+16, ZCAW17, PHG+18, WGYS18],
Debugging & Improving Models [PHG+18, WGYS18], Comparing & Selecting Models
[WGYS18], and Teaching Deep Learning Concepts [KTC+19].

2. Who wants to visualize deep learning? Who are the types of people and users
that would use and stand to benefit from visualizing deep learning? Possible
answers that Homan et al. [HKPC19] propose are Model Developers & Builders
[PHG+18, WGYS18], Model Users [STN+16], and Non-experts [KTC+19].

3. What can we visualize in deep learning? What data, features, and relationships
are inherent to deep learning that can be visualized? Possible answers include Com-
putational Graph & Network Architectures [WGYS18, KTC+19], Learned Model
Parameters [WGYS18], Individual Computational Units [STN+16, PHG+18], Neu-
rons in High-dimensional Space [STN+16, PHG+18, KTC+19], and Aggregated
Information [STN+16, PHG+18, WGYS18].

4. How can we visualize deep learning? How can we visualize the aforementioned
data, features, and relationships? This can be answered with Node-link Dia-
grams for Network Architectures [KTC+19], Dimensionality Reduction & Scatter
Plots [STN+16, PHG+18, WGYS18], Line Charts for Temporal Metrics [PHG+18,
WGYS18], Instance-based Analysis & Exploration [STN+16, PHG+18, WGYS18],
Interactive Experimentation, or with Algorithms for Attribution & Feature Visual-
ization.

5. When can we visualize deep learning? When in the deep learning process is
visualization used and best suited? Homan et al. [HKPC19] reference research that
applied VA During Training [PHG+18, WGYS18, KTC+19] and After Training
[STN+16].

6. Where is deep learning visualization being used? Possible answers are: In Appli-
cation Domains & Models.

We answer these questions for our VA application in Section 3.6.

Our visual analytics application handles graph embeddings. Therefore, in the following
paragraphs we look at visual analytics applications developed to explore and compare
embeddings, i.e., vector representations for the input data, generated with various models.

Embeddings are widely used in ML applications. Common ways to trace the decision
making of a network that generates the embedding are input feature importance, saliency,
and neuron activations. In the previous years another line of work was analyzing the
embeddings using visual analytics applications to interactively find differences between
embedddings, find interesting objects, and investigate interesting objects [HKMG22].
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The research regarding visual analytics for embeddings typically includes a user study
regarding the general requirements and specific tasks to create the design of the VA
application. Boggust et al. [BCS22] identified two user groups: model-driven users
that compare model performances and data-driven users that study properties of the
underlying data. They further conclude that crucial criteria are global check and local
check.

Addressing this, a common approach to compare embedding spaces is the comparison of
local neighborhoods of individual objects in combination with a global comparison of
the embeddings [HKMG22, BCS22]. The global embedding comparisons are typically
implemented using scatter plots that are interlinked with detail views of selected objects
[HKMG22]. Therefore dimensionality reduction algorithms are used to map the high-
dimensional data into 2D or 3D. The most common dimensionality reduction algorithms
are PCA, t-SNE, and UMAP [SWP22]. Boggust et al. [BCS22] discovered that users
prefer deterministic dimensionality reduction algorithms and that they distrust t-SNE
and therefore use PCA dimensionality reduction as the default setting for the global
projection. The visual analytics tool EmbComp [HKMG22] implements a binning feature
for the scatter plots to manage the scale of big datasets. The scatter plots can be
investigated via single object selection or multiple object selection using for example a
rectangle selection tool [LWBM22].

The investigation of local neighborhoods is built upon varying metrics. EmbComp
[HKMG22] visualizes point-wise comparison metrics, i.e., the amount of overlap between
the neighborhoods of an object in two different embedding spaces and the spread met-
ric that defines how far a neighborhood extends from one embedding to another one.
Furthermore EmbComp implements distribution comparison metrics, i.e., the distance
between nodes within a neighborhood and the local density within a neighborhood.
The metrics are visualized in bins which can be selected by the user to identify the
corresponding objects. This design concept represents a top-down analysis through the
actions summarizing local metrics to find similarities and differences, subset selection,
and sequentially scanning.

The Embedding Comparator [BCS22] displays the k-nearest neighbors for a chosen data
point to visualize the local neighborhoods. The comparison of two models is performed
with the computation of similarity scores between the local neighborhoods of a chosen
data point using the cosine similarity or Euclidean distance. The results are visualized
with a histogram of scores, color-encoding in the global embedding plots, and with local
neighborhood dominoes, i.e., multiple small visualizations. These small visualizations can
be filtered and linked views enable the comparison between visualizations. The similarity
metric is computed for every embedded object.

The Embedding Comparator highlights data points with least and highest similarities to
address the concern of users stating that they make object selections in an unprincipled
way and might miss important correlations between the embedding spaces. Emblaze
[SWP22] states, that the Embedding Comparator lacks in finding relevant neighborhoods
and addresses this issue in their application.
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Figure 2.10: Star Trail visualization of Emblaze [SWP22] that compares a selection of
drug-related words within two embedding spaces. One embedding space is based on
Google News data and the other on Twitter data. The line opacity is dependent on the
relative number of nearest neighbors that changed between the two embedding spaces.

Emblaze can be integrated in a computational notebook environment. This combines
the support of predefined tasks with the freedom to implement own metrics. The
novel approach of Emblaze is the comparison of embedding spaces using Star Trail
augmentation, as depicted in Figure 2.10. The embedding spaces contain the object
embeddings as scatter plots. The trails connect the embeddings of the same object in
different embedding spaces and the transition between the spaces can be animated using
a slider. The connection lines, i.e., Star Trails, between the object embeddings quickly
reveal data points that vary the most between multiple embedding spaces. To align the
embedding spaces, Emblaze computes the Procrustes transformation, which minimizes the
distances between the objects in the embedding spaces. The Procrustes transformation
can also be applied to single selected objects and their neighborhoods. The neighbor
sets are compared using the Jaccard distance, a common metric to compare sets, which
computes the intersection of two sets over the junction of the two sets. Emblaze further
applies color-coding to visualize if nodes are only present in one of the nearest neighbor
sets under comparison.

While partly being data type agnostic, Embedding Comparator, EmbComp and Emblaze
as well as many other lines of research regarding visual analytics for embeddings focus
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on NLP use cases. In the field of graph embeddings the tools EmbeddingVis [LNH+18],
CorGIE [LWBM22], GEMvis [CZG+22], and BiaScope [RSL+22] were developed. While
we implement an application for whole graph embeddings, the aforementioned applications
are developed for node embeddings. CorGIE states that they might extend the scope of
the application with whole graph embeddings in future work.

CorGIE [LWBM22] encodes the graph nodes and trains a GNN to embed the nodes in
the latent space. The user can interact with the node embeddings and select clusters of
nodes using a rectangle selection tool. The selection leads to a topology space and feature
space analysis. Regarding the topology space, the k-hop neighbors, i.e., the neighbors
that are reachable by walking along a path by passing k nodes, of the selected nodes
are depicted within a visualization of the original graph. The user can evaluate whether
the node embeddings correspond to the topological closeness, i.e., whether nodes that
have similar embeddings are within each other‘s k-hop neighborhoods. The feature space
analysis panel shows histograms of feature value distributions of the selected nodes.

GEMvis [CZG+22] also interlinks a visualization of the original graph and the node
embeddings as depicted in Figure 2.11. The selection of nodes can be applied regarding
predefined node metrics. Chen et al. [CZG+22] define nine node metrics, including the
node degree, node eccentricity, and the node closeness. The metric values for each node
are depicted in parallel coordinate plots. The user can interact with these plots to select
the corresponding nodes in the original graph and in the embedding space.

While advanced applications exist to leverage VA to compare and analyze the embeddings
generated with deep learning models, we employ the component of dynamically adding
new labels to retrain the model while exploring the latent space that the input graphs
are embedded in. We focus the usage of VA for AI to the specific case, in which ground
truth is difficult to gather and can only be provided to nudge the training in the right
direction. We furthermore integrate detail views specific to the use case of exploring
graph embeddings.
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Figure 2.11: The GEMvis [CZG+22] interface includes (a) a parameter panel to select
two models for comparison, (b) parallel coordinate plots to choose data based on feature
values through brushing, (c) the original input graph, (d)(e) the node embeddings of the
input graph, (f) a panel depicting the node metrics in a radar plot, and (g) a record view
that stores previous analyses. Overlaying panels annotated with 2 are changes that are
applied to the panels beneath during user interactions.
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CHAPTER 3
Materials and Methods

This chapter covers materials and methods that we apply in our thesis. We discuss the
pipeline to incrementally gain new knowledge to improve GraphPAWS using NetDive in
Section 3.1. Section 3.2 addresses the the drosophila melanogaster dataset. Section 3.3
covers the development of our deep learning network architecture GraphPAWS based on
the architectures GraphDINO and PAWS. Section 3.4 discusses the clustering methods
we use and the evaluation we perform based on the predicted clusters. Section 3.5 covers
dimensionality reduction algorithms to reduce the graph latent embeddings to three
dimensions that can be visualized in NetDive and Section 3.6 explains the concept and
design of NetDive.

3.1 Pipeline

Figure 3.1 depicts the pipeline that we set up to incrementally gain new knowledge in
order to cluster graph data. The first step is to process the graph data, such that the
graphs are aligned. The preprocessed data serves as input data to train, validate, and test
the GraphPAWS model. The model outputs latent embeddings of the input graphs. We
store the latent embeddings on the filesystem. The visual analytics application NetDive
accesses the data and provides the user with visualizations and user interactions to
explore the latent embeddings and the associated neurons. The user can filter and update
the underlying data by choosing an inference subset and by varying the dimensionality
reduction algorithm. The data exploration with NetDive leads to new knowledge which
aids the user to generate annotations for a subset of data points. The user can start the
retraining of the GraphPAWS model within NetDive, leveraging the new annotations.
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Figure 3.1: The pipeline including our visual analytics tool NetDive and our semi-
supervised model architecture GraphPAWS.

3.2 Data

We obtain the drosophila melanogaster larval neuron dataset we use for our experiments
from CATMAID [SCHT09]. CATMAID is a platform for a collaborative reconstruction
and annotation of data and stands for The Collaborative Annotation Toolkit for Massive
Amounts of Image Data.

The dataset contains 7297 drosophila melanogaster larval neurons from CATMAID. We
restricted our analysis to a subset of 2970 neurons that was annotated by Michael Winding
[WPB+23] (further discussed in Section 4.2). We chose the latter, as the subset contains
more reliable neuron traces compared to the remaining 4327 neurons. We reduced this
subset to 2541 neurons by removing all neurons that do not contain exactly one node
annotated as soma and by removing all neurons with less than 200 nodes.

The drosophila melanogaster larval neurons are represented as undirected, acyclic graph
in three dimensions with the root node representing the soma. To extract the graph
information, the larval brain is sliced in thin layers with a diamond knife and each layer
is scanned with an electron microscope. Each layer of the microscopic imagery is traced
by experts. They draw points along the curve that belong to the neuron. The points
represent nodes in the graph and the nodes are connected with edges. The graph is
traced over the whole image stack that composes the brain. The traces of each layer are
connected to the neighboring layers, such that the resulting graph is spanned in three
dimensions. This process is depicted in Figure 3.2.
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Figure 3.2: The process from electron imagery to graph data: The brain tissue is prepared,
sectioned in thin layers and the layers are scanned with transmission electron microscopy
(TEM). The resulting scan images are assembled to a volume and the neurons are traced
over the image stack [ZLP+18].

3.3 Deep Learning

3.3.1 GraphDINO: Self-Supervised Learning

The GraphDINO network [WPLE23] utilizes self-supervised contrastive learning to find
similarities between graphs based on their shapes. The graph representation learning
network GraphDINO was published in 2021. It is an adaptation of the DINO network,
developed at Facebook earlier that year [CTM+21]. While DINO operates on image data,
GraphDINO operates on graph data. Both network architectures employ contrastive
learning based on transformer networks. While DINO integrates vision transformers,
GraphDINO integrates graph transformers. GraphDINO applies complexity reductions
to the DINO architecture like the elimination of L2 normalization [WHLE21]. The name
DINO stems from the descriptive name self-distillation with no labels, referring to the
self-supervision of the network architecture.

GraphDINO is trained on the datsets rat somatosensory cortex neurons that are part of
the Blue Brain Project (BBP) [RCA+15], M1 PatchSeq of mouse motor cortex neurons
[SKB+21], mouse visual cortex neurons that is part of the Allen Brain Atlas (ACT)
[All16], Brain Image Library (BIL) [PXL+21] of mouse neurons (based on the whole
brain), Janelia MouseLight (JML) [WBF+19] of mouse neurons (based on the whole
brain), and Botanical Trees [SDS21].

The following sections discuss GraphDINO in more detail.
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Architecture

Figure 3.3: GraphDINO architecture developed by Weis et al. [WHLE21].

Figure 3.3 depicts the GraphDINO architecture. The model builds upon a student-teacher
architecture that is used to generate latent embeddings of an input graph x. Both the
teacher and the student process variations of x. The variations x1 and x2 are sub-sampled
to a fixed number of nodes. Graph x2 is passed to the teacher encoder and graph x1 is
augmented before being passed to the student encoder. The augmentations that are used
are subsampling, rotation, node jittering, subgraph deletion, cumulative jittering, and a
random translation of the soma depth.

The student and the teacher network are identically initialized transformer networks.
The student parameters are learned with gradient descent, while the teacher parameters
are updated with an exponential moving average (ema) of the student parameters. A
centering operation computed with a mean over the batch is applied on the output of the
teacher network. In this architecture the student learns to discard errors from the teacher
network. The outputs of the student and the teacher network are the latent embeddings
z1 and z2 respectively. The multi-layer perceptron (MLP) utilizes a normalization layer
and a linear layer to translate the latent embeddings z1 and z2 to p1 and p2. The objective
of the network is to decrease the loss that measures the similarity of p1 and p2, while not
resulting in node collapsing.

Node Collapsing Avoidance

In self-supervised learning, it is essential to avoid mapping all inputs to the same
latent embedding when using only positive samples. This effect is called node collapsing.
Weis et al. [WHLE21] do not explicitly discuss how to prevent node collapsing, but
experimentally demonstrate that the student-teacher architecture and the use of batch
normalization help to prevent learning a single latent embedding for all input graphs. As
we discard the student-teacher network for our semi-supervised architecture adaptation
that is discussed in Sub-section 3.3.3, we have to pay attention to leverage a different
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node collapse avoidance strategy.

Encoder

GraphDINO encodes the graph inputs with an adaptation of the transformer atten-
tion mechanism introduced with the paper Attention is All you Need [VSP+17] that
was originally developed for natural language processing (NLP) as discussed in Sub-
section 2.1.4.

Each token xi in the input sequence corresponds to a linear transformation of the features
fi of a node vi. The keys K, queries Q, and values V are learned linear projections of
these tokens. In order to train not only on feature information but also on structural
graph information, GraphDINO incorporates a bias towards the adjacency matrix A. The
adjacency matrix of a graph is a symmetric matrix of size n × n, with n being the number
of vertices in the graph. A connection between two nodes is represented with a one in
the corresponding cell and a missing link between two nodes with a zero. Equation 3.1
denotes how GraphDINO calculates the attention,

Attention(Q, K, V, A) = σ(λ
QKT

√
dk

+ γA)V, with|λi, γi| = exp(Wxi), (3.1)

where σ is the softmax function, W is a learned weight matrix, λ and γ assign the ratio
of relevance of the neighboring nodes versus all nodes in the graph. For λ = 1 and γ = 0
this is equal to the classical transformer attention and for λ = 0 and γ = 1 it is equal to
the GNN message passing algorithm. The token of node vi with the added positional
encoding is denoted by xi.

For the positional encoding, GraphDINO uses the normalized graph Laplacian L, as
denoted in Equation 3.2,

L = I − D−
1

2 AD−
1

2 = UT ΛU, (3.2)

where I is the identity matrix, D the degree matrix, A the adjacency matrix. The
Laplacian encodes the neighborhood information with the adjacency matrix and structural
information on the matrix diagonal with the degree matrix. The Laplacian without
normalization has positive integer values on the diagonal, i.e., if i=j, with i being the
row index and j being the column index, that represent the count of connected edges. If
i ̸=j, the value is 0 if the nodes vi and vj are not connected and -1 otherwise. For the

normalized Laplacian as denoted above all entries are divided by
�

deg(vi)deg(vj), which

renders the diagonal to have 1 in each entry. UT ΛU is the eigenvalue decomposition
of the normalized Laplacian with U being the eigenvector matrix and Λ the eigenvalue
matrix. Using the eigenvalue decomposition, it is possible to select the first k eigenvectors
(representing the Laplacian) with the highest eigenvalues for the positional encoding.
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The graph transformer used by GraphDINO is composed by seven multi-head attention
modules and eight heads.

Training Objective

GraphDINO uses a cross-entropy loss as shown in Equation 3.3. The training objective
is to decrease the loss

loss = − 1

N

�

N

(p1 ∗ log(p2 + eps)), (3.3)

where p1 and p2 are the latent embeddings that are projected from the latent embeddings
z1 and z2 using the MLP head as shown in Figure 3.3. The MLP head consists of linear
layers, GELU layers and a normalization layer to project z1 and z2 to the predefined
number of classes, i.e., classes that are assigned to the graphs for classification, and the
predefined number of dimensions.

3.3.2 PAWS: Semi-Supervised Learning

PAWS [ACM+21] deploys a semi-supervised deep learning architecture based on con-
trastive views and support samples to assign one-hot encoded pseudo labels to input
images. The authors evaluate the network with 1% labeled samples and 10% labeled
samples and achieve 66.5% and 75.5% accuracy on ImageNet. With 10% labeled samples,
PAWS outperforms state-of-the-art networks that are strictly self-supervised, namely
BYOL [GSA+20], SwAV [CMM+20] and others. The following sections discuss PAWS in
more detail following the structure of Sub-section 3.3.1.

Architecture

The high level network architecture of PAWS is depicted in Figure 3.4. The figure
shows three processing streams. The first stream processes the anchor view, which is
a sample image x̂ of the unlabeled image data. The positive view, represented by the
bottom stream, processes an augmented version of the image x̂, denoted as x̂+. PAWS
implements the image augmentations random crop, horizontal flip, color distortion, and
blur. The middle input stream processes a mini-batch of labeled support samples. PAWS
expects each mini-batch to be composed by an equal number of instances for each sampled
class.

All three streams are encoded with the same parameterized encoder fθ, which is the
trunk of a deep residual network. The encoder outputs z, respectively zS and z+ are the
learned embeddings of the input data. The unlabeled latent embeddings z and z+ are
then compared to the latent embeddings of the labeled support mini-batch, using the
similarity classifier πd. The comparison outputs vectors p, respectively p+ that represent
a probability distribution of class labels. The objective function H(p+, p) ensures, that
the probability distributions of p+ and p are similar. To avoid node collapsing the target
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Figure 3.4: PAWS architecture developed by Facebook AI Research. The blue rectangles
represent the value distribution for the vectors p and p+ [ACM+21].

p+ is sharpened before being passed to H(p+, p). The sharpening function is discussed
in the paragraph Node Collapsing Avoidance.

Similarity Classifier πd

The classifier function πd(zi, zS) (Equation 3.4) outputs a one-hot encoded vector that
indicates how similar z, respectively z+ is to the support samples in the mini-batch zS .
The function πd sums up the distances d(., .) g 0 between a sample embedding zi of the
unlabeled samples and the labeled mini-batch latent embeddings zS . The one-hot ground
truth label that is associated with a labeled sample zSj

of the support mini-batch zS is
denoted with yj . Therefore yj has the dimensions Nclasses × Nsupportsamples.

PAWS uses the similarity metric d(a, b) = exp(aT b/||a||||b||τ) to calculate πd. This is
the exponential temperature scaled cosine similarity metric that considers the direction
and the magnitude of the representation vectors a and b, divided by the similarity
temperature τ .

Equation (3.4) applies this similarity metric to the matrix zS and the vector zi in order
to calculate the similarity for multiple vector comparisons, i.e., the comparison of the
support sample vectors stored in zS with zi, in parallel.

The resulting vector pi stores the highest entry for the class with the highest similarity
to z, respectively z+. This result is conditioned by the prerequisite that each class is
represented with an equal number of samples in the mini-batch of support samples.
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pi = πd(zi, zS) =
�

(zSj,yj)∈zS

�
d(zi, zSj)

�
zSk∈zS

d(zi, zSk)

�
yj . (3.4)

Node Collapsing Avoidance

The PAWS sharpening function ρ(.), given by

[ρ(pi)]k :=
[pi]

1

T

k

�K
j=1[pi]

1

T

j

(3.5)

is used to steer the network towards eliminating all trivial solutions that map all input
data to the same latent embedding. T is the target sharpening temperature parameter, set
> 0. The temperature factor is used to change the distance between probabilities of the
soft pseudo label. For example, the vector [0.5, 0.25, 0.25] becomes [0.8889, 0.0556, 0.0556].

Training Objective

The training objective of PAWS is to minimize

H(p+, p) =
1

2n

n�

i=1

(H(ρ(p+
i ), pi) + H(ρ(pi), p+

i )) − H(p̄). (3.6)

The objective function uses the cross entropy function H to measure how similar the
distributions of a sample pi and its corresponding positive view p+

i are. The cross-entropy
is calculated twice for each sample, once pi is sharpened and once p+

i is sharpened.
The first term 1

2n

�n
i=1(H(ρ(p+

i ), pi) + H(ρ(pi), p+
i )) is the average over all cross-entropy

calculations for all the unlabeled samples within a batch.

The second term H(p̄) is a regularization term, called mean entropy maximization
(ME-MAX) that aims to increase the entropy of an unlabeled training-batch. The
parameter p̄ denotes the component-wise average of sharpened latent embeddings p and
p+ over a batch, shown in Equation 3.7. Equation 3.8 uses ρ to compute the ME-MAX
regularization. ME-MAX is inversely proportional to the entropy of ρ.

p̄ =
1

2n

n�

i=1

(ρ(pi) + ρ(p+
i )), (3.7)

ME-MAX(p+, p) =
n�

i=1

log(p̄ −p̄). (3.8)
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While sharpening aims to increase the confidence in the probability distributions, i.e.,
to decrease the entropy, ME-MAX is calculated over a batch and leads towards a uni-
form distribution, to ensure that each label is getting predicted. More concretely,
distributions like [[1., 0., 0.], [1., 0., 0.], [1., 0., 0.]] are penalized and distributions like
[[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]] are favoured. This regularization assumes that indeed
a uniform representation of class samples is present in an unlabeled training batch. If
the batch rightfully predicts the class [1., 0., 0.] for each label, the ME-MAX might be
misleading the network.

3.3.3 GraphPAWS

The following comparison of GraphDINO and PAWS is leveraged to draft our Graph-
PAWS architecture.

Comparison architecture GraphDINO and PAWS
PAWS GraphDINO

Input Type Image Graph
Anchor Encoder fθ := Deep Residual Network Teacher Transformer
Pos. View Encoder fθ := Deep Residual Network Student Transformer
Latent Repres. pi pi := πi [Equation 3.4] pi := MLP (zi)

Training Objective Minimize Equation 3.6 Minimize Equation 3.3
Node Collapse Avoid-
ance

Prediction Sharpening Student-teacher Architecture

Semi-Supervised Learning Components
Similarity Classifier Equation 3.4 -
Similarity Metric d(a, b) = exp(aT b/||a||||b||τ) -

While GraphDINO is based on a student and a teacher network to embed the posi-
tive sample and respectively the anchor sample, PAWS uses the same encoder to embed
the anchor sample, the positive sample, and the support samples. The outputs z / z+ of
the GraphDINO student - teacher encoders are transformed with a MLP and immediately
passed to the objective function. The PAWS embeddings are further processed with
the sharpening operation and with the previously discussed similarity classifier. Both
GraphDINO and PAWS implement cross-entropy for the objective function. PAWS
additionally implements the ME-MAX regularization.

Our architecture GraphPAWS is an adaptation of GraphDINO and PAWS. We extend
the PAWS architecture by three input streams to leverage manually annotated support
samples. The stream that processes the anchor view and the stream that processes
the positive view use the same encoder. This replaces the GraphDINO student-teacher
architecture. We employ the similarity classifier to compare the latent embeddings of
unlabeled samples to the latent embeddings of the labeled support samples and we
experiment with different objective functions that integrate the sharpening function and
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Figure 3.5: The GraphPAWS architecture developed in this thesis. Components with a
blue background are adopted from GraphDINO, components with a pink background are
adopted from PAWS and the component with the orange background, i.e., the support
samples are generated in NetDive.

a regularization term, which we vary during the experiments. As PAWS is developed for
images, we rely on the GraphDINO components to process graph data and embed them
in the GraphPAWS architecture. We use the GraphDINO dataloader, the augmentations,
and the graph transformer. The GraphPAWS architecture is depicted in Figure 3.5.

3.3.4 Training Objective

GraphPAWS can be trained with different objective functions. Besides the cross-entropy
objective function employed in the original network of Weis et al. [WHLE21] we added a
mean-squared error (mse) objective function to train models for both loss functions and
to compare the performance of the resulting models.

The regularization term is added to the cross-entropy / mse loss. Equation 3.9 depicts the

42



3.3. Deep Learning

cost function C in relation to the hyperparameters λ and γ that determine the relevance
of the regularization terms ME-MAX and One-Hot-Enforcement,

C(p+, p) = loss(p+, p) + λ ∗ ME-MAX(p) + γ ∗ One-Hot-Enforcement(p). (3.9)

The ME-MAX regularization term is adopted from PAWS, as denoted in Equation 3.8.
While PAWS computes ME-MAX based on the average of sharpened latent embeddings
p and p+ over a batch, we oly use the average of sharpened latent embeddings p. We
add an additional term that we name One-Hot-Enforcement, given by

One-Hot-Enforcement(p) =

�N
i=1

�M
k=1 log(ρ(pik)−ρ(pik))

N
, (3.10)

with N being the number of samples and M being the dimension of the embedding
vector p. This regularization term enforces one-hot encodings of the embedded vector
p. One-Hot-Enforcement computes the logarithm of pik (represented by the parameter
i in Figure 3.6) to the power of −pik as depicted in Figure 3.6 for every component of
the sharpened vector ρ(p). If the vector is one-hot encoded, the result is 0, otherwise it
is greater than 0. This is computed for every sample in the batch and the results are
averaged.

Figure 3.6: Logarithm of i to the power of -i

While ME-MAX operates over a batch of samples, One-Hot-Enforcement is applied to
single training samples and averaged over a batch.

3.3.5 Graph Augmentation

The augmentations are a central component of contrastive learning. The network learns
that the original graph and its augmented variation should be mapped closely in the
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embedding space. In this manner, the network learns to become invariant to specific
features that vary between the samples within a cluster.

Domain knowledge is necessary to know which variances we expect within a cluster.

Weis et al. [WHLE21] utilize the following augmentations :

1. Subsampling: Reduction of the graph to a fixed number of nodes. Nodes are
randomly removed that have a maximum of two neighbors and are therefore no
branching points. If the deleted node had one neighbor, no further actions are
necessary, if the deleted node had two neighbors those are connected. Subsampling
is applied in order to make the network invariant towards the manual tracing
granularity of the neuron graph.

2. Rotation: 3D rotation around coordinate axes. Weis et al. [WHLE21] rotate
along the y axis as the y axis is orthogonal to the pia, which is part of a protective
membrane covering the brain and spinal cord. Rotation is applied in order to make
the network invariant towards neuron rotations as Weis et al. [WHLE21] want to
cluster neurons with similar shapes independent from their orientation in the brain.

3. Jittering: Random translation of node positions with a scaled Gaussian noise
factor. Jittering is applied to make the network invariant towards small local
structure changes.

4. Branch Deletion: Deletion of subbranches that contain a leaf node, which is
not the soma. A subbranch starts from a branching point and does not contain
further branching points. These subbranches are named terminal branches. Branch
deletion is applied as variations of neuron types have varying numbers of dendrites.

5. Translation: Random translation of the whole graph with a scaled Gaussian
noise factor. Translation is applied as the network should be invariant towards the
position of the neuron within the brain.

We complement these augmentations with the augmentation flip to steer that neurons
from the left and the right hemisphere with a similar but mirrored morphology are
mapped to the same cluster. Figure 3.7 depicts such a pair of counterpart neurons from
the left and right hemisphere. A flip along the yz plane would approximately align these
neuron graphs.

We also discussed some further subsampling strategies. Subsampling is important, as
experts trace neurons with varying accuracy. A good subsampling strategy teaches the
network that the number of nodes and the density of nodes is less important than the
global graph shape. Further potential subsampling approaches are mentioned in Chapter 7
under future work. For the experiments we kept the subsampling implementation by
Weis et al. [WHLE21].

We document and discuss the experiments we did to choose augmentations and the values
for the augmentations in Section 5.2 and Chapter 6.
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3.4. Clustering

Figure 3.7: Counterpart neuron graphs from the left and right brain hemisphere.

3.3.6 Graph Alignment

In the previous Sub-section 3.3.5 we listed the augmentations we utilize to ensure that
variations of morphologically similar graphs are embedded close to each other. The
augmentations translation, rotation, and flip depend on the location of the neuron graph
within the coordinate system. We need to ensure that we have previous knowledge about
the optimal rotation axis, the optimal flip plane, and whether and when translation has
to be applied. In order to enforce prerequisites on the orientation and position of neurons
within the coordinate system, we experiment with alignment strategies as a preprocessing
step.

We perform a principle component analysis (PCA) on all graph nodes and align the
axis with the highest variance with the x axis. We call this alignment strategy PCA
alignment. Another strategy we test is PCA based on solely the nodes that belong to
the main branch of the neuron, which is the longest path that we find starting from the
soma. We then align the main branch with the x axis, again by aligning the axis with the
highest variance. We call this alignment strategy Main branch PCA alignment. These
approaches are further elaborated in Section 5.3 and discussed in Chapter 6.

3.4 Clustering

We experiment with two clustering algorithms, k-means and Gaussian Mixture Models
(GMM), both discussed in Sub-section 2.1.2. While k-means is based on distance
measurements, GMMs are based on data distributions and therefore are able to reveal
more complex patterns than k-means.

The choice of a clustering technique is interlinked with the objective function that we
use for model training, as we want to cluster accordingly to what the model learned
and considers to be similar or dissimilar. For the training we experiment with the
mean-squared error and the cross-entropy loss. The mean-squared error loss minimizes
the Euclidean distance between latent embeddings while the cross-entropy loss optimizes
towards finding the optimal decision boundary between data distributions. Therefore we
expect the GMM to perform better on models trained with the cross-entropy loss.
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GMM depends on random seeds for the initialization and k-means is initialized with
k-means+, which is optimized to find good clusters and is not fully deterministic. Both
GMM and k-means are initialized with a predefined number of clusters. Weis et al.
[WHLE21] fit 1000 GMMs with varying random seeds for 2-30 clusters using five-fold
cross-validation to find the optimal number of clusters. For the sake of simplicity, we let
the number of clusters be defined by the users (which can use NetDive to explore the
graphs and can set the number of clusters based on their findings), therefore we omit
this step.

We adapt the method developed by Weis et al. [WHLE21] to find the optimal model.
They fit 100 GMMs with varying random seeds and perform a five-fold cross-validation
to determine the performance of each model. Weis et al. choose the GMM with the
highest average adjusted rand index (ARI).

The adjusted rand index (ARI) is calculated as

ARI = (RI − RIExpected)/(max(RI) − RIExpected), (3.11)

with the Rand Index (RI) being the ratio of the number of pairs of data points that are
classified the same way in both clusterings to the total number of pairs. ARI has a value
between -0.5 and 1, with values close to 0.0 for random labeling, values approaching 1.0
for consistent labeling, and approaching -0.5 for especially discordant clusterings [scib].

3.5 Dimensionality Reduction

In order to visualize the clusters in three dimensions we take advantage of varying
dimensionality reduction techniques that focus on different aspects of the data patterns.
Principal component analysis (PCA) computes the axes with the highest variances and
projects the data onto these axes. T-SNE reduces the dimensionality by stochastically
preserving nearest neighbor relationships between points. UMAP is similar to t-SNE as
it also preserves local structures, but scales better for larger datasets and nonuniform
distributions. PCA is a deterministic algorithm while t-SNE and UMAP are probabilistic
algorithms, though the reproducibility of the results can be improved by using a fixed
seed for the initialization of t-SNE and UMAP.

3.6 NetDive

The visual analytics (VA) tool NetDive addresses the topics Model Selection, Model
Analyses, and Model Improvement. During the network training with GraphPAWS we
encountered the problem that the network did not produce embeddings that cluster well.

Whilst computing the ARI score gives us a performance metric (which is not always
reliable as discussed in Section 5.4), we aim to visualize the input data contributing to a
cluster to identify outliers, and to visually evaluate the quality of the cluster separation.
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The visual inspection provides knowledge that numeric metrics like the ARI score can
not provide. We embedded NetDive in the pipeline discussed in Section 3.1, such that
the user can add new annotations to specific data points and restart the training within
NetDive.

3.6.1 Goals and Tasks

NetDive supports the user to analyze and compare latent embeddings and to subsequently
improve the model by adding new labels. The VA tool is developed for model engineers
that design and refine the model and for domain experts to explore complex graph data
and to choose a model from the pre-trained model database. Model engineers can use
NetDive during the training to fine-tune a model based on the user input, whilst domain
experts can use NetDive after the training to explore the embeddings. NetDive is designed
for the case study of exploring similarity scores in neuroscience. The concept of NetDive
is data type agnostic and can be adapted for other use cases.

The goals of NetDive are (G1) to select a specific model, (G2) to give the user an
analyses tool to explore the clustering and the cluster contents for specific model embed-
dings, and (G3) to tightly integrate the developer into the training process (human in
the loop) in order to improve the model. Table 3.1 depicts the goals and associated tasks
to achieve these goals. The goals and tasks were developed based on related work and
discussions within the Biomedical Image Informatics department at VRVis.

In the subsequent sub-sections we discuss the design of the user interface and the
implementation of the tasks in order to achieve the goals G1-G3.

3.6.2 User Interface

According to Shneiderman’s mantra overview first, zoom and filter, then details on
demand [Shn96], we present the data point embeddings corresponding to a specific model
as scatter plots and the user can request details for selected neurons that are depicted in
a separate panel.

The user interface (UI) consists of four panels. Two global views as depicted in Fig-
ure 3.8(1) and Figure 3.8(2) and a detail panel as depicted in Figure 3.8(3). The two
view panels enable the user to load the latent embeddings processed by two (different)
models to compare the results. Each view includes a detail view realized as accordion
menu, depicted in Figure 3.8(4) to set the parameters. Both views include a canvas that
displays the dimensionality reduced latent vectors of the neurons in three dimensions as
scatter plots.

The user can expand and collapse components of the UI to maximize the space available
to interact with the components of interest. The dynamic components are the detail
panel, the view panels, the legends, depicted in Figure 3.9 on the bottom right image, and
the accordion menu. Figure 3.9 shows different layout setups that the user can configure.
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G1 G2 G3

T1 Selection of a specific model based on training-data, hyperpa-
rameters, and version. We want to be able to select and load latent
embeddings of specific models using dropdown menus that display
the available data. The model should be uniquely identifiable by its
training hyperparameters, the training dataset, and a version name.
T2 Visualization of the latent embeddings in a scatter plot.
T3 Analyses of the cluster contents. The user should be able to get
input data information about data points on demand. The user should
be assisted in identifying and analysing clusters.
T4 Comparative analyses based on model and attribute data. We want
to compare latent embeddings generated by two (different) models or
compare the cluster assignments for latent embeddings generated by
the same model based on different dimensionality reduction algorithms
or ground truth assignments.
T5 Relabeling of misclassifications. We want to manually assign
cluster labels to input data. The user should be able to assign labels
to data points that are misclassified and to data points that are
prototypical for a cluster, i.e., represent a cluster well.
T6 Starting the retraining with new cluster labels. We want to process
the new labels in the training.

Table 3.1: NetDive goals and their associated tasks. G1: Model Selection, G2: Cluster
Analyses, G3: Model Improvement

Global View

NetDive requests the pre-computed latent embeddings from the filesystem using the API
of our NetDive backend server. On demand, the backend applies dimensionality reduction
to the requested feature vectors. The dimensionality reduced data points are displayed
as a scatter plot in the global view. The global views embed parameter panels presented
as accordion menus to set parameters in order to select and analyze the embeddings
generated by a specific model.

Parameter Panel

The parameter settings are divided into four cards. The first card Data regards the
training data, the training data preprocessing, and the inference-data. The second card
Deep Learning covers deep learning parameters. The third card Analysis provides options
to analyse the loaded data, and the fourth card Presets includes presets to reproduce
results that are discussed in this thesis. The settings are depicted in Figure 3.10.
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Figure 3.8: NetDive layout: (1) First global view, (2) second global view, (3) detail view,
(4) parameter panel.

Detail View

The detail panel has two parts, as depicted in Figure 3.11. In the top area, marked
with A in Figure 3.11, the user can interact with a 3D graph representation of a neuron,
which is selected in the bottom half of the detail panel. The bottom half, marked with B
in Figure 3.11, is a scrollable container that lists tiles, marked with D in Figure 3.11,
depicting image galleries of pre-rendered preview-images for each selected neuron. Between
the 3D graph representation and the tile area, marked with C in Figure 3.11, the user
finds elements to activate the relabel feature and to start the network training using the
relabeled data.

3.6.3 Task Implementation

T1: Model Selection

To select the embedding data generated with a specific model, the user can set the
parameters in the accordion cards Data and Deep Learning Parameters to match that
specific model. The options in the dropdown menus for these parameters correspond to
the available models that the backend server can access.
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Figure 3.9: Layout configurations in NetDive.

The Data card provides parameters regarding the training data and the preprocessing
techniques. The pre-processing includes Orientation and Subsampling. The options for
these parameters depend on the models that are available to the user and the metadata
that is encoded for these models. In chapter 5 we discuss the pre-processing techniques
we implemented for our use case. The user can also define, which subset of the data to
use for the inference. The Version refers to different versions of a model. Version v000 is
the model that was initially trained with the self-supervised GraphDINO model, while
other versions are generated with the same hyperparameters and the same training data,
but with additional support samples set in NetDive. The user can specify the version
name before starting the retraining.

The Deep Learning Parameter card displays parameters that refer to the deep learning
hyperparameters, set during the model training. Each available model encodes these
hyperparameters within the storage path, with each position in the path corresponding
to the value of a specific parameter. The same applies to the storage path of the pre-
computed embeddings. Therefore NetDive can associate the embeddings with the models
that were used to generate the embeddings.

If the user changes settings that effect other settings, default parameter values are chosen
for the settings that are invalidated by the change. This is the case, if e.g., the user
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Figure 3.10: NetDive: Parameter panel with accordion layout. Different cards are
expanded in the individual screenshots. The yellow rectangle highlights the ground truth
clusterings we integrated for our use case.
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Figure 3.11: NetDive: Detail views.

selects a batch size and no model exists with the selected batch size and the learning
rate that was previously chosen. In this case the learning rate is set to a default learning
rate that exists for the selected batch size.

T2: Visualization of the Latent Embeddings

NetDive visualizes the embeddings as a scatter plot in three dimensions. We chose to
visualize the data in three instead of two dimensions, as we can keep more information
after the dimensionality reduction. This can come with the downside of distortion and
occlusion. As clustering is not dealing with issues of length and angle preservation, and
the points representing the neurons are not covering a lot of space, which limits the issue
of occlusion, we accepted these downsides.
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Figure 3.12: 35 colour schemes defined by Brewer et al. [HB03] divided in the categories:
(a) sequential, (b) diverging and (c) qualitative.

The scatter plots visualize spatial and attribute information. In contrast to spatial
data, attribute data includes any information that is unrelated to spatial information.
We visualize the cluster labels as attribute information for each data point with color
assignments.

Choosing the right color scheme for the label encoding is essential, as the human
perception is biased to associate colors with meaning. We refer the reader to ColorBrewer
https://colorbrewer2.org. The website is based on research by Cynthia Brewer,
and helps the user to select color schemes that e.g., consider potential color-blindness and
varying display environments and media (digital and print) [HB03]. Brewer et al. divide
the color schemes in sequential, diverging, and qualitative ones as depicted in Figure 3.12.
Since sequential and diverging color schemes suggest that the colors have an order or
a certain degree of similarity to each other, we make sure to use qualitative colors to
color-code the cluster labels.

The scatter plots are depicted in three linked views, implementing the concept of multiple
linked views (MLVs), displayed in juxtaposition. MLVs link the information displayed in
each view to the others based on user interactions.

T3: Analyses of the Cluster Contents

The user can vary the dimensionality reduction algorithm and its configuration as well
as the color coding of the scatter plots to analyze the scatter plots within the Analyses
card in the parameter panel.

The latent embeddings of each processed neuron graph have 32 dimensions and therefore
can not be displayed in the user interface without a dimensionality reduction. The
user can choose the dimensionality reduction algorithm. We integrate UMAP (Uniform
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Manifold Approximation and Projection), t-SNE (t-Distributed Stochastic Neighbor
Embedding), and PCA (Principal Component Analysis). The user can set the number
of neighbors for the UMAP dimensionality reduction and the perplexity for the t-SNE
algorithm.

The color is either assigned based on a chosen ground truth or based on a clustering
algorithm. The available ground truth labels are the neuron annotations by Volker
Hartenstein [LNO+13], by Michael Winding [WPB+23], and our manual annotations.
The Winding clusters are hierarchical, therefore the user can choose the granularity level
for the Winding clusters. We integrate the Volker and Hartenstein clusters as options to
be selected in the parameter panel to aid the user to explore correlations between these
clusters and our generated morphology based clusters. If the color is assigned based on
the clustering algorithm, the user chooses between the k-means algorithm and Gaussian
Mixture Models (GMMs) and can select the number of clusters.

Besides the color coding and the dimensionality reduction, we provide user interactions to
explore the embeddings. We implement the interaction techniques filtering, multi-selection,
and camera movement.

The user can hide and show neuron clusters by opening the legend at the bottom corners
of the views as displayed in Figure 3.13. The legend displays each color group with the
corresponding name, which is the cluster name of the ground truth cluster or a generic
name that is assigned to each cluster after the cluster algorithm was applied. Next to
each cluster is an eye icon that can be toggled to hide and show the data points belonging
to the respective cluster.

The user can select single or multiple data points in the scatter plot or select a neuron
cluster from the legend, displayed in Figure 3.14. Selected neurons are colored yellow.
The three panels in the UI (two views and one detail panel) are linked. Therefore a
neuron selection in one view also leads to a color change in the other view and details
about the selected data point or data points are listed in the detail view. The user can
interact with the canvas elements using zoom, panning, and orbiting.

T4: Comparative Analyses

By loading the embeddings of two models in the first global view and the second global
view, depicted in Figure 3.8, the user can compare embeddings, either by assigning the
same ground truth to two different model embeddings or different ground truth colorings
to the same embedding.

T5: Relabeling

If the relabeling feature is initially activated, all neuron data points are rendered in gray.
The relabel feature disables the color encoding that is set in the parameter panel. After
the activation, the user can select neurons from the detail panel and open the relabeling
modal, i.e., an overlay window that disables the interaction with the underlying website
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Figure 3.13: NetDive: Filtering.
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Figure 3.14: NetDive: Selection.

56



3.6. NetDive

Figure 3.15: NetDive: The user can assign a color to a selected node. The relabel button
on the neuron tile within the detail view, maked with A, opens a modal (top left). The
user can choose a preset to color the neuron or they can manually generate a new label
group (top right). The user can assign the currently selected node to a group by clicking
the checkbox next to the group (bottom left and right).

until the user actively prompts the window to close. The modal is depicted in Figure 3.15.
With the New Group button, visible in Figure 5.25, the user creates a new cluster group
with the previously entered group name. If the user tries to create a group without a
name or with a taken name they are prompted to update the group name first. The new
group is added to a color-coded list of hand-labeled neuron groups. The user can choose
one of the groups to add the currently selected neuron. After closing the modal, the
user sees that the previously gray neuron is colored with the group color as depicted in
Figure 3.16 (left). PAWS [ACM+21] requires the semi-supervised training to use an equal
number of annotated data samples for each cluster. To ensure a minimum number of
samples for each hand-labeled group, we could have added a check that ensures an equal
number of labels for each cluster before starting the retraining. To be more flexible with
our experiments we did not add this check and adapted the PAWS model architecture to
allow unequally distributed support sample labels in each batch.
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Figure 3.16: NetDive: The user can retrain the model with the currently loaded hyper-
parameters and the previously assigned labels that act as support samples during the
training. The user needs to click the Retrain button (left), to provide a version name,
and to confirm the hyperparameters and support samples (right).

T6: Retraining

If the user triggers the retraining, a confirmation window, displayed in Figure 3.16 (right),
with a list of the relabeled neurons and the currently set parameter settings is prompted to
avoid unintentional actions. The parameter settings that are passed on to the retraining
process are: loss, batch size, learning rate, learning rate decay, training set and the
number of epochs until the training terminates. The data in the confirmation window
is sent to the backend server. A subprocess call activates the retraining environment
and calls the retraining script. After the retraining, the embeddings generated with the
retrained model are available to be selected in the parameter panel.
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CHAPTER 4
Implementation

This chapter includes the data preparation, ground truth preparation, the setup of
the filesystem, implementation details for the deep learning architecture GraphPAWS,
presented in Sub-section 3.3.3, and for the visual analytics application named NetDive,
presented in Section 3.6.

4.1 Data Preparation

The training data for the architectures GraphDINO and GraphPAWS has to be in a
specified format. We export the neuron graph .swc files from CATMAID and change
the node attributes to fit our use case. The extracted files from CATMAID store seven
features for each node. The node features are [swc]:

• SampleID

• TypeID

• x

• y

• z

• r

• ParentID

The SampleID is a unique ID to identify each node in the graph, the TypeID encodes
the neuron compartment (depicted in Figure 1.1), x, y, z encode the spatial data of each
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node, r is the radius of a node, as a neuron can have varying thicknesses along the curves
and the ParentID is used to find the node that is connected to the current node. The
dataset we obtained from CATMAID contains radius features with zero values, indicating
that this information has not been annotated yet. The TypeID values are: undefined,
soma, postsynaptic node, and presynaptic node. The connectivity is not encoded in the
neuron data. We solely keep the features SampleID, x, y, z, and ParentID to reconstruct
the neuron morphology, we reduce the TypeID information to soma or not soma and we
omit the radius feature.

4.2 Ground Truth

For cluster analysis in NetDive, we organize the available ground truth annotations,
allowing the user to seamlessly switch between different ground truth colorings. We
generated a single json file that stores multiple ground truth cell type labels for each
neuron id. For clarification: The neuron id is an id that identifies the whole neuron,
while the SampleID identifies a specific node in the neuron graph representation. The
annotation files include manually labeled cell types and expert cell type annotations by
Michael Winding and Volker Hartenstein [LNO+13] that are exported from CATMAID.

4.2.1 Michael Winding et al.

Michael Winding et al. [WPB+23] published connectdome annotations for the drosophila
melanogaster on CATMAID and describe them in their paper. Winding et al. generated
a dataset with all central nervous system (CNS) neurons, sensory neuron axons, and
motor neuron dendrites. While we want to only operate on the graph morphology, i.e.,
the shape, topology, and spatial information of the graph, Winding et al. solely consider
the synaptic connectivity. They assigned cell types to 3.016 neurons and additionally
assigned connection-types and brain-wide circuit motifs to the connectome. The neurons
of the two drosophila melanogaster larval brain hemispheres are mostly mirror-symmetric.
We also leverage the mirror-symmetry for the manual annotations of cell types based on
morphology later on. Winding et al. paired the corresponding mirror-symmetric neurons
and identified 90 neuron clusters using an unbiased hierarchical clustering method. They
state that the cell types based on connectivity did correlate with cell types annotated for
other features like morphology and functionality.

4.2.2 Volker Hartenstein et al.

Volker Hartenstein [LNO+13] analyzed lineages, that describe neurons deriving from the
same stem cells called neuroblasts. He states that neurons within a lineage do not only
share the same stem cell, but are also alike regarding the morphology. In this thesis we
define datasets based on lineages, i.e., the Datasets 1-3 described in Section 5.1. Dataset
1 and 2 are based on lineage BAlc and Dataset 3 corresponds to lineage CM4. Lineage
BAlc neurons are located in the lateral surface of the antennal lobe and lineage CM4 is
located in the postero-medial brain cortex. As depicted later, the morphology of neurons
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in lineage BAlc visually divides the lineage in three clusters that we manually annotated.
Other lineages like lineage DILP have a visually coherent morphology. Similar to lineage
BAlc, the neurons in lineage CM4 fall into four clusters regarding the morphology that
we manually labeled.

Figure 4.1: Screenshot of the json file that stores the ground truth annotations for each
neuron id.

Figure 4.1 depicts a screeshot of the ground truth data. The json file is embedded
in NetDive and the user can select a ground truth coloring in the UI as depicted in
Figure 3.10.

The available annotations in NetDive are the Michael Winding clusters (hierachical
clustering named winding_label_level_<1-7> and the winding_celltype cluster), the
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Volker Hartenstein [LNO+13] clusters (hartenstein_level_<1-3>) and the manually
annotated ground truth labels (BAlc_L_R_filtered and CM4_L_R_filtered). The
manual annotations are described in Section 5.1.

4.3 Filesystem

Both the GraphPAWS training and NetDive heavily depend on predefined folder structures
on the filesystem to write and read data depending on a given set of hyperparameters.

Models are stored to a path that encodes training parameters version, fold, loss, training
set, alignment strategy, subsampling strategy, batch size, learning rate, learning rate decay
and epoch:

<version>/<fold>/<loss>/<training_set>/<alignment_strategy>/<su

bsampling_strategy>/<batch_size>/<learning_rate>/<learning_rat

e_decay>/<epoch>.ckpt

The latent representations of the inference data are stored in json files titled latent.json
and are embedded in a folder structure identical to the folder structure for the models
within a different root directory.

4.4 GraphPAWS

4.4.1 Implementation Environment

We adapted the codebase of GraphDINO [WHLE21] and combined it with semi-supervised
training components of PAWS [ACM+21] according to the architecture discussed in Sub-
section 3.3.3. Next to the package ssl_neuron from GraphDINO, we generated a package
named graphdino_paws_neuron. We duplicated files of GraphDINO that we needed to
adapt and included them to the graphdino_paws_neuron package. Files that did not
need to be adjusted are imported from ssl_neuron. This setup preserves the original
code of GraphDINO [WHLE21] and highlights the adaptations we made.

4.4.2 Data Loading

The data loading requires preprocessing steps in which files referencing the neuron data
are generated that should be loaded during training, validation, and testing. We store
this information in numpy files and load these during training. Therefore the files have
to be embedded in a previously defined folder structure and follow a naming schema.

The graph data that corresponds to the previously saved neuron ids will then be requested
from the filesystem during runtime. Each neuron graph is composed by the features
file, which stores the spatial data, the neighbors file, which stores the topology, and a

62

<version>/<fold>/<loss>/<training_set>/<alignment_strategy>/<subsampling_strategy>/<batch_size>/<learning_rate>/<learning_rate_decay>/<epoch>.ckpt
<version>/<fold>/<loss>/<training_set>/<alignment_strategy>/<subsampling_strategy>/<batch_size>/<learning_rate>/<learning_rate_decay>/<epoch>.ckpt
<version>/<fold>/<loss>/<training_set>/<alignment_strategy>/<subsampling_strategy>/<batch_size>/<learning_rate>/<learning_rate_decay>/<epoch>.ckpt
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file named parents which stores the parent node of each node with the axon being the
root node. The latter file is utilized to calculate the longest axis for the graph alignment
preprocessing, discussed in Sub-section 3.3.6.

The features are stored in separate files and updated according to the orientation. We
store the spatial features of the graphs as provided by CATMAID, the main branch PCA
aligned feature data, and the PCA aligned feature data.

The feature orientation could have been computed during runtime instead of determining
it in a preprocessing step. We decided to outsource the processing to save computation
time during training and to be more flexible in case we want to leverage the oriented
data also in the NetDive visualization.

4.4.3 Class Balancing

We adjusted the similarity classifier of PAWS [ACM+21]. The similarity score calculation
in the similarity classifier is an unweighted cosine similarity. It causes graphs being
classified as more similar to samples that are represented more frequently in the support
sample batch. Therefore, PAWS states that the support samples have to be evenly
distributed over all classes in each batch. We want to enable the user to provide
an unbalanced number of samples for each identified class. To compensate for the
class imbalance we calculate class weights and multiply them with the results. First,
we normalize the query and support vectors, then we count how often each class is
represented in the support vectors and based on this number of instances of each class
(Ninstances) we calculate the class weight of each class as noted in Equation 4.1,

class_weights = Nsupport_samples/(Nclasses ∗ Ninstances), (4.1)

with Nsupport_samples being the number of support samples in the support sample batch
and Nclasses being the number of classes represented in the support samples. We ensure
that each support sample is represented at least once in each support sample batch,
otherwise we would divide by zero in Equation 4.1. Besides that it would be counter-
productive to compute the similarity between the query and the support samples if
some classes are not represented. Equation 4.2 denotes the computation of the weighted
similarity score for a query vector that we referenced with z / z+ in Figure 3.5,

similarity_score = σ

�
query · support_samples

τ
· labels · class_weights

�
. (4.2)

We generate a new support sample batch for each iteration of a training epoch. We
therefore implement an iterator that endlessly cycles through elements from the support
sample loader. The iterator processes a pytorch DataLoader object and yields a new
batch of support samples on demand, i.e., by calling next. To ensure that each class is
represented in the batch, we run a check and generate a new batch of support samples in
case that a class is missing.
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4.4.4 Architectural Details

The graph transformer returns a vector embedding of 32 dimensions and a projection
of these 32 dimensions to 1000 classes. For the semi-supervised training we pass the
embeddings of the 32 dimensions to the similarity classifier to compute the label for the
input neuron graph. The vector length of the label corresponds to the vector length of
the support vector labels and is determined on demand in the similarity classifier.

4.4.5 Evaluation

We implemented jupyter notebook scripts to analyse the latent embeddings of the
inference sets and to visualize different aspects of the models and the model training. We
solely pre-computed the latent embeddings for the subsets that we used for the inference
as the computation of the latent embeddings for the whole drosophila dataset consisting
of 2541 neuron graphs for one model takes approximately one hour (hardware details are
listed in Chapter 5).

We decided not to compute the latent embeddings for varying inference sets on demand
whilst interacting with NetDive as the computing time disrupts the user experience. The
available inference sets are listed in the Data card in the NetDive accordion menu.

While Weis et al. [WHLE21] train with five-fold cross-validation we perform four-fold
validation to have sufficiently many annotated samples to validate the results. We report
the results on a test set that was not previously used for training and validation. We
choose the model with the highest average performance across folds by fitting 100 GMMs
to each fold and computing the ARI between the ground truth labels and the labeled
neurons in the validation set.

We implemented scripts to compute the ARI, denoted in Equation 3.11, based on the
manually annotated ground truth and the inference latent embeddings. We visualize the
ARI scores for multiple models in plots to find patterns of which hyperparameters lead
to better results. We further tracked the loss curves during training, collect those, and
visualize them in image grids.

4.5 NetDive

4.5.1 Frontend

The frontend renders the NetDive application as depicted in Figure 3.8.

The frontend implementation tech stack is:

• React: React is a popular JavaScript library to build user interfaces. It provides
a component-based architecture that allows developers to easily create reusable
UI elements. The modularity of React allows to reuse the view component for
NetDive to implement two views for comparison of the neuron data points. React
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implements efficient DOM (Document Object Model) updates using a virtual DOM,
which is a lightweight copy of the DOM that exists entirely in memory. Updates
are first applied to the virtual DOM and only if the updates lead to a difference
between the updated virtual DOM and the previous state of the virtual DOM,
the actual DOM is rerendered. Therefore React is a good framework to build
complex, interactive web applications. In comparison to the Angular Javascript
framework, React is more lightweight and produces less boilerplate code when being
bootstrapped.

• Vite.js: Vite is a build tool to create a React application. Until 2021, the most
popular React build tool, developed at Facebook, was Create React App. Create
React App, however, installs over 140 MB of dependencies, which is often irrelevant
overhead. A lightweight alternative tool is Vite with 31 MB of dependencies.
Additionally, Vite does not rebuild the whole bundle after each change by making
use of the browser-native ES (ECMAScript) modules. This makes Vite a fast tool
to create, update, and build React apps [Cho]. Since 2021 Vite is installed more
often than Create React App [npm]. NetDive is built with Vite.

• Semantic UI: Semantic UI is a UI framework to style web applications. Semantic
UI provides user-friendly syntax to define composed classes. Predefined colors and
styling elements support the developer to create a coherent design. Additionally,
Semantic UI uses behaviors that trigger Javascript functionality to create responsive
components. Behaviors specify the functions and properties that an element
implements. They can be accessed using spaced words, camelcase, or dot notation.
Semantic UI has an official React integration named Semantic UI React [rea].
Semantic UI React provides React components, which wrap the styling and behavior
of Semantic UI elements. We use Semantic UI to style all the components in NetDive,
including the buttons, the accordion menu, the split between the views, and the
tiles that embed the neuron details.

• Three.js: Three.js is a JavaScript library to create 3D graphics within a web appli-
cation. It includes a wide range of methods and classed to generate geometries and
materials. A competitor of Three.js is Babylon.js, released three years after Three.js
in 2013. Both libraries are highly customizable while offering a higher abstraction
layer than for example D3. Other applications that embed 3D visualizations work
with even more advanced 3D engines, for example Unity and the Unreal Engine.
Those are preferable, if the developer wants to generate complex 3D scenes with
simulations. As this is not the case for NetDive, Three.js provides the adequate
amount of complexity to visualize and interact with the data points. Both views of
NetDive have a canvas element embedded that contains the data points, rendered
with Three.js.

• 3d-force-graph [for]: 3d-force-graph is a library to visualize graphs. We use it
to render the interactive three dimensional representation of the neuron in the
detail component. The library offers a variety of force layouts that we surpass by
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specifying the specific spacial locations of each node in the graph. The user can
orbit around the neuron and zoom in and out to explore the neuron shape.

• Axios: Axios is a promise-based HTTP Client for node.js. NetDive uses Axios to
communicate with the backend that provides local data and processes data before
passing it on to the React application.

4.5.2 Backend

The frontend needs to access data on the local filesystem. Therefore I implemented a
backened server that serves the data and applies preprocessing to the data if necessary.

The backend implementation tech stack is:

• Flask: Flask is a Python web framework with a built-in development server
that supports url routing. We use flask to access the filesystem to serve the
inference latent data, images of neurons, graph data for the graph 3D rendering
and the ground truth json file described in Section 4.2. It runs per default on
localhost:5000.

• Swagger [swa]: The flask API provides a swagger documentation, which is available
under: localhost:5000/docs after starting the flask server. Swagger provides
the user with a description about each REST endpoint, the schema of the return
value, and the input parameters. The user can process test calls with custom values
that match the input parameter schema.

Application Programming Interface

Figure 4.2 depicts the swagger specification of the Flask server.

GET /api/datapoints: This endpoint returns a dictionary of neuron ids as the
keys and the three dimensional spatial position of the neuron latent representations as
values. The caller has to provide the following information as body parameters to select
the inference data points accordingly from the filesystem:

• Loss function used for the training?

• Training set used for the training?

• Inference set used to select the latent representations?

• Batch size used for the training?

• Learning rate used for the training?

• Weight decay for the training?
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Figure 4.2: Swagger API visualization of NetDive flask REST endpoints

• Based on which training epoch should the latent representation be selected?

• Which version based on the previous parameters should be selected?

• Which dimensionality reduction algorithm should be used to reduce the 32 dimen-
sions of the latent representations to three dimensions for visualization?
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• Depending on the dimensionality reduction algorithm further parameters are re-
quired: The neighbor parameter needs to be set for UMAP and the perplexity
needs to be set for t-SNE.

GET /api/details/{id}: This endpoint expects a neuron ID and returns a zip file
containing two pre-renderings of the input neuron from different angles, along with an
image showing the axon tract location within the drosophila melanogaster brain dome
through which the neuron passes.

GET /api/gt: This endpoint returns varying ground truth annotations for each neuron
as a dictionary, depicted in Figure 4.1.

GET /api/neuron/{id}: This endpoint expects a neuron id and returns the 3D
graph representation of the corresponding neuron. The return format is parsed, such
that 3d-force-graph can process it: nodes: Array<Object>, links: Array<Object>

GET /api/params: This endpoint returns all available parameter options that are
then displayed in the UI in the accordion menu. Therefore the filesystem is scanned for
available paths and the location of a substring specifies the feature. The caller can pass
optional values for some features, so that the options for the other features are selected
accordingly. For example, the caller can set the option version to v002 and this endpoint
will return option values for other hyperparameters that are available for version v002.
The hyperparameters are identical with the options for endpoint /api/datapoints
without the dimensionality reduction parameters and the inference set.

GET /api/predictions: This endpoint returns a dictionary of the neuron ids mapped
to labels. The labels are predicted using the clustering algorithm k-means or the cluster-
ing algorithm GMM, depending on the caller input. The caller also has to provide the
training hyperparameters and the inference set as body parameters to choose the latent
representations to cluster.
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CHAPTER 5
Experiments

The experiments chapter includes an introduction to the datasets (section 5.1), and the
augmentations (section 5.2) and the graph alignment (section 5.3) we use. Based on this
we perform the training experiments for self-supervised learning and semi-supervised
learning (section 5.4). We conduct an ablation study regarding the augmentations during
the semi-supervised learning and demonstrate the iterative training using NetDive. The
experiments are built on top of each other, therefore parts of the discussion Section in
Chapter 6 are already briefly covered in order to provide a reasoning for the subsequent
experiments.

5.1 Datasets

5.1.1 Drosophila Melanogaster

We defined four subsets of the drosophila melanogaster dataset, that is exported from
CATMAID [SCHT09], to train and to test the pipeline defined in Section 3.1:

• Dataset BAlc L / R filtered: A subset of lineage BAlc with hand-selected neurons
that we can visually divide and annotate with cluster labels grouping morphologi-
cally similar neurons. Lineage BAlc contains neurons from the left brain hemisphere
(BAlc L) and the mirrored neurons of the right brain hemisphere (BAlc R). The
neurons are depicted as image collections in the Figures 5.1-5.3. Cluster 1 neurons
resemble a semi-circle, Cluster 2 neurons have an H shape and Cluster 3 neurons
have a very dense topology within a sphere. The dataset consists of 26 neurons, 13
in each brain hemisphere.

• Dataset BAlc L / R: The unfiltered lineage BAlc. This dataset consists of 81
neurons, including the 26 neurons from dataset BAlc L / R filtered.

69



5. Experiments

(a) Neuron graphs of left hemisphere

(b) Neuron graphs of right hemisphere

Figure 5.1: BAlc L / R filtered Cluster 1 neuron graphs with the ids: (a) 3486381,
4260935, 16259595, 17743170, 8276782; (b) 13858824, 8246081, 4119387, 3756659,
4327684, 8244723
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(a) Neuron graphs of left hemisphere

(b) Neuron graphs of right hemisphere

Figure 5.2: BAlc L / R filtered Cluster 2 neuron graphs with the ids: (a) 11934107,
11986594, 12121795; (b) 6218461, 3844961

• Dataset CM4 L / R: The unfiltered lineage CM4. Lineage CM4 consists of 66
neurons, 33 in each brain hemisphere. We separate this lineage into 4 classes, as
color coded in Figure 5.4. The neuron graph representations without a border in
Figure 5.4 are not assigned to a class.

• Dataset All: All available neurons. After removing all neuron graphs with less than
200 nodes and less than 25 synapses, as well as the ones that have no unique soma
assigned, 2519 neurons remain.

For the self-supervised learning we initially used the dataset with all 2519 neurons. As
the self-supervised training did not output distinct clusters, we concluded that we have
to guide the network training and train on subsets that we can evaluate.

For the the following experiments we evaluate the latent embeddings of the self-supervised
and semi-supervised models trained on dataset BAlc L / R by computing the ARI scores
between the predicted clusters and the manually annotated clusters of dataset BAlc L /
R filtered. We demonstrate the visual analytics tool NetDive on dataset CM4 L / R.

5.1.2 Comparison with Allen Brain Atlas (ABA): Mouse Visual Cortex

The original GraphDINO [WHLE21] was trained and evaluated on the ABA [aba] dataset.

The neuron graph representations used by GraphDINO encode the features vi = [si, ri, ci]
with si being the respective xyz-coordinates, ri being the radius of node vi and ci being
a (1x4) one-hot encoded vector that determines the compartment that a node represents,
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(a) Neuron graphs of left hemisphere

(b) Neuron graphs of right hemisphere

Figure 5.3: BAlc L / R filtered Cluster 3 neuron graphs with the ids: (a) 7939890,
7939979, 7941642, 7941652, 8311264; (b) 8198238, 8198416, 8198513, 6557581, 8198317
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(a) Neuron graphs of left hemisphere

(b) Neuron graphs of right hemisphere

Figure 5.4: CM4 L / R neuron graph representation of (a) the left hemisphere and (b)
the right hemisphere
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(a) original graph representation (b) reduced graph representation

Figure 5.5: Neuron with id 11986594 reduced to 200 nodes. Both graphs are not
augmented.

i.e., a soma, an axon, a basal dendrite, or an apical dendrite. In comparison, we only use
the xyz-coordinates of a neuron representation graph as the radius information for the
drosophila melanogaster data is not available and the specification of a node compartment
is not sufficiently reliable and sparse.

Weis et al. [WHLE21] performed an ablation study to test the effect of architectural and
input data choices. The effect of leaving out the neural compartment information did
improve the model performance from 51,5% to 54,3% accuracy. The authors did not
elaborate why they did not drop this compartment information even though the results
were better without. The omission of neural compartment information seemingly did
not have a negative effect and this limitation of the drosophila melanogaster dataset
therefore should not be critical.

5.2 Data Augmentations

We experimented with different augmentations in order to vary the input sufficiently to
generalize to graphs of the same cluster. We want the model to be invariant to rotations
and positions of graphs and to generalize to graphs with similar shapes. We used the
augmentations of the GraphDINO implementation and updated the configuration settings
to fit our data.

The adopted and implemented augmentations are (1) Subsampling, (2) Rotation, (3)
Jittering, (4) Branch deletion, (5) Translation.

Figure 5.5 depicts a graph with 3103 nodes (a) that is subsampled and reduced to 200
nodes (b). Figure 5.6 (a) depicts a graph that is augmented using node jittering. Each
node is randomly displaced with a normal distribution with mean 0 and variance 1,
multiplied by a scaling factor that we set to 1000. Figure 5.6 (c) depicts a random
rotation along the x-axis and Figure 5.6 (b) a translation with factor 10.000 along x,y,z
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(a) reduced jittered graph representation

(b) reduced translated graph representation

(c) reduced rotated graph representation

Figure 5.6: Neuron with id 11986594, augmented, (a) with node jittering variance =
1000, (b) with translation = 10000, and (c) with rotation around the x axis.
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(a) reduced graph representation (b) reduced graph representation flipped
along y axis

(c) reduced graph representation flipped along
x axis

(d) reduced graph representation flipped
along z axis

Figure 5.7: Neuron with id 11986594 reduced to 200 nodes. (a) Not augmented and (b),
(c), (d) augmented with flips along three main axes.

axes. While the translation is set to 10.000 here, it is applied randomly during runtime
with a maximum of 10.000.

Additionally to the augmentations implemented by Weis et al. [WHLE21] we decided
to implement flip, so that we can align the mirrored neurons from the left and the
right hemisphere, depicted in Figure 5.7. An augmentation study can be found in
Sub-section 5.4.5.

5.3 Graph Alignment

We use a preprocessing step to align the neurons in the coordinate system. This
preprocessing is necessary to align the mirror symmetric neurons of the left and right
brain hemisphere during the training with the previously discussed flip augmentations.
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Figure 5.8: Example neurons for each spiny clusters of the BBP dataset, with apical
dendrites in lighter color and basal dendrites in darker color. Image from Weis et al.
[WPLE23].

The augmentation rotation, discussed in Sub-section 3.3.5, is then applied after the
alignment to make the model invariant towards rotational changes. We use the terms
alignment and orientation to reference the graph preprocessing and the term rotation to
reference the augmentation.

It is not trivial to decide, how a neuron should be oriented in the coordinate system.
Weis et al. [WHLE21] aligned neurons using the neurons’ first principal component with
the y-axis. This led to visually unambiguous results as depicted in Figure 5.8

We chose two approaches to orient the neuron graphs, elaborated in Sub-section 5.3.1
and Sub-section 5.3.2. To demonstrate examples of the neuron alignment, and the
following augmentation techniques, we use the neuron with id 11986594. It is displayed
in Figure 5.5 in its unprocessed form as stored in CATMAID.

5.3.1 PCA Alignment

The principal component analysis (PCA) is used to find the axes with the most relevant
information in a point cloud. These are the axes with the largest data distributions.
The axes form an orthonormal basis of the feature space, titled eigenvectors and the
corresponding eigenvalues indicate the significance of an eigenvector.

We apply the PCA orientation on all the nodes of the unreduced graph representation.
We use scikit-learn to perform PCA and to project the neuron node positions to the first
three components, as we want to align the neuron with the three-dimensional space. The
projection includes mean centering.
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Figure 5.9: Neuron with id 11986594 aligned with PCA over all nodes.

(a) PCA aligned neuron with id 6218461 (b) PCA aligned and flipped neuron with id
11986594

Figure 5.10: (a) PCA aligned graph with id 6218461 from the right hemisphere and (b)
PCA aligned graph with id 11986594 from the left hemisphere that is augmented using a
flip along the x axis.

Figure 5.9 depicts the PCA aligned neuron graph with id 11986594. Figure 5.10 visualizes
how we can align this neuron graph from the left hemisphere with a neuron graph from
the right hemisphere, e.g., the neuron graph with id 6218461. Both neuron graphs
are depicted without alignment and augmentations in Figure 5.2. Looking again at
Figure 5.10, we see, that we can compare them by applying PCA alignment to both and
by then flipping the graph with id 11986594 along the x axis.

Flipping the neuron graph, which is mean centered and PCA orientated, preserves the
main branch PCA alignment. The neuron is still aligned with the x axis. Furthermore the
mean centering prevents jumps within the coordinate system, i.e., the center of gravity
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of the neuron graph is always in the center of the coordinate system and the neuron
does not move from one quadrant of the coordinate system to another one after the flip
augmentation.

We have to apply the PCA alignment before flipping the neuron, as we initially would not
know the symmetry plane in unregistered data. After aligning the neuron, the symmetry
planes xy, xz and yz all approximately intersect the origin of the coordinate system [0, 0,
0].

5.3.2 Main Branch PCA Alignment

Figure 5.11: Neuron with id 11986594 aligned with PCA over all nodes that belong to
the main branch, depicted in red.

(a) Main branch PCA aligned neuron with
id 6218461

(b) Main branch PCA aligned and flipped
neuron with id 11986594

Figure 5.12: (a) Main branch PCA aligned graph with id 6218461 and (b) main branch
PCA aligned graph with id 11986594 that is augmented using flip along y axis.

79



5. Experiments

For the main branch PCA alignment we extract the longest path (called main branch) in
the neuron graph representation. We perform PCA based on all the nodes on the main
branch accordingly to the PCA alignment in Sub-section 5.3.1.

To find the longest branch we start from the leave nodes and follow the branches towards
the soma, which is the graph root node. We compute the lengths of all the edges along
each branch and compare the lengths to get the longest branch, i.e., the main branch.

Figure 5.11 depicts the main branch PCA aligned neuron graph with id 11986594. Given
the graphs with id 6218461 and with id 11986594, depicted without alignment and
augmentations in Figure 5.2, we see, that we can compare them by applying main branch
PCA alignment to both and by then applying a flip along the y axis to the graph with id
11986594, as depicted in Figure 5.12.

5.4 Training

(a) Training, validation, and testing on
dataset BAlc L / R

(b) Training, validation, and testing on
dataset CM4 L / R

Figure 5.13: Split between training set, validation set, and test set for varying data
subsets used for the experiments. Validation is performed on the labeled validation data
A and results are reported on labeled test data B.

The training was performed on a server with an Intel(R) Xeon(R) Gold 5118 CPU
(2.30 GHz, 12 cores) and a partitioned A100 utilizing 20 GB of memory.

Figure 5.13 visualizes the datasets, listed in Section 5.1, we use for the experiments and
the division between training data, validation data, and test data.

We conduct an experiment that follows the pipeline discussed in Section 3.1 consisting of
the following steps:

1. Self-Supervised Training: We perform a grid search to find the optimal
hyperparameters for the self-supervised trained model. The accuracy of each model
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is determined with the ARI score, noted in Equation 3.11, that computes the
similarity between the predicted clusters and the manually generated ground truth.
We train and evaluate the models on a subset of the data, discussed in Section 4.2.
The best performing model is chosen to be explored in NetDive.

2. Semi-Supervised Training: Analogous to the grid search performed for the
self-supervised trained model architecture, we perform a more exhaustive grid
search for the semi-supervised trained model based on more features and feature
values. The grid search is also executed for a subset of the data.

3. NetDive: We demonstrate the iterative fine-tuning of the model with the help of
our visual analytics tool NetDive. We visualize the dimensionality reduced latent
representations produced with the self-supervised trained model.

4. Human in the Loop: To improve the currently loaded model, we:

a) Allow the assignment of custom labels to neurons that serve as labeled samples
for the refinement of the model.

b) Retrain the model with semi-supervised learning by utilizing the custom labels.
We can leverage the results of the semi-supervised grid search and use the
optimal hyperparameters for the retraining.

c) Analyze the results. Therefore we:

i. Compute the model accuracy based on ARI after each model retraining

ii. Qualitatively analyse the model increments using NetDive

d) We iteratively repeat step 4.

First, we explain the training setup based on dataset BAlc L / R in Sub-section 5.4.1.
We follow up with the hyperparameter grid search runs for the self-supervised model
in Sub-section 5.4.2 and the self-supervised model in Sub-section 5.4.3. We run an
ablation study to evaluate the effect of single augmentation techniques in the context of
semi-supervised training in Sub-section 5.4.5. We close the training experiments with
the demonstration of NetDive based on dataset CM4 L / R in Sub-section 5.4.6.

5.4.1 Setup

We initially split the dataset BAlc L / R into the five subsets depicted in Figures 5.14-5.18
(four subsets for training and validation, and one subset for testing) and store the subsets
so that we can rerun single folds, i.e., runs that leave out single subsets for validation,
and investigate the data that is used for each fold. Each subset is a collection of 11
unlabeled neurons and 5 labeled neurons. To obtain collections of the same size, some of
the neuron graphs remain unused. Instead of 26 labeled samples, we only use 25 labeled
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neuron graphs, while we use all 55 unlabeled neuron graphs of the BAlc L / R dataset.
Figures 5.14-5.18 depict the content of each subset.
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Figure 5.14: Subset 1 of dataset BAlc L / R. Cluster 1 neuron graphs are framed in green,
Cluster 2 neuron graphs are framed in red, and Cluster 3 neuron graphs are framed in
blue.
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Figure 5.15: Subset 2 of dataset BAlc L / R. Cluster 1 neuron graphs are framed in green,
Cluster 2 neuron graphs are framed in red, and Cluster 3 neuron graphs are framed in
blue.
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Figure 5.16: Subset 3 of dataset BAlc L / R. Cluster 1 neuron graphs are framed in green,
Cluster 2 neuron graphs are framed in red, and Cluster 3 neuron graphs are framed in
blue.
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Figure 5.17: Subset 4 of dataset BAlc L / R. Cluster 1 neuron graphs are framed in green,
Cluster 2 neuron graphs are framed in red, and Cluster 3 neuron graphs are framed in
blue.
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Figure 5.18: Subset 5 of dataset BAlc L / R. Cluster 1 neuron graphs are framed in green,
Cluster 2 neuron graphs are framed in red, and Cluster 3 neuron graphs are framed in
blue.

We train on 60% training data and evaluate on 20% labeled validation data, marked
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with A in Figure 5.13. We do this using four-fold cross-validation, i.e., three subsets,
resulting in 60% training data, are combined to the training data in each fold, whilst
the remaining subset which is not the test subset is used for validation (resulting in 20%
validation data). We select the model with the highest average ARI across the four folds.

We select Subset 1 to be the test set that remains unused for training and for validation.
We do not use this subset to choose the best model, only to report the results. For the
hyperparameter grid search we vary the features learning rate, learning rate decay, batch
size, and λ and γ that determine the relevance of the regularization terms ME-MAX and
One-Hot-Enforcement. We use the cost function 3.9.

The loss functions we use are mse and cross-entropy. We add the following regularization
terms:

• No Regularization: We only use the objective function without a regularization
term, i.e., λ = 0 and γ = 0.

• ME-MAX Regularization: We use the ME-MAX regularization term from
PAWS to increase the entropy of the graph embeddings within a training batch,
i.e., we want every class to be learned by the network and avoid mapping all the
samples to one of the classes. We run a hyperparameter search, setting λ to 0.1,
0.5, and 1. γ is set to 0.

• One-hot encoding Regularization: We use our custom regularization term,
which enforces one-hot encodings by reducing the entropy within a single embedding.
While the ME-MAX regularizer operates over a batch of samples, the one-hot
encoding regularizer is applied to each single isolated training sample. We run a
hyperparameter search, setting γ to 0.1, 0.5 and 1. λ is set to 0.

• ME-MAX Regularization + One-hot encoding Regularization: We
combine both regularization terms resulting in two hyperparameters λ and γ to
add the respective terms to the loss. We explore the hyperparameter space for both
variables and test combinations of the values 0.1, 0.5, and 1 for both variables.

Additionally, we address the issue of finding an objective function and a clustering
algorithm that consider similar features. For the evaluation we fit 100 GMMs with
varying random seeds to each fold for each model, leading to 400 GMMs for each of the
models.

5.4.2 Self-Supervised Training

Weis et al. [WHLE21] train the self-supervised GraphDINO architecture for five different
datasets. They run three grid searches with the focus points hyperparameter search,
augmentation strength, and model architecture.
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We train GraphDINO for the same learning rates, i.e., learning rate ∈ {0.001, 0.0001,
0.00001}. We train on the datasets BAlc L / R with a 60-20-20 training-validation-test
split as depicted in Figure 5.13. While Weis et al. [WHLE21] train on batch sizes ∈ {32,
64, 128} we train on batch sizes ∈ {16, 32} due to the smaller training dataset.

The model with learning rate 0.0001 and batch size 16 has the overall best ARI perfor-
mance on k-means clustering with a score of 0.495. We name this model M0.

5.4.3 Semi-Supervised Training

We run a grid search on the dataset BAlc L / R. We choose a graph alignment method
and we run an extensive hyperparameter search based on this graph alignment. We then
analyse the grid search and use the best performing model to run the augmentation
search.

Graph Alignment

Figure 5.19: Graph representations of lineage BAlc L and BAlc R neurons with PCA
alignment. The neuron with id 3844961, marked with a yellow rectangle, is not aligned
via PCA and this misalignment cannot be corrected for by flip augmentations

We applied the PCA alignment and the main branch PCA alignment to the neuron
graphs of the lineages BAlc L / R as depicted in Figure 5.19 and Figure 5.20 and visually
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Figure 5.20: Graph representations of lineage BAlc L and BAlc R neurons with main
branch PCA alignment.

evaluated the alignments. We discovered that one of the PCA aligned neurons, namely
the neuron with id 3844961, was not aligned as we had expected as the distribution
of nodes is different from other visually similar graphs. We therefore chose the main
branch PCA alignment to perform the augmentation search to factor in the branch length
besides the node density.

Hyperparameter Search

We trained 896 models using a grid search for the hyperparameters loss function, ME-
MAX influence λ, One-Hot-Enforcement influence γ, batch size, and learning rate. We
used the values [’cross_entropy’, ’mse’] for the loss, the values [0, 0.1, 0.5, 1] for λ and γ,
the values [0.001, 0.003, 0.006, 0.0001, 0.00006, 0.00003, 0.00001] for the learning rate,
and the values [4, 8, 16, 32] for the batch size. We ran the hyperparameter search for
100 epochs. We evaluate with four-fold cross-validation for k-means and for GMM on
the validation data.
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5.4. Training

(a) ARI based on GMM on validation data (b) Recalculation of ARI based on GMM on
validation data.

(c) ARI based on k-means on validation data (d) Recalculation of ARI based on k-means
on validation data.

Figure 5.21: (M1): Model trained on cross entropy with learning rate=0.0001, batch
size=32, λ=0, and γ=0. (M2): Model trained on mse with learning rate=0.006, batch
size=16, λ=0, and γ=1. (M3): Model trained on mse with learning rate=3e-05, batch
size=32, λ=1, and γ=1. (M4): Model trained on cross entropy with learning rate=3e-05,
batch size=4, λ=0.1, and γ=1. (M5): Model trained on mse with learning rate=0.001,
batch size=8, λ = 0.5, γ = 1.

Figure 5.21 depicts the ARI scores for all 896 models. The ARI scores vary between -0.5
and 1, with -0.5 being especially discordant, 0.0 represting random clusterings and 1.0
being a perfect match between the ground truth and the predicted clusters. We computed
the ARI scores for k-means and GMM twice to ensure that the computation produces
stable results. We address this in chapter 6. The ARI scores are listed in tabular form
in the Tables 5.1 and 5.2 for GMM and k-means clustering. The tables are sorted in
descending order according to the ARI score. We highlight five models in Figure 5.21
and Table 5.1 and 5.2 that we will reference in this section and in chapter 6. We either
choose the highlighted models for further experiments (M3) or we use these models as
examples to discuss problems that can occur during training (M1, M2, M5) or we conduct
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experiments that result in the hyperparameters of the highlighted model (M4).

Model M1 trained with cross entropy and the hyperparameters λ = 0, γ = 0, batch
size=32, and learning rate=0.0001 achieves the highest ARI achieved with GMM cluster-
ing. As shown in Table 5.1, the ARI score is 0.627.

The highest ARI score achieved with k-means clustering is 0.545 for the model M5 trained
on mse and the hyperparameters λ = 0.5, γ = 1, batch size=8, and learning rate=0.001,
listed in Table 5.1.

We analyze the models M1 and M5 to ensure that the models are not performance outliers
by chance, as the following experiments are built upon this model. We rerun the training
with random initialization but the same hyperparameters for both models five times.
The results are listed in Table 5.3.

We see that the results for the M1 model vary between average ARI scores from 0.122
- 0.627 based on GMM, while the results for the M5 model vary between average ARI
scores from 0.206 - 0.545 based on k-means. This is an indicator for us, that the
chosen model hyperparameters do not lead to stable results and that another selection of
hyperparameters might be a better choice.

We further analyze the loss curves and the feature value distributions to evaluate the
model performance. The analysis is detailed in Chapter 6. The loss curves of model M1
do not decrease. As the model does not learn over time, this model is not optimal, but a
statistical outlier. The loss curves of the model M5 have the same issue for the folds 1,
3 and 4. The loss in fold 2 almost immediately drops down to the minimum loss value.
Looking at the feature value distribution for fold 2 we see that the model suffers from
node collapsing, i.e., maps all input data to the same output. We will discuss the issue
node collapsing in chapter 6 based on model M2, which is also named and color coded in
Table 5.1.

In order to find the optimal hyperparameters for the augmentation study, we made an
analysis of the hyperparameter value distributions and the means and variances of each
model. We therefore averaged all the ARI scores of the 896 trained models based on a
specific value for a specific hyperparameter and chose the best performing values for each
hyperparameter. The resulting optimal hyperparameter values are loss=cross entropy,
learning rate=3e-05, batch size=4, λ=0.1, and γ=1 and in average GMM clustering
performs better than k-means clustering. The analysis is covered in Section 6.4 in more
detail. We retrained five models with the best performing values for each hyperparameter.
We name the model M4. The results for the model reruns are denoted in Table 5.3. As
shown in the table, the combination of these hyperparameter values turned out to be not
optimal, as the ARI score is low for GMM clustering.

In the next step we evaluated the loss curves and value distributions for the top scoring
models. We go through Table 5.1 and Table 5.2 line by line and we eliminate models that
suffer from learning incapabilities and node collapsing until we find a model that does
not suffer from one of these two issues. The rows with green background color correspond
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ARI Loss Learning
Rate

Batch
Size

λ γ Evaluation

0.627 cross_entropy 0.0001 32 0 0 No loss decrease M1
0.554 mse 0.006 16 0 1 Node collapsing M2
0.545 mse 6e-05 8 0.5 0.5 No loss decrease
0.527 mse 3e-05 32 1 1 Works M3
0.521 mse 0.001 8 0.1 1 Node collapsing
0.520 cross_entropy 0.001 32 0.5 0 No loss decrease
0.514 mse 3e-05 16 1 0.5 Small loss decrease
0.509 mse 6e-05 32 1 1 Small loss decrease
0.509 cross_entropy 3e-05 4 1 0 Small loss decrease
0.509 cross_entropy 0.001 4 1 0 Node collapsing fold

1 + 2
0.506 mse 1e-05 32 1 1 Works
0.501 cross_entropy 3e-05 8 0.1 1 No loss decrease
0.500 cross_entropy 0.0001 8 0.5 0.5 Small loss decrease
0.498 mse 3e-05 8 0.5 1 No loss decrease
0.491 cross_entropy 6e-05 16 0.5 0 No loss decrease fold

1 + 2
0.490 cross_entropy 0.003 32 1 0.5 Node collapsing fold

2 + no loss decrease
fold 1 + 3

0.488 mse 1e-05 8 1 0.5 Small loss decrease
0.486 mse 0.003 4 0.5 1 Node collapsing
0.486 cross_entropy 3e-05 8 1 1 No loss decrease after

20 epochs
0.484 mse 0.0001 32 0.5 0 No loss decrease
0.481 mse 3e-05 32 1 0.5 Works
0.479 cross_entropy 0.0001 8 1 0 No loss decrease after

20 epochs
0.479 cross_entropy 0.001 4 0.1 0 Node collapsing
0.476 cross_entropy 0.0001 16 0 0.1 Small loss decrease

... 12 Missing Rows ...

0.459 cross_entropy 0.0001 32 1 1 Works
... 222 Missing Rows ...

0.317 cross_entropy 3e-05 4 0.1 1 No loss decrease M4
...

Table 5.1: Analysis of the loss curves and feature value distributions of models sorted by
highest ARI based on the hyperparameter grid search results. The ARIs are computed
using GMM clustering
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ARI Loss Learning
Rate

Batch
Size

λ γ Evaluation

0.545 mse 0.001 8 0.5 1 No loss decrease fold
1 + 3 + 4, node col-
lapsing fold 2

M5

0.544 cross_entropy 0.001 16 0 0 Node collapsing
0.521 cross_entropy 6e-05 4 0.1 1 No loss decrease
0.52 cross_entropy 0.001 32 0.5 0 Small loss decrease
0.499 mse 3e-05 4 0.1 0.5 Poor feature value

distributions
0.495 mse 0.003 32 0.1 0.5 Node collapsing
0.494 cross_entropy 3e-05 8 0 1 No loss decrease
0.494 mse 0.001 8 0 0 Node collapsing
0.494 mse 3e-05 8 0.5 0 No loss decrease
0.494 mse 1e-05 4 1 1 No loss decrease
0.490 cross_entropy 0.003 32 1 0.5 No loss decrease fold

1 + 3, node collaps-
ing fold 2

0.488 mse 1e-05 8 0.5 0.1 No loss decrease
0.487 mse 1e-05 8 1 0 Small loss decrease
0.476 cross_entropy 0.001 32 0 0 Node collapsing
0.475 mse 0.003 32 1 1 Node collapsing fold

1 + 3 + 4
0.467 cross_entropy 1e-05 16 0 0.1 Small loss decrease
0.466 mse 6e-05 16 1 0.5 Works
0.462 mse 3e-05 16 0 1 Poor feature value

distributions
0.457 cross_entropy 1e-05 16 0.1 0.1 Small loss decrease

...

Table 5.2: Analysis of the loss curves and feature value distributions of models sorted by
highest ARI based on the hyperparameter grid search results. The ARIs are computed
using k-means clustering
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M# Initial Rerun 1 Rerun 2 Rerun 3 Rerun 4 Rerun 5
k-means M1 0.3 0.153 0.194 0.094 0.138 0.092
GMM M1 0.627 0.219 0.346 0.196 0.383 0.122

k-means M2 0.424 0.206 0.285 0.252 0.227 0.291
GMM M2 0.554 0.206 0.285 0.252 0.227 0.291

k-means M3 0.285 0.269 0.423 0.422 0.248 0.165
GMM M3 0.527 0.379 0.513 0.591 0.442 0.507

k-means M4 0.218 0.494 0.303 0.022 0.494 0.08
GMM M4 0.317 0.253 0.223 0.25 0.189 0.131

k-mean M5 0.545 0.206 0.285 0.252 0.227 0.291
GMM M5 0.372 0.294 0.334 0.51 0.306 0.249

Table 5.3: Average ARI scores based on k-means and GMM for the models hyperparameter
reruns. (M1): Model trained on cross entropy with learning rate=0.0001, batch size=32,
λ=0, and γ=0. (M2): Model trained on mse with learning rate=0.006, batch size=16,
λ=0, and γ=1. (M3): Model trained on mse with learning rate=3e-05, batch size=32,
λ=1, and γ=1. (M4): Model trained on cross entropy with learning rate=3e-05, batch
size=4, λ=0.1, and γ=1. (M5): Model trained on mse with learning rate=0.001, batch
size=8, λ = 0.5, γ = 1.

to loss curves that have a downwards trend and feature value distributions that indicate
a proper distribution of output representations for varying input samples. We assign the
attribute working to these models, highlighted with a green background, though we can
not guarantee that the learned representations are indeed meaningful. This approach
returns us the top scoring model that works. We find model M3 to be the working model
with the highest ARI. We also retrain five times with these hyperparameters. The results
are listed in Table 5.3. We see that the results are more stable than for the other models,
based on GMM clustering, and the loss curves consistently decrease throughout this
experiment. Therefore we choose this model for the augmentation study.

5.4.4 Training Results

Table 5.4 compares the ARI scores of the optimal self-supervised trained model M0,
reported in sub-section 5.4.2, with the optimal semi-supervised trained model M3, reported
in sub-section 5.4.3.
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Self-Supervised Training
GraphDINO

Semi-Supervised Training
GraphPAWS

Loss cross entropy mse
Learning Rate 0.0001 3e-05
Batch Size 16 32
Gamma - 1
Lambda - 1
ARI 0.495 (k-means) 0.527 (GMM)

Table 5.4: Results of optimal self-supervised trained model and semi-supervised trained
model

5.4.5 Ablation Study

We conduct an ablation study in order to evaluate the impact of different augmentations.

The search is inspired by the ablation study by Weis et al. [WHLE21] that is depicted in
Figure 5.22.

Figure 5.22: Screenshot of the ablation study of GraphDINO [WHLE21]

Figure 5.22 shows, that the optimal GraphDINO model [WHLE21] does not contain all
augmentations (Accuracy=51.5), but exceeds for example if the cummulative jittering
is removed (Accuracy=56.8). We also start by training a model that has all augmen-
tations applied and remove one augmentation after another and then run the reverse
process by subsequently adding augmentations to a minimal model that implements no
augmentations.
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Ablation Study Results

Table 5.5 depicts the results of our ablation study. The study is performed by starting
with a minimal and a maximal set of augmentations and by removing and adding single
augmentations.

The ablation study is also based on a four-fold cross-validation using the average result
of 100 clustering models for each fold. The results of Table 5.5 are reported on the test
sets of the labeled data, marked with B in Figure 5.13.

Model: Main branch PCA aligned ARI k-means ARI GMM

Ours 0.336 0.428
- flip (y,z) 0.225 0.396
- flip (x,y,z) 0.248 0.360
- 3D rotation 0.285 0.373
- cum. jit. 0.218 0.550
- node jit. 0.267 0.296

Minimal 0.142 0.301
+ flip (x) 0.574 0.601
+ flip (x,y,z) 0.237 0.426
+ 3D rotation 0.445 0.472
+ cum. jit. 0.445 0.660
+ node jit. 0.442 0.494

Table 5.5: Ablation study on main branch PCA aligned data

5.4.6 Demonstration of Pipeline using NetDive

In this sub-section we demonstrate the pipeline described in Section 3.1 and visualized
with Figure 3.1. We aim to show that the annotations and the retraining does iteratively
improve the clustering with minimal user input.

We demonstrate this on lineage CM4. We train a new model on lineage CM4. Instead
of performing cross-validation, we train on the whole CM4 dataset and evaluate on a
manually annotated CM4 subset. This approach simulates a real use case, where the
user iteratively adds knowledge to the model.

Initially we simulate the case that no labeled data is available and therefore train
self-supervised. We use the hyperparameter that performed best for the unsupervised
architecture, i.e., learning rate 0.0001 and batch size 16 on the BAlc dataset. In this way
we simulate a domain transfer from a previous dataset for the initial parameter settings.
The results for the training are listed in Table 5.6 in column Self-Supervised. We then
load the dimensionality reduced latent representations of the CM4 neuron graphs into
NetDive and analyze the embeddings.
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Figure 5.23: Analysis of latent embeddings. The left view depicts the filtered CM4
neurons, colored by their ground truth cluster assignment. The right view depicts the
unfiltered CM4 neurons, colored by their prediction based on GMM clustering. Ground
truth Cluster 1 is selected.

Figure 5.24: Analysis of latent embeddings. The left view depicts the filtered CM4
neurons, colored by their ground truth cluster assignment. The right view depicts the
unfiltered CM4 neurons, colored by their prediction based on GMM clustering. Ground
truth Cluster 2 is selected.
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Self-
Supervised
[WPLE23]

Iteration 1 Iteration 2 Iteration 3

ARI: GMM 0.152 0.145 0.143 0.225
ARI: k-means 0.117 0.211 0.191 0.317

Support Samples - 17732270,
12935696,
10411574,
7982896

17732270,
11905911,
12935696,
11359482,
10411574,
19298625,
7982896,
10018260

17732270,
11905911,
7227010,
12935696,
11359482,
17306107,
10411574,
19298625,
16154290,
7982896,
10018260,
18142558

Table 5.6: ARI scores of incremental training with NetDive. The ARI computation is
based on the manual ground truth for evaluation purposes only.

Figure 5.23 and Figure 5.24 depict the visualisation of the graph embeddings. On the left
UI view of both images we color the neurons according to their ground truth clustering.
We generate the ground truth ourselves by visual inspection. We chose the dataset lineage
CM4 as the shapes of the neuron graphs of this lineage are visually distinguishable for
non-experts. We only assign clusters to neuron graphs that have a distinct shape that is
comparable to other similar shapes. Neuron graphs with indistinguishable shapes have
no label assigned. The right views of both images depict the neurons colored by their
cluster predictions based on their embedding.

On the left views of both images we filtered the embeddings to include only those that
have been assigned to a cluster. CM4 includes 33 unlabeled neurons as visualized in
Figure 5.13(b). NetDive applies the filtering based on color groups. As we use the
predictions instead of the ground truth cluster assignments on the right UI view, we can
not apply the same filter on the right UI view.

In both Figure 5.23 and Figure 5.24 we select a ground truth cluster using the cluster
selection feature depicted in Figure 3.14. We see how the selected neuron clusters are
distributed throughout the embedding space. We see that the embeddings of ground
truth Cluster 1 in Figure 5.23 are spatially close together. Still, looking on the right
UI view in Figure 5.23, the neurons of ground truth Cluster 1 do not all fall in the
same predicted cluster, but are distributed across three predicted clusters. We see that
the embeddings of ground truth Cluster 2 in Figure 5.24 are spatially more distributed.
Looking at the right UI view in Figure 5.24, we see that the neurons of ground truth
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Cluster 2 are also distributed across three predicted clusters.

In our case we can visualize, which clusters we expect, but this ground truth is usually
not available. Instead, we expect we would observe the predicted clusters and analyze
the graphs assigned to each cluster.

After loading and analyzing the dimensionality reduced latent representations of the CM4
neuron graphs into NetDive, we relabel misclassified and prototypical neuron graphs. We
start by relabeling one prototypical neuron graph representation for each cluster that we
want to be learned.

Figure 5.25(a) shows the labeled neurons, each cluster represented by another random
color. These labeled samples, i.e., support samples, are used for the retraining. Fig-
ure 5.25(b) shows the relabel modal window that allows the user to create new labels and
to assign the labels to the neuron graphs. By pressing Retrain, the retraining is started
with a subprocess call. The retraining uses the GraphPAWS network architecture.

Figure 5.26 and 5.27 show the process respectively for the annotation of 2 and 3 neurons
for each cluster. Figure 5.26(b) and 5.27(b) depict the confirmation window that prompts
after triggering the retraining. This confirmation window shows the support samples
used for the retraining and the adjustable hyperparameters that will be used for the
retraining. We adjust these parameters during the experiments and ensure that they
correspond to the optimal hyperparameters found for the semi-supervised GraphPAWS
training, i.e., the hyperparameters corresponding to the M3 model (Table 5.1).

Figure 5.28 depicts the embeddings after each iteration, colored based on the CM4
ground truth. We see patterns according to the CM4 ground truth labels, but we cannot
recognize a clear subdivision into clusters. We must therefore be cautious in assessing the
slightly positive trend in the improvement of ARI scores, reported in Table 5.6. While
iteration 3 outputs the best ARI scores, the other iterations fluctuate between better
and worse results, there the positive trend itself is also questionable.
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(a) Neurons colored according to their assigned classes

(b) Relabel modal

Figure 5.25: Manual assignment of classes to the latent representations of lineage CM4
neuron graphs with NetDive. The loaded graph embeddings are generated with the
self-supervised GraphDINO model. Image (a) shows the neurons colored according to
their assigned classes. Image (b) shows the relabel modal to generate clusters and assign
neurons to these clusters.
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(a) Neurons colored according to their assigned classes

(b) Retrain confirmation modal

Figure 5.26: Manual assignment of classes to the latent representations of lineage CM4
neuron graphs with NetDive. The loaded graph embeddings are generated with the
semi-supervised GraphPAWS model, trained with the support samples as annotated in
Figure 5.25. Image (a) shows the neurons colored according to their assigned classes.
Image (b) shows the retrain confirmation modal.
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(a) Neurons colored according to their assigned classes

(b) Retrain confirmation modal

Figure 5.27: Manual assignment of classes to the latent representations of lineage CM4
neuron graphs with NetDive. The loaded graph embeddings are generated with the
semi-supervised GraphPAWS model, trained with the support samples as annotated in
Figure 5.26. Image (a) shows the neurons colored according to their assigned classes.
Image (b) shows the retrain confirmation modal.

103



5. Experiments

Figure 5.28: Neuron graph embeddings after each iteration denoted in Table 5.6. The
initial embeddings are generated using self-supervised training. For the subsequent
iterations we incrementally add more support samples to evaluate whether the embeddings
improve. Using the numeric values in Table 5.6 and the depicted visual embeddings, we
can not affirm this unequivocally.
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CHAPTER 6
Discussion

The discussion addresses problems we faced during the experiments and guides through
them in more detail than in the chapter 5 on experiments. We start with the limitations
of self-supervised learning, continue with model learning incapabilities due to node
collapsing or missing regularization, we then analyze the hyperparameter space, discuss
how clustering effected our experiments, and close the discussion with an evaluation of
the NetDive experiments.

6.1 Self-Supervised Learning

For this thesis, we originally started out with a purely self-supervised approach. We
tested GraphDINO with our data for the same learning rates that Weis et al. [WHLE21]
use during the hyperparameter grid search and with smaller batch sizes, i.e., 16 and 32.

The model with learning rate 0.0001 and batch size 16 has the overall best ARI perfor-
mance on k-means clustering with a score of 0.495, as noted in Table 5.4. On GMM the
best performing model has batch size 32 and learning rate 1e-05. Figure 6.1 depicts the
loss curves and the feature distributions of each fold training for 100 training epochs.

We retrain this model for 400 epochs as we see a downward trend in the loss curve and
want to see if the results improve. The loss curves and the feature distributions of this
longer retraining are depicted in Figure 6.2.

The loss curve continues to go downwards and seems to start flattening after 300 epochs.
The ARI result is 0.423 for k-means and 0.365 for GMM clustering. We see that the
model increases confidence in what it learns as the loss decreases and the feature value
distribution shows that the graph representations are mapped to the feature space without
node collapsing. But the results do not align with what we expect the model to learn, as
the clusters obtained with this method did not resemble our manually generated ground
truth.
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Figure 6.1: Loss curves and the feature distributions of each fold training for 100 training
epochs for the hyperparameters learning rate=0.0001, and batch size=16. The average
ARI on GMM is 0.453. The average ARI on k-means is 0.495.
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Figure 6.2: Loss curves and the feature distributions of each fold training for 400 training
epochs for the hyperparameters learning rate=0.0001, and batch size=16. The average
ARI on GMM is 0.365. The average ARI on k-means is 0.423.
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Therefore we want to guide the network during the training process and add as much
annotation data as required. We also want to be able to increase the complexity of the
classes that the network should be able to distinguish, as we want to train models not
only for one lineage, but for multiple lineages.

Figure 6.3: Graph embeddings generated with GraphPaws trained with the parameters
depicted in the accordion menu (1) for 100 epochs (2) and for 400 epochs (3).

We elaborated the visual analytics NetDive in combination with semi-supervised learning
to let the user drive the learning process. Figure 6.3(1) depicts the parameter settings
of the model M0, that we trained for 100 and for 400 epochs. Figure 6.3(2) shows the
graph embeddings of the model M0 trained for 100 epochs and Figure 6.3(3) shows the
graph embeddings of the model M0 trained for 400 epochs. The left views of the NetDive
interface color the embeddings according to the BAlc ground truth and the right views
color the embeddings according to embedding cluster predictions computed with GMM.
The color assignments for the clusters are random, therefore we have different cluster
colors on the left and the right views. We also have a different number of cluster colors,
as we only assigned three different cluster labels to the neuron graphs and some neuron
graphs have no cluster label. These unlabeled neurons are colored blue on the left views.
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On the right views we cluster the neurons in three groups. We expect that the labeled
neurons are clustered correctly. On the left views we see that the red colored neurons
form a denser cluster after training with more iterations, but neurons colored green
according to their ground truth mix up with the red and orange colored embeddings. We
can conclude that the network learns a more unambiguous representation for the shapes
of neuron graphs belonging to the red cluster.

6.2 Node Collapsing

Though we implemented regularization techniques to avoid node collapsing we experienced
node collapsing throughout the experiments. We study the model M2, named and color
coded in Table 5.1, with the hyperparameters λ = 0, γ = 1, batch size=16, and learning
rate=0.006 trained on mse with ARI 0.554 as an example. We train the model five times
with the same hyperparameters and random initialization and compare the ARI results.
The results are depicted in Table 5.3.

Figure 6.4 shows the loss curves and the feature value distribution of each fold of the first
retrained model based on the whole dataset BAlc L / R. The loss curves immediately
drop down to a fixed value, in this case approximately -1.1. The corresponding feature
value distributions represent the latent space of 32 dimensions. They show the mean
value and the standard deviation (std) for each latent feature for a set of input graphs.
In this experiment we computed the feature value distributions for the dataset BAlc L /
R. The distributions depicted for each fold model show, that each graph is mapped to
the same 32 dimension values, as there is no variance indicated by the std bars.

On the contrary, if models do learn features, patterns become visible. Figure 6.5 depicts
the loss curves and feature value distributions of the model M3, named and color coded in
Table 5.1, trained on mse with the hyperparameters learning rate=3e-05, batch size=32,
λ=1, γ=1. The loss curves have a downwards trend and the feature value distributions
demonstrate that the model is capable of learning distributed representations, even
though the datasets are small.

Figure 6.6 depicts the foldwise average ARI values for each of the five retrained models,
i.e., M1, M2, M3, M4, and M5. Each fold model is evaluated 100 times and the depicted
ARI values for each fold are the averaged values. The folds are represented by different
colors. Fold 1 is colored cyan, Fold 2 is colored violet, Fold 3 is colored magenta and
Fold 4 is colored gray for each model. The model numbers 1-5 are given on the horizintal
axis. Figure 6.6(a) is based on k-means clustering, Figure 6.6(b) is based on GMM
clustering.
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6. Discussion

Figure 6.4: Foldwise analyses of the M2 model trained with mse for the hyperparameters
learning rate=0.006, batch size=16, λ=0, γ=1. The first row depicts the loss curves and
the second row the feature value distributions.
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6.2. Node Collapsing

Figure 6.5: Analyses of the M3 model trained with mse for the hyperparameters learning
rate=3e-05, batch size=32, λ=1, γ=1 111



6. Discussion

(a) Based on k-means clustering (b) Based on GMM clustering

Figure 6.6: Fold analyses of the model M2 trained with mse for the hyperparameters
learning rate=0.006, batch size=16, λ=0, γ=1. Each color represents a fold, each column
represents a model, and the vertical axis indicates the average ARI score.

We see, that the averaged fold ARI values vary between <-0.2 and 1 and no pattern
is visible that one fold out-performs another fold. Due to node collapsing, all inputs
are mapped to almost the same output and the clustering then divides the output
representations based on insignificant changes and produces random results. We would
expect a higher performance consistency between the models if they were capable of
learning.

6.3 Regularization

While we see the downward trend on the model training analysis in Figure 6.5, we
miss this downward trend for the error curves demonstrated in Figure 6.7. The plots
correspond to the model M1, named and color coded in Table 5.1.

We observed a correspondence between the model learning capability and the regulariza-
tion parameters λ and γ. The parameter λ is responsible for increasing the influence of the
ME-MAX regularizer and gamma determines the influence of the One-Hot-Enforcement.
ME-MAX increases the averaged entropy across a batch, i.e., ensures, that each class is
represented in a batch. The One-Hot-Enforcement regularizer prevents node collapsing
by enforcing one-hot-encodings for each class label.

The following Figures 6.8-6.14 depict the loss curves and feature distributions of the
semi-supervised training described in Sub-section 5.4.3 for Fold 1. The figures show
that there is a correlation between loss curves that immediately fall to a fixed value and
feature distributions that collapse to single representations. We also see, that increasing
the values for λ and γ does improve the learning capability. For the learning rates 0.006,
0.003 and 0.001 we see node collapsing if the regularization terms are set to zero.

We also see for some learning rates, that the downwards trend of the loss curves is
dependent on the value of λ, i.e., the influence of the ME-MAX regularizer. This effect
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6.3. Regularization

Figure 6.7: Analyses of model M1 trained with cross-entropy for the hyperparameters
learning rate=0.0001, batch size=32, λ=0 and γ=0. 113



6. Discussion

Figure 6.8: Fold 1 models trained with cross entropy, batch size=32 and learning
rate=0.006.

Figure 6.9: Fold 1 models trained with cross entropy, batch size=32 and learning
rate=0.003.

is visible for learning rates 1e-05, 3e-05, 6e-05, and 0.0001. The third observation is,
that we see an increasing feature value distribution depending on both λ and γ. This
holds true for all learning rates depicted in the Figures 6.8-6.14. Model M1 is trained
with λ=0 and γ=0 and supports the hypothesis, that the missing regularization leads to
insufficient learning.
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6.3. Regularization

Figure 6.10: Fold 1 models trained with cross entropy, batch size=32 and learning
rate=0.001.

Figure 6.11: Fold 1 models trained with cross entropy, batch size=32 and learning
rate=0.0001.
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6. Discussion

Figure 6.12: Fold 1 models trained with cross entropy, batch size=32 and learning
rate=6e-05.

Figure 6.13: Fold 1 models trained with cross entropy, batch size=32 and learning
rate=3e-05.
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6.4. Hyperparameter Analysis

Figure 6.14: Fold 1 models trained with cross entropy, batch size=32 and learning
rate=1e-05.

6.4 Hyperparameter Analysis

We analyze the influence of hyperparameter values. We compute the mean and variance
for each hyperparameter value and show the results in Figure 6.15. The values are
computed based on validation data. To compute the mean and variance values we
always take into account all the models that are trained with a specific value for a
specific hyperparameter, e.g., the learning rate, with all variations for the remaining
hyperparameters.

We visually observe correlations between the distributions regarding the loss function
and regarding the clustering algorithm. The models trained on mse, respectively cross
entropy, have similar performance ordering for the values for each hyperparameter, i.e.,
λ = 0.5 is the best value on average for models trained on mse, λ = 1 is on second
place, λ = 0 is third, and λ = 0.1 performs worst on average. Models clustered with
GMM achieve better maximum results. The models evaluated according to Figure 6.15(b)
and 6.15(d) have almost the same average performance, which is 0.245 and only differs in
the following digits. We determine that 6.15(d) might produce more meaningful results,
as cross entropy and GMMs are both based on data distributions. We also observe,
that the choice of the learning rate has the biggest performance impact as the mean
values vary most depending on the learning rate, most clearly visible for example in
Figure 6.15(d).

In order to test, if the combination of best performing feature values leads to a strong
model, we retrain a model based on cross entropy with the best performing values
from Figure 6.15(d), i.e., with learning rate=3e-05, batch size=4, λ=0.1, γ=1. The
combination of these hyperparameters also suffers from the learning incapability as the
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6. Discussion

(a) mse + k-means (b) mse + GMM

(c) cross entropy + k-means (d) cross entropy + GMM

(e) k-means (f) GMM

Figure 6.15: Mean and variances analyses. Each bar visualizes the ARI distribution
across the subset of the 896 models that contains the corresponding hyperparameter
value, e.g., learning rate 0.0001 or batch size 4, etc.
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6.5. Clustering

loss curve does not go down during training. The average ARI scores of the reruns have
a high variance and mediocre performance as shown in Table 5.3 for model M4.

6.5 Clustering

As discussed in chapter 5 and visible when comparing Figure 6.15(a)(c)(e) with 6.15(b)(d)(f),
GMM clustering leads to better ARI scores than k-means clustering. These Figures
each visualize the scores for models trained on cross entropy and on mse. We do not see
significant differences in the ARI distributions of scores computed with GMM for models
trained on cross entropy compared to models trained on mse. The same applies to ARI
distribution scores computed with k-means. We therefore assume, that the clusters that
are generated during the cross entropy training are not elongated, i.e., the clusters are
circular in the embedding space, as k-means would not work otherwise, as depicted in
Figure 2.2. Another explanation would be that the results are too random due to the
small dataset size of ground truth labels.

The ARI scores computed with GMM and k-means vary depending on the initial random
seed. For each model and fold 100 Gaussian mixture models are computed. Due to the
stochastic calculation by averaging the results over 100 Gaussian mixture models, the
results become stable. We depict this in Figure 5.21, which shows the ARI scores of 896
different models. Computing the ARI scores another time, again by averaging 100 GMMs,
returns very similar results, as visible if comparing Figure 5.21(a) with Figure 5.21(b)
and if comparing Figure 5.21(c) with Figure 5.21(d). We initialize the scikit-learn GMM
clustering randomly and the scikit-learn k-means clustering with k-means++. If we use
the parameter random instead of k-means++ for the k-means initialization, the results
are less stable.

6.6 NetDive Iterations

The results of the NetDive iterations to train lineage CM4 are depicted in Table 5.6. While
the performance of the last iteration suggests a potential positive trend in performance,
it is not possible to conclusively determine whether this represents a true trend or is the
result of random variation. Figure 6.16 shows the loss curves and feature distributions of
each iteration model. We see that all models have a variance in the feature distribution
and the loss curves have downward trends.

Using NetDive to annotate support samples and to start the training seems intuitive.
The tool yet needs to be tested by domain experts. In our case we had the ground
truth for lineage CM4 available in NetDive and were able to leverage this using the
feature to select clusters after applying the ground truth labels in NetDive. We then
annotated single samples of the selected clusters for the retraining. We did this to be
able to cross-check and evaluate against the manually assigned ground truth. Without
having a corresponding ground truth, the user would apply the predicted colors to the
data points and analyze the predicted clusters in order to assign labels.
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6. Discussion

(a) Self-Supervised (b) Iteration 1 (c) Iteration 2 (d) Iteration 3

Figure 6.16: Loss curves and feature distributions of the models trained on CM4 with
increasing number of support samples, discussed in Sub-section 5.4.6.
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CHAPTER 7
Conclusion and Future Work

This thesis addresses the problem of clustering graph data without initially having a
ground truth for training whilst giving the user the possibility to guide the training
process with low effort.

We developed this concept as the completely self-supervised training as implemented with
GraphDINO [WHLE21] did not work well for the drosophila melanogaster larval graph
representations. Originally we tried to steer the training by adjusting the augmentations
of the contrastive learning, but we did not get the expected results and therefore looked
into semi-supervised learning and visual analytics.

The reason that we did not receive satisfying results with GraphDINO probably lies in the
heterogeneity of the drosophila melanogaster graph data in CATMAID. The shapes within
and in-between lineages vary a lot and it is difficult to determine how the visual similarity
that we use to define the ground truth reflects in the graph structure and topology.
Besides that, Weis et al. [WHLE21] encoded compartment information for the BBP
dataset, i.e., soma, axon, basal dendrite, apical dendrite, which is not widely available
for the CATMAID drosophila melanogaster neurons. Another problem we faced was the
limited amount of data we used for training. We could not use all available drosophila
melanogaster neuron graphs as we can not evaluate the results without a ground truth.
We hand selected visually distinguishable neuron graph shapes and annotated those
ourselves.

We did achieve better results with GraphPAWS than with GraphDINO as depicted
in Table 5.4. We trained 896 models for GraphPAWS, the ARI scores varied between
approximately -0.2 and 0.627, with some of the models having no decrease in the loss
curves and some of the models suffering from node collapsing. Our conclusion is, that
GraphDINO needs to be tested on bigger datasets to receive more stable results, but we
see that we can steer the training using GraphPAWS and have more control than with
GraphDINO as we can add support samples.
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7. Conclusion and Future Work

As GraphDINO did not perform well, NetDive is a useful tool to incrementally improve
the training by adding labeled data, as shown and discussed in sections 5.4.6 and 6.6. In
order to execute user studies with domain experts we need to first improve GraphPAWS,
so that we can reliably state that the results improve over the course of adding more
support samples. The required time to annotate embeddings using NetDive depends on
the quality of the clusters and the number of data points. The user can select the clusters
they want to analyze and use the detail view to get an overview of the cluster content.
Based on the findings the user can annotate prototypical and falsely clustered neuron
graphs. NetDive is data agnostic and could be coupled with dimensionality reduced
representation vectors of any input data type besides graphs.

We identified components that are interesting to elaborate in future work, regarding the
NetDive UI, the deep learning model, and the evaluation. NetDive UI can be improved
by adding simulations that visualize the cluster changes over time during training with
color updates. It is also possible to add more characteristics of the neurons in the
detail view, depicted in Figure 3.8(3). In future work we want to provide interaction
techniques like brushing and linking for a feature space visualization of neurons to
understand correlations between clusters and the cluster contents. We could extend the
spatial representations and use the properties size and opacity of each data point to
encode additional information besides the cluster label, e.g., the certainty of the cluster
assignment in the opacity and the variance over a sequence of models in the size of the
data point.

For the GraphPAWS training we could experiment with finetuning the model after adding
new support samples, instead of training new randomly initialized models, and therefore
reduce training times. We also discussed improving the preprocessing of the neuron
graph data with alternative subsampling strategies. In the subsampling that we currently
adopted from Weis et. al [WHLE21], nodes are randomly removed that have of maximum
of two neighbors and are therefore no branching points. This still adds biases to the
neuron graphs, as the nodes are not evenly distributed as a result. As future work it
could be an option to (1) solely keep the branching and leaf points to work with a higher
level abstraction of the neurons or to (2) perform equidistant subsampling.

It would be interesting to perform user studies with experts in the field of neuroscience
to see how users outside the domain of deep learning can use visual analytics to refine
pre-trained models and which features they are missing in the current NetDive setup. Our
final conclusion is that NetDive, with our semi-supervised GraphPAWS in the backend,
is a promising direction for clustering graph data, which should be explored further.
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