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Fig. 1. Our statistical denoising method, using online estimates of sample statistics, achieves image quality comparable to current state-of-the-art methods,

without any computation-heavy prior training. We compare our denoiser to the approach by Moon et al. [2014] (“Moon CI”), NVIDIA OptiX AI-Accelerated

Denoiser (“OptiX”), Intel Open Image Denoise (OIDN), and progressive denoising [Firmino et al. 2022] (“ProDen”). These results have been generated using

256 samples per pixel (SPP) with the following denoising times; Moon CI: 35.3ms, OptiX: 85.5ms, OIDN: 19.5ms, ProDen: 1834.9ms, ours: 28.0ms.

The stochastic nature of modern Monte Carlo (MC) rendering methods
inevitably produces noise in rendered images for a practical number of
samples per pixel. The problem of denoising these images has been widely
studied, with most recent methods relying on data-driven, pretrained neural
networks. In contrast, in this paper we propose a statistical approach to the
denoising problem, treating each pixel as a random variable and reasoning
about its distribution. Considering a pixel of the noisy rendered image, we
formulate fast pair-wise statistical tests—based on online estimators—to
decide which of the nearby pixels to exclude from the denoising filter. We
show that for symmetric pixel weights and normally distributed samples,
the classical Welch t-test is optimal in terms of mean squared error. We then
show how to extend this result to handle non-normal distributions, using
more recent confidence-interval formulations in combination with the Box-
Cox transformation. Our results show that our statistical denoising approach
matches the performance of state-of-the-art neural image denoising without
having to resort to any computation-intensive pretraining. Furthermore, our
approach easily generalizes to other quantities besides pixel intensity, which
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we demonstrate by showing additional applications to Russian roulette path
termination and multiple importance sampling.
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1 Introduction

Monte Carlo (MC) integration is ubiquitous in modern photorealistic
rendering. The basic idea is to estimate an integral (pixel intensity)
by a (weighted) average of random samples. However, compared
to deterministic quadrature rules, MC integration is stochastic in
nature and must therefore contend with uncertainty. This stochas-
tic uncertainty manifests as variance—i.e., noise—affecting every
sample taken during rendering.

The field of MC denoising originated from the idea of applying
traditional image filters from the image-processing community to
reduce noise in rendering. These filters essentially average multiple
estimates (i.e., pixels) in image space, thereby decreasing variance.
This approach can be highly effective in situations where the es-
timates are the same (or similar) in the limit, i.e., in regions of an
image that show smooth color gradients. However, in cases of sig-
nificant difference, such as along feature edges, filtering potentially
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introduces unwanted bias, often apparent as excessive blurring or
color bleeding.

Denoising therefore must achieve a good bias–variance trade-
off. In contrast to traditional image filtering, recent denoising ap-
proaches rely on neural networks to learn a mapping from a noisy in-
put image, along with auxiliary information (in the form of so-called
G-buffers containing low-noise ground-truth scene information), to
a low-error approximation of the desired image.

Departing from these pretrained machine learning approaches, in
this paper, we propose a general statistical framework for denoising
in MC rendering. Specifically, we establish a theoretical connection
between minimizing mean squared error (MSE) for pair-wise sym-
metric weights and Welch’s t-test for normally distributed samples.
Using more recent results from the statistics literature, we then gen-
eralize this approach to reduce the assumptions on the distributions.
As a practical implementation of this framework, we demonstrate an
image-space denoising scheme, building upon the well-known joint
bilateral filter. Our approach tracks online statistics of the per-pixel
samples generated by a state-of-the-art MC renderer. These statistics
describe the distribution of samples and allow us to draw statistically
valid conclusions about which estimates among neighboring pixels
should be combined in order to achieve a near-optimal trade-off
between noise and bias. Our statistics-based filter effectively avoids
blurring over legitimate features, including lighting effects (such
as shadows or caustics) that are not present in the G-buffers (and
would therefore be over-blurred by existing denoisers). All these
statistics can be estimated online during rendering. Our filter runs
on the GPU, taking around 30 ms for 1280 × 720 resolution images
on commodity hardware.

Apart from image denoising, we demonstrate that our approach
can generalize to other applications, such as Russian roulette (RR)
path termination and multiple importance sampling (MIS). Our
general approach has an important advantage relating to these gen-
eralizations: We do not rely on preexisting training data, therefore
we can produce low-error estimates of any quantity of interest, not
only the radiance produced by the renderer. For instance, we denoise
the per-bounce incident radiance in our RR example or estimates for
which sampling strategy outperforms the others (formalized as win
rates) during MIS. For both quantities, obtaining sufficient training
data for neural denoising approaches would be quite challenging.

In summary, we present the following main contributions:

• a general statistical framework that puts MC rendering into
a statistical context, alongside a theoretical analysis on mini-
mizing mean squared error in the setting of pair-wise testing,
• an image-space implementation of this framework that pro-

duces low-error estimates for any quantity of interest in the
context of MC rendering,
• and applications of this denoising approach to standard image

denoising, RR path termination, and MIS.

We provide additional materials (e.g., source code) for our paper
at https://www.cg.tuwien.ac.at/StatMC.

2 Related Work

The stochastic nature of Monte Carlo (MC) rendering introduces
error in the form of variance. To reduce this error, one can either com-
pute more samples or use some form of noise reduction, e.g., adap-
tive sampling or filtering [Huo and Yoon 2021; Zwicker et al. 2015].
A common approach is a posteriori noise reduction or denoising,
which operates on the samples generated by MC rendering. Many
methods work with (image-space) pixel estimates and range from
classical denoising approaches [Overbeck et al. 2009; Xu and Pat-
tanaik 2005] to more recent neural-network-based methods [Back
et al. 2022; Firmino et al. 2022].

Classical approaches usually adapt and apply some form of filter
while trying to find a balance between noise reduction and intro-
duced bias (usually apparent in the form of excessive blurring).
Many use image-filtering kernels, e.g., Gaussian [Rousselle et al.
2011], (joint) bilateral [Li et al. 2012; Liu et al. 2018b; Mara et al. 2017;
Park et al. 2013; Rousselle et al. 2013; Sen and Darabi 2012; Xu and
Pattanaik 2005; Zheng and Liu 2018], non-local means [Delbracio
et al. 2014; Moon et al. 2013; Rousselle et al. 2012; Vicini et al. 2019],
wavelet [Dammertz et al. 2010; Kalantari and Sen 2013; Overbeck
et al. 2009; Schied et al. 2017, 2018], or non-local Bayes [Boughida
and Boubekeur 2017] filters. Other methods build on diffusion [Mc-
Cool 1999] or higher-order regression [Bauszat et al. 2011; Bitterli
et al. 2016; Liu et al. 2018a; Moon et al. 2014, 2015, 2016; Yuan and
Zheng 2017, 2018]. In addition to the noisy input image, many of
the mentioned approaches incorporate additional auxiliary features
like albedos and normals, as well as additional statistics like the
corresponding variances. Among these, joint bilateral filtering with
auxiliary features is most closely related to our denoising approach.

In a similar direction to our statistics-based approach, Sen and
Darabi [2012] presented a method called random parameter filtering
(RPF), which uses histograms of sample vectors to calculate the mu-
tual information between scene features and the random parameters
of the MC process in order to adjust the weights of a joint bilateral
filter and reduce the noise stemming from these random parameters.
Even though their approach achieves good results at low sample
counts, its computation becomes prohibitively expensive with an
increasing number of samples. This downside was addressed by
Park et al. [2013] by interpolating sparsely computed mutual infor-
mation, which reduces but not fully eliminates the scaling issues
for high sample counts and requires several seconds or multiple
minutes to denoise a low-SPP image. In contrast, our approach is
completely independent of the number of samples and requires only
a few milliseconds to compute. A similar idea is to represent sample
distributions as histograms [Boughida and Boubekeur 2017; Delbra-
cio et al. 2014]. However, histograms require additional memory
and their accuracy depends on the number and sizing of bins, which
must be chosen a priori. In contrast, we only use a few statistical
moments to compactly store information about sample distributions,
which can also be efficiently updated with each new sample.

Li et al. [2012] surpass the denoising quality of RPF by using
Stein’s unbiased risk estimator (SURE) to select which one out of
a discrete set of joint bilateral filters (of different spatial scales)
minimizes the error. Similarly, Rousselle et al. [2013] use SURE to
select among filters that differ in robustness to noise and sensitivity
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to image details. Following this general idea of “meta”-approaches,
Zheng et al. [2021] combine multiple denoisers, whereas Firmino et
al. [2022] apply denoising only when beneficial for convergence. In
contrast, our approach does not have the overhead of computing
multiple filters, or corresponding derivatives for error estimation,
before the final reconstruction. We instead derive filter kernels
directly from the pixel statistics and use statistical testing to ensure
that only estimates with similar distributions are combined, leading
to a fast one-pass approach, which could also improve the results of
meta-denoisers by acting as an additional base input.

Mara et al. [2017] presented a real-time approach using a pipeline
consisting of several joint bilateral filter stages, and showed results
comparable to non-local means (NLM) [Rousselle et al. 2012] and
regression-based approaches [Bitterli et al. 2016; Moon et al. 2014].
Their method is specifically tailored for real time and builds on a
custom renderer with special handling of direct and indirect illumi-
nation. Our approach uses a more straightforward pipeline, which
can be easily integrated into any conventional MC renderer with
little overhead while offering similar performance during filtering.

Similar to ours, some methods use confidence intervals [Moon
et al. 2013, 2016; Sen and Darabi 2012] to exclude pixels from com-
bination during filtering if their corresponding statistics differ sig-
nificantly. These approaches use confidence intervals in specific
subparts of their fairly complex pipelines, which are tailored specif-
ically to MC image denoising. Similar statistical concepts were used
by Back et al. [2023], who first applied the concept of uncorrelated
statistics to denoising MC renderings. In contrast, we use statisti-
cal tests at the core of our efficient denoising pipeline, including
higher-order central moments to relax the requirement of normally
distributed samples implied by commonly used confidence intervals.
Neural-network-based approaches represent the current state of

the art in MC denoising, e.g., NVIDIA OptiX AI-Accelerated De-
noiser (OAADN), which is based on Chaitanya et al.’s work [2017],
or Intel Open Image Denoise (OIDN) [Áfra 2024]. Both approaches
take a noisy image and so-called G-buffers (such as normals or albe-
dos) as inputs. The neural networks then map those inputs to a
low-error approximation of the ground truth. For this purpose, the
networks have to be trained on numerous input–reference image
pairs, so that an effective mapping can be established. Reconstruct-
ing image features that suffer from high variance and are not present
in the G-buffers, such as lighting effects, is a difficult problem. In
these cases, the networks must rely solely on the noisy image to
differentiate between legitimate features and noise. Furthermore,
the performance of such approaches hinges on the training and
available data. Generally, there are no guarantees concerning their
convergence behavior. For instance, OIDN [Áfra 2024] includes
images at different degrees of convergence into the training to in-
corporate a notion of convergence. This stands in contrast to several
non-neural methods that provide consistency [Back et al. 2023; Bit-
terli et al. 2016; Moon et al. 2013; Rousselle et al. 2013]. To alleviate
this fundamental problem, Firmino et al. [2022] train an additional
neural network that predicts per-pixel mixing factors to reduce the
weight of the biased reconstruction in favor of the converging input.
They use confidence intervals to ensure convergence by limiting the
neural mixing weights such that the biased contribution vanishes
as the variance decreases with increased sample counts.

Our approach, in contrast, does not require any training, as it
directly uses the statistics gathered during rendering to infer re-
lationships between pixels for filtering. Furthermore, we provide
a theoretical guarantee concerning the consistency of our filter.
We also show in our results that we can denoise quantities other
than the radiance reaching the camera. In this paper, we always
keep all filtering parameters constant as the number of samples per
pixel (SPP) increases to demonstrate the convergence behavior of
our method. In the future, automatic parameter tuning as done in
neural denoising or integration of our method into meta-denoising
strategies could further improve denoising performance.

3 Background and Notation

In this section, we summarize the statistical concepts and methods
on which we build our general statistical framework in §4 and
establish the connection to the common denoising problem in Monte
Carlo rendering. As a starting point, we consider the well-known
rendering integral [Kajiya 1986], where each pixel 𝐼𝑖 in an image is
formed as

𝐼𝑖 =

∫
Ω𝑖

𝑊𝑖 (𝜔)𝐿′ (x, 𝜔) 𝑑𝜔, (1)

where𝑊𝑖 describes the sensor response and 𝐿′ is the radiance in-
cident on the 𝑖-th pixel, which covers the solid angle Ω𝑖 from the
camera location x. This radiance must satisfy Kajiya’s rendering
equation throughout a virtual scene. Each pixel intensity is com-
monly approximated by Monte Carlo (MC) integration:

𝐼𝑖 ≈
1
𝑛𝑖

∑︁𝑛𝑖

𝑘=1
𝑓𝑘
𝑝𝑘

, (2)

where 𝑓𝑘 refers to evaluations of the integrand in Eq. (1) for 𝑛𝑖
randomly drawn samples from Ω𝑖 with probability density 𝑝𝑘 .

We now move on to a more abstract statistical interpretation of the
rendering process outlined above. In particular, we interpret each
pixel as a statistical estimator 𝜃𝑖 (𝑋1, . . . , 𝑋𝑛𝑖 ) for the (unknown)
ground-truth value 𝜃𝑖 (in this case 𝐼𝑖 , although the same idea applies
to other estimators), where we view each sample 𝑋𝑘 as a random
variable (i.e., a distribution from which the rendered sample 𝑓𝑘/𝑝𝑘
is drawn). We generally assume unbiased estimators, i.e., E[𝜃𝑖 ] = 𝜃𝑖 .

Using results from descriptive statistics, our core idea is to for-
mulate statistical tests to decide which estimators are sufficiently
similar so that they can be combined during denoising. In gen-
eral, we employ the following descriptive statistics of the sam-
ple distribution: mean (𝜇), and the central moments of orders 2–4
(𝑀𝑙 , 𝑙 ∈ 2, 3, 4), or their standardized variants, variance (𝜎2 = 𝑀2),
skewness (𝑀3/𝑀3/2

2 ), and kurtosis (𝑀4/𝑀2
2 ) [Kenney and Keeping

1951]. The central moments are defined as

𝑀𝑙 =
1
𝑛𝑖

∑︁
𝑘
(𝑋𝑘 − 𝑋 )

𝑙 , (3)

where 𝑋 is the sample mean. Crucially, all these statistics can be
computed online [Meng 2015], building on the classical result by
Welford [1962], i.e., by updating them one sample at a time during
rendering without having to store all samples in memory. In our
implementation, we use central moments up to the third order.
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3.1 Denoising Estimators

In this work, we consider general denoising filters that construct
the denoised estimator 𝜃 𝑗 as a convex combination of (noisy) input
estimators {𝜃𝑖 }:

𝜃 𝑗 =
∑︁

𝑖
𝑤𝑖 𝑗𝜃𝑖 , (4)

where𝑤𝑖 𝑗 is the weight assigned to estimator 𝜃𝑖 ; all weights must be
non-negative, and

∑
𝑖 𝑤𝑖 𝑗 = 1. The key question now is: how to find

appropriate (sparse) weights 𝑤𝑖 𝑗 ? In our approach, we split these
weights into two parts, Eq. (10): a base filter, such as the well-known
joint bilateral filter, and a novel pair-wise statistical membership
function𝑚𝑖 𝑗 , which decides which combinations of estimators are
admissible.

Formally, the mean squared error (MSE) of the combined estima-
tor 𝜃 𝑗 can be decomposed into variance and bias

MSE(𝜃 𝑗 , 𝜃 𝑗 ) = E[(𝜃 𝑗 − 𝜃 𝑗 )2] = Var(𝜃 𝑗 ) + Bias(𝜃 𝑗 , 𝜃 𝑗 )2, (5)

where𝜃 𝑗 refers to the estimand, i.e., the unknown ground-truth value
for the 𝑗-th estimator. Note that even though we assume unbiased
estimators 𝜃 𝑗 , their filtered counterparts 𝜃 𝑗 generally contain some
bias. The variance and bias are given by

Var(𝜃 𝑗 ) =
∑︁

𝑖
𝑤2
𝑖 𝑗 Var(𝜃𝑖 (𝑛𝑖 )), and (6)

Bias(𝜃 𝑗 , 𝜃 𝑗 ) =
∑︁

𝑖
𝑤𝑖 𝑗 Bias(𝜃𝑖 (𝑛𝑖 ), 𝜃 𝑗 ), (7)

where Bias(𝜃𝑖 , 𝜃 𝑗 ) = E[𝜃𝑖 ] − 𝜃 𝑗 .
The overall goal of MC denoising in this context is to find weights

that minimize the total MSE, or a similar error metric, i.e., achieve
an optimal trade-off between variance (noise) and bias, across all
denoised estimators (i.e., the whole image):

{𝑤∗𝑖 𝑗 } = arg min
{𝑤𝑖 𝑗 }

∑︁
𝑗

MSE(𝜃 𝑗 , 𝜃 𝑗 ) . (8)

However, this optimization problem cannot be addressed directly,
as the ground-truth values are of course unknown, and we must
therefore work with noisy estimates of variance and bias.

4 Statistical Filtering Framework

In this section, we develop our statistical filtering framework. Con-
sidering an abstract set of estimators {𝜃𝑖 }, we ask under which
conditions combining a subset of these estimators improves mean
squared error. Here, we approach the inherent noise-to-bias trade-
off from a statistical perspective, formulating a membership function
(𝑚), fulfilling the requirements summarized in §4.1. We show how
this approach relates to hypothesis testing in statistics, before de-
scribing the specifics of our image-space implementation in §5.

4.1 Problem Statement

Considering the general denoising problem introduced in §3, we
formulate membership functions that decide which combinations
of estimators are admissible during denoising, i.e., under which
conditions the combination is likely to improve image quality. In
particular, we require the following important properties:

(a) Pair-wise evaluation: for any pair of estimators (𝜃𝑖 , 𝜃 𝑗 ), 𝑚
must be defined as a function of these estimators’ statistics only,

i.e.,𝑚𝑖 𝑗 =𝑚(S(𝜃𝑖 ),S(𝜃 𝑗 )), whereS(𝜃𝑖 ) denotes descriptive sample
statistics, such as 𝜇𝑖 , 𝜎2

𝑖 , 𝑀3,𝑖 , 𝑀4,𝑖 , . . ., of estimator 𝜃𝑖 .
(b) Online statistics: all these statistics S must be computable

by an online algorithm, i.e., by updating their value one sample
at a time during Monte Carlo (MC) rendering. Together with the
pair-wise property, this requirement ensures that all components
of our filtering pipeline can be implemented efficiently in terms of
both parallel execution and memory usage.

(c) Symmetry: we require that𝑚𝑖 𝑗 =𝑚 𝑗𝑖 . In practice, symmetry
of weights enforces energy preservation during filtering. Relaxing
this requirement sometimes produces visually more pleasing results
around bright outliers (“fireflies”) at the cost of losing some overall
brightness and possibly slightly higher mean squared error (MSE).

(d) Convergence: In order to guarantee convergence of the de-
noised result 𝜃𝑖 → 𝜃𝑖 ∀𝑖 with increasing sample size, we require
that the membership function satisfies

Var(𝜃𝑖 ) → 0 =⇒ 𝑚𝑖 𝑗 = 0 if ∥𝜃𝑖 − 𝜃 𝑗 ∥ > 0. (9)

In other words, as the variance approaches zero, the membership
function must exclude estimator 𝑗 from the combination with esti-
mator 𝑖 if there is any difference in their estimands, which would
introduce bias.

(e) Identity: An estimator does not introduce additional bias to
itself; we therefore set𝑚𝑖𝑖 = 1 by definition.

Finally, we can state our main problem as finding membership
functions 𝑚𝑖 𝑗 that satisfy properties (a–e) and deliver the best pos-
sible variance–bias trade-off within these constraints.

4.2 Our Approach

Here, we describe our general framework for formulating statistics-
based membership functions respecting the aforementioned require-
ments. We then use these functions to address the denoising problem,
Eq. (8), by defining the filter weights in Eq. (4), as follows:

𝑤𝑖 𝑗 =
𝜌𝑖 𝑗 𝑚𝑖 𝑗∑
𝑖 𝜌𝑖 𝑗 𝑚𝑖 𝑗

. (10)

The first component of the weights, 𝜌𝑖 𝑗 , provides the option to
integrate existing filters based on a priori available information into
our system. The main reasons for doing so are: (1) to limit the size
of the filter kernel, thereby improving the runtime performance by
limiting the amount of required membership-function evaluations;
(2) to be able to build upon well-known existing approaches; and (3)
to include additional low-noise a priori information available from
the renderer (G-buffers, e.g., normals or albedos in image space).
Note that while a priori information is often useful to preserve some
features due to geometry or textures, it is inherently useless for
other features that only manifest themselves through sampling (e.g.,
shadows or caustics). In this regard, our membership function and
this a priori weight complement each other, incorporating both
empirical and a priori information. In our implementation (§5), we
set 𝜌𝑖 𝑗 to represent a joint bilateral filter.

Existing filters are highly effective at reducing variance. The key
task of the membership function 𝑚𝑖 𝑗 is therefore to limit bias by
excluding estimators from the filter whose estimands differ signifi-
cantly. Following the requirements stated in §4.1, we now consider
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the MSE minimization problem, Eq. (8), for a pair of input estimators
𝜃𝑖 , 𝜃 𝑗 . These estimators are combined with weight 𝑤 into denoised
estimators 𝜃𝑖 = 𝑤𝜃𝑖 + (1−𝑤)𝜃 𝑗 and 𝜃 𝑗 = 𝑤𝜃 𝑗 + (1−𝑤)𝜃𝑖 . Note that
we enforce symmetry of the weighting here, 𝑤𝑖 𝑗 = 𝑤 𝑗𝑖 = (1 −𝑤).
Assuming unbiased input estimators, the bias of their combination is
Bias(𝜃𝑖 , 𝜃𝑖 ) = E[𝜃𝑖 − 𝜃𝑖 ] = (𝑤 − 1)𝜃𝑖 + (1 −𝑤)𝜃 𝑗 , and analogously
for Bias(𝜃 𝑗 , 𝜃 𝑗 ). Minimizing the sum of the error terms, Eq. (5), for
both denoised estimators then reads:

𝑤∗ = arg min𝑤 ( 𝑤2Var(𝜃𝑖 ) + (1 −𝑤)2Var(𝜃 𝑗 ) +
( (𝑤 − 1)𝜃𝑖 + (1 −𝑤)𝜃 𝑗 )2 +

𝑤2Var(𝜃 𝑗 ) + (1 −𝑤)2Var(𝜃𝑖 ) +
( (𝑤 − 1)𝜃 𝑗 + (1 −𝑤)𝜃𝑖 )2 ) .

(11)

For this objective, we can find the optimum by setting the derivative
with respect to the weight to zero and solving for 𝑤∗ (assuming at
least some uncertainty, i.e., Var(𝜃𝑖 ) + Var(𝜃 𝑗 ) > 0):

𝑤∗ =
2(𝜃𝑖 − 𝜃 𝑗 )2 + Var(𝜃𝑖 ) + Var(𝜃 𝑗 )

2
(
(𝜃𝑖 − 𝜃 𝑗 )2 + Var(𝜃𝑖 ) + Var(𝜃 𝑗 )

) . (12)

Note, however, that we do not know ground-truth values, or esti-
mator variances, and therefore work with (noisy) estimates of these
quantities instead, producing noisy results for 𝑤∗. Consequently,
the trivial choice of setting 𝑚𝑖 𝑗 = 1 −𝑤∗ and 𝜌𝑖 𝑗 = 1 does not yield
satisfactory results. Our approach is therefore to use an existing
smoothing filter for 𝜌𝑖 𝑗 and enforce a binary membership function
such that

𝑚𝑖 𝑗 = 1 if (1 −𝑤∗) > 𝛾, 0 otherwise. (13)
Here, 𝛾 is a threshold that determines how discriminative the mem-
bership function is. In this way, we effectively use the pair-wise
optimal weight as a test statistic (similar to those used in statistical
hypothesis testing) and prevent the estimators from being filtered
together if the introduced bias (i.e., the difference of their means) is
too large relative to the sum of their variances. In our supplementary
document, we show that this test is equivalent to Welch’s t-test,
𝑡 < 𝛾𝑤 with 𝛾𝑤 =

√︁
1/(2𝛾) − 1. Our results use a critical value from

Student’s t-distribution of 𝛾𝑤 = 𝑡1−𝛼/2,𝜈 , with the significance level
𝛼 = 0.005 and 𝜈 = 𝑛𝑖 +𝑛 𝑗 −2, i.e., the upper bound for the degrees of
freedom approximated by the Welch–Satterthwaite equation [1946].

Welch’s t-test is related to the confidence interval for the differ-
ence of two normally distributed means, see, for example, Eq. (18) in
the paper by Curto [2023]. Consequently, we can relax the normality
assumption by choosing a different confidence-interval formulation
from the literature. Various formulations are available that consider
not only the sample variance but also higher-order statistics, such
as skewness, of the sample distribution. In our results, we find that
the correction of the means proposed by Curto [2023], Eq. (20) there,
yields good denoising behavior when combined with a Box-Cox
transformation of the samples as detailed in §5.

As an orthogonal extension, we note that allowing asymmetric
membership functions can produce visually more appealing results;
while fewer constraints can also lead to improved MSE, the potential
energy loss due to asymmetric weights may cause overall darker
images and therefore slightly worse quantitative errors (Fig. 6g).

Algorithm 1 Online statistics
Independently per pixel 𝑖 ...
Initialize {𝑛𝑖 , 𝜇𝑖 , �̂�2,𝑖 , �̂�3,𝑖 } = 0
for each MC sample 𝑥𝑘 do
𝑛𝑖 ← 𝑛𝑖 + 1
Box-Cox transform 𝑥𝑘 → 𝑥 ′

𝑘
, Eq. (15)

Update pixel statistics with 𝛿 = 𝑥 ′
𝑘
− 𝜇𝑖 , [Meng 2015]:

𝜇𝑖 ← 𝜇𝑖 + 𝛿/𝑛𝑖 (Welford)
�̂�2,𝑖 ← �̂�2,𝑖 + 𝛿 (𝛿 − 𝛿/𝑛𝑖 )
�̂�3,𝑖 ← �̂�3,𝑖 − 3(𝛿/𝑛𝑖 )�̂�2,𝑖 + 𝛿 (𝛿2 − (𝛿/𝑛𝑖 )2)

Central moments: 𝑀𝑙,𝑖 = �̂�𝑙,𝑖/𝑛𝑖
Variance: 𝜎2

𝑖 = �̂�2,𝑖/(𝑛𝑖 − 1) (Bessel-corrected)

Algorithm 2 Image-space filter weights 𝑤𝑖 𝑗

Input (per pixel): statistics {𝑛, 𝜇, 𝜎2, 𝑀2, 𝑀3} and G-buffers p
Input (global): critical value 𝛾𝑤
for each center pixel 𝑖 in parallel do

for each candidate pixel 𝑗 within base-filter radius do
Evaluate base filter (p𝑖 , p𝑗 ) → 𝜌𝑖 𝑗 , Eq. (16)
Var(𝜃𝑖 ) = 𝜎2

𝑖 /𝑛𝑖 ,Var(𝜃 𝑗 ) = 𝜎2
𝑗 /𝑛 𝑗

Correct means to account for skewness, [Curto 2023]:
𝜃𝑖 ≈ 𝜇𝑖 +𝑀3,𝑖/(6𝜎2

𝑖 𝑛𝑖 ), 𝜃 𝑗 ≈ 𝜇 𝑗 +𝑀3, 𝑗/(6𝜎2
𝑗𝑛 𝑗 )

Compute 𝑤∗ (𝜃𝑖 , 𝜃 𝑗 ,Var(𝜃𝑖 ),Var(𝜃 𝑗 )), Eq. (12) or (14)
Compute t-statistic: 𝑡 = ((2(1 −𝑤∗𝑖 𝑗 ))

−1 − 1)1/2
𝑚𝑖 𝑗 = (𝑡 < 𝛾𝑤) ? 1 : 0
𝑤𝑖 𝑗 = 𝜌𝑖 𝑗𝑚𝑖 𝑗

Normalize weights ∀𝑗 : 𝑤𝑖 𝑗 ← 𝑤𝑖 𝑗/
∑
𝑖 𝑤𝑖 𝑗

Relaxing the symmetry assumption can be easily done by removing
the second error term (last two lines) from Eq. (11). In this case, the
optimal weight simplifies to

𝑤∗asym =
(𝜃𝑖 − 𝜃 𝑗 )2 + Var(𝜃 𝑗 )

(𝜃𝑖 − 𝜃 𝑗 )2 + Var(𝜃𝑖 ) + Var(𝜃 𝑗 )
. (14)

As before, we then replace the unknown ground-truth values with
estimates based on the observed sample statistics, using either nor-
mality assumption or Curto’s correction, to evaluate the membership
function according to Eq. (13).

5 Application to Image-Space Denoising

This section describes how to apply our general statistical frame-
work to image-space denoising. In image space, the indices 𝑖 and 𝑗
each denote an individual pixel (not image-space coordinates). In
particular, our implementation contains three major components.
First, we track online statistics of the samples from the MC renderer,
Alg. 1; this part is implemented as part of the renderer itself (we use
pbrt-v3 [Pharr et al. 2016] for our results). Second, we select a joint
bilateral filter to define the a priori weight 𝜌𝑖 𝑗 in Eq. (10). Finally, we
implement our statistical denoising pipeline, which takes the noisy
image, sample statistics, and a priori weights as input to compute
the filter weights, Alg. 2, and produce the final output image (we
implement this part on the GPU using CUDA).
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Fig. 2. Bathroom scene rendered with 8192 SPP. Denoising time for Moon CI: 39.7ms, OptiX: 91.2ms, OIDN: 20.2ms, ProDen: 2027.5ms, ours: 29.3ms.

Fig. 3. Salle de Bain scene rendered with 32 SPP. Denoising time for Moon CI: 36.4ms, OptiX: 141.6ms, OIDN: 22.1ms, ProDen: 1979.9ms, ours: 28.5ms. In

the supplementary document, we provide results for this scene at a higher sample count of 512 SPP.

Fig. 4. Classroom scene rendered with 256 SPP. Denoising time for Moon CI: 35.6ms, OptiX: 89.5ms, OIDN: 20.8ms, ProDen: 1840.5ms, ours: 28.3ms.

In MC rendering, we work with (weighted) radiance samples that
cannot be negative, while a few paths may result in large contribu-
tions to a pixel’s intensity. In statistical terms, the distribution of
samples tends to be right-skewed. Given these observations, we em-
ploy the widely used Box-Cox transformation [Box and Cox 2018]
to “normalize” the rendered samples:

𝑥 ′𝑘 (𝜆) =
{

log(𝑥𝑘 ) if 𝜆 = 0,
(𝑥𝜆

𝑘
− 1)/𝜆 otherwise. (15)

We note that for samples generated by MC rendering, choosing 𝜆 = 0
is impractical, as many samples may be zero (e.g., paths that do not
reach a light source before termination), where the log function is
undefined. In our experiments, we find that 𝜆 = 1/2 yields good
results in practice, as it effectively “compresses” high-valued outliers
while avoiding excessive “stretching” of small values toward −∞.

For each transformed sample 𝑥 ′
𝑘

arriving from the renderer, we then
update the online statistics following Alg. 1.

As a base filter, we choose the joint bilateral filter [Eisemann and
Durand 2004; Petschnigg et al. 2004] to define the a priori weights
𝜌𝑖 𝑗 for any pair of pixels (𝑖, 𝑗). These weights follow a Gaussian
falloff with distance in combined image space and G-buffers:

𝜌𝑖 𝑗 = exp(−1
2 (p𝑗 − p𝑖 )

TΣ−1 (p𝑗 − p𝑖 )), (16)

where p𝑖 denotes the a priori information for pixel 𝑖 . We use image-
space position, RGB albedo color, and surface normal for each pixel,
i.e., p𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑟𝑖 , 𝑔𝑖 , 𝑏𝑖 , 𝑛𝑖𝑥 , 𝑛𝑖𝑦, 𝑛𝑖𝑧)T, in our results. Moreover, Σ
denotes a covariance matrix that controls the rate of falloff for each
dimension of p𝑖 . To enforce the sparsity of these weights, we limit
the filter to a small neighborhood within a constant radius around
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Fig. 5. Convergence plots for our denoising method, compared to the approach by Moon et al. [2014] (“Moon CI”), NVIDIA OptiX AI-Accelerated Denoiser

(“OptiX”), Intel Open Image Denoise (OIDN), and progressive denoising [Firmino et al. 2022] (“ProDen”). Error metrics top-to-bottom: root mean square error

(RMSE), mean absolute error (MAE), and structural dissimilarity (DSSIM) (evaluated after tone mapping to low-dynamic-range (LDR) images, because DSSIM

requires a bound value range). Scenes left-to-right: Figs. 1–4.

each pixel in image space; our default covariance matrix is then
Σ = diag(10, 10, 0.02, 0.02, 0.02, 0.1, 0.1, 0.1).

In practice, our statistical filter operates with three color channels
per pixel in RGB color space and evaluates the membership function
for each channel according to Alg. 2. We set the final weight 𝑤𝑖 𝑗 to
zero unless all three channels pass the statistical test before applying
the filter. In this way, we avoid color shifts that could occur if a
channel is evaluated differently from the others.

In summary, our approach builds on three key insights: First,
minimizing pair-wise MSE is closely related to Welch’s t-test; this
theoretical contribution forms the basis of our method. Second, all
collected statistics are noisy estimates; enforcing binary membership
functions prevents most of this noise from propagating downstream.
Finally, Box-Cox transformation, as well as correcting the mean
[Curto 2023; Johnson 1978], makes our method more robust to non-
normality, effectively mitigating the influence of outliers (“fireflies”).

The parameters of our method affect the results as follows: The
threshold 𝛾 , Eq. (13), adjusts denoising strength. For symmetric
weights, 𝛾 = 0 reverts to the base filter, 𝛾 = 1/2 and non-zero
variance yields𝑚𝑖 𝑗 = 0 (when 𝑖 ≠ 𝑗 ), effectively disabling filtering.
The covariance matrix in Eq. (16) specifies the extent of the filtering
window, depending on distances in image space and differences
in G-buffer values; higher values generally increase the number

of membership evaluations and lead to smoother results. The Box-
Cox parameter 𝜆 determines how samples are transformed: 𝜆 = 1
keeps their distribution shape unchanged, smaller values correct
right-skewed distributions (reducing positive outliers), larger values
correct left skewness.

6 Results I — Image Denoising

In this section, we compare our statistical denoiser to state-of-the-art
machine-learning-based denoisers (NVIDIA OptiX AI-Accelerated
Denoiser and Intel Open Image Denoise), as well as a meta-denoiser
[Firmino et al. 2022], on multiple well-known test scenes [Bitterli
2016] in Figs. 1–4. Figure 5 shows a quantitative convergence analy-
sis for these examples. Note that without useful information from
the G-buffers (e.g., objects seen in the mirror in Fig. 2), neural meth-
ods often fail to reconstruct sharp features. We also compare our
membership formulation to the one-sided confidence-interval test
proposed by Moon et al. [2013], using the 99.8% confidence level as
proposed in their paper. Here, we compare the membership func-
tions directly without applying their two-step denoising process.

We also analyze the effect of various components and parame-
ters of our method in Fig. 6. Our statistical membership function
greatly contributes to preserving the hard edges of shadows, which
would be over-blurred by the base filter, as such lighting effects
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(a) 0.080/0.041 (b) 0.171/0.023 (c) 0.064/0.017

(d) 0.043/0.012 Def. 0.044/0.010 (e) 0.037/0.014

(f) 0.039/0.011 (g) 0.046/0.011 (h) 0.044/0.022

Fig. 6. Ablation study: we compare our default settings (center) to (a) the

noisy input, (b) the joint bilateral base filter only (i.e.,𝑚𝑖 𝑗 = 1 ∀𝑖, 𝑗 ), (c) a
Gaussian base filter (i.e., no G-buffers, but using our membership functions),

(d) using a smaller base filter (6-pixel radius; default is 20 pixels), (e) a more

discerning significance level (𝛼 = 0.1 instead of the default 𝛼 = 0.005), (f)
disabling the Box-Cox transformation, (g) allowing asymmetric weights,

Eq. (14), and (h) using the one-sided confidence-interval test by Moon et

al. [2013]. Errors are given as RMSE/MAE.

are not present in the G-buffers. Note how the G-buffers and our
membership functions complement each other in reconstructing
image features (Figs. 6b and c). The Box-Cox transformation further
increases performance by “normalizing” the sample distributions.

All results were rendered and denoised on a desktop PC with an
AMD Ryzen 9 5950X CPU and an NVIDIA RTX 3080 Ti GPU. Our
filtering runtimes are generally comparable to the duration of the
inference step of Intel Open Image Denoise (OIDN) and substantially
faster than progressive denoising [Firmino et al. 2022]. We set the
base-filter radius to a relatively large size of 20 pixels (mostly for
1280 × 720 resolution images). Reducing the radius would further
speed up our method, as the number of membership tests scales
quadratically with the radius: while for 20 pixels, we require around
28 ms, for 6 pixels, we only require around 11 ms (Fig. 6d). Note that
using the base filter alone would lead to noticeable over-blurring
(Fig. 6b).

7 Results II — Further Applications

The generality of our denoising framework allows us to go beyond
simply denoising an image produced by MC rendering. In particular,
we see great potential in leveraging the ability to quickly denoise ar-
bitrary statistics of arbitrary quantities tracked during path tracing.
This section presents two such applications: including per-bounce
approximate path contributions in Russian roulette (RR), as well as an
extension to multiple importance sampling (MIS) using MIS strategy
win rates.

7.1 Approximate-Contribution Russian Roulette

Here, we extend classic throughput-based RR for path tracing. In-
stead of determining the path termination probability based on just

0 2,000 4,000 6,000

0.01

1

100

0 2,000 4,000 6,000

0.1

0.316

Time [s] Time [s]

RR-1 RR-5 Our ACRR

rMSE DSSIM-LDR

Fig. 7. Comparison between our approximate-contribution Russian roulette

(ACRR) and classic throughput-based RR starting at the first bounce (RR-1)

and at the fifth bounce (RR-5). Images showRR-1 at 2048 SPP (417.53 s), RR-5

at 1451 SPP (418.05 s) and ACRR at 987 SPP (417.00 s). Timings include GPU

upload, denoising, and download. Here, we also show relative mean squared

error (rMSE) [Rousselle et al. 2011], as it allows to gauge the sampling

performance for individual pixels, regardless of their absolute value.

the camera-centric throughput, we track and denoise the average
incoming radiance for a particular bounce index per pixel. The ter-
mination probability at each bounce then considers the product of
the path throughput and this average incoming radiance. Our goal
is to improve termination probabilities for each path individually;
thus, we divide the product by the average incoming radiance at
the corresponding pixel of the camera.

Formally, the per-bounce incident radiance is defined as

𝐿′𝑗,𝑘 =

∫
x∈Ξ

𝑝 𝑗,𝑘 (x)
∫
𝜔𝑖 ∈Ω

𝐿𝑖 (x, 𝜔𝑖 ) d𝜔𝑖 dx, (17)

where Ξ is world space and 𝑝 𝑗,𝑘 (x) the probability of sampling a
position x within that space for a given pixel 𝑗 and bounce index 𝑘 .
In practice, we do not need to explicitly evaluate 𝑝 𝑗,𝑘 (x) as this
probability is inherent to the path-tracing process. In fact, to estimate
𝐿′
𝑗,𝑘

, we just have to average all incoming-radiance samples (over
all paths) for a given pixel and bounce index, which can be easily
integrated into common path-tracing code.

We then apply an iterative process during rendering: In each iter-
ation, we track new incoming-radiance samples generated during
path tracing, progressively refining our estimate of 𝐿′

𝑗,𝑘
, Eq. (17),

and the corresponding statistics required for denoising. At the end
of each iteration, we denoise these estimates as described in §5.
From the second iteration onward, where denoised estimates are
available, we use modified path termination probabilities according
to these radiance estimates.

Figure 7 shows improved image errors for our approximate-
contribution version (ACRR) in an equal-time comparison over two
variants of classic RR taking only path throughput into account.
Classic RR often terminates only from a certain (e.g., fifth) bounce
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Fig. 8. Comparison of our selective multiple importance sampling (SMIS) to standard multiple importance sampling [Veach 1997] (“Ref. MIS”) and visualization

of first-bounce SMIS win rates for BSDF sampling (𝜂BSDF) and direct-light sampling (𝜂DL) before and after denoising. We use rMSE [Rousselle et al. 2011] to

better assess the sampling performance for individual pixels. Images show Ref. MIS at 1024 SPP (734.80 s) and our SMIS at 1063 SPP (732.89 s).

onward to avoid prematurely terminating high-contribution paths.
Because of our improved path-contribution approximation, ACRR
does not rely on this work-around. Rath et al. [2022] show that opti-
mal weights for RR can be approximated using a spatio-directional
data structure. While our method cannot achieve their sampling
efficiency, we illustrate how our denoising framework, based on
regular image buffers, can be used as an alternative. We provide
further details and results in the supplementary document.

7.2 Selective Multiple Importance Sampling

As our second example application, we present an extension to
(multi-sample) multiple importance sampling (MIS) [Veach 1997;
Veach and Guibas 1995]. The basic idea of MIS is to combine multi-
ple sampling strategies by a weighted average, depending on the
probability density function (PDF) of each strategy. The sampling
strategies typically cover different features of an integrand, for
instance, via bidirectional-scattering-distribution-function (BSDF)
or direct-light sampling. However, in situations where one sam-
pling strategy is clearly better than the other(s), MIS can intro-
duce additional variance (noise), especially when using the bal-
ance heuristic. Veach [1997] also developed the cut-off, power, and
maximum heuristics to mitigate this issue, generally moving large
weights closer to one and small weights closer to zero. Choosing
MIS weights and sample allocations is non-trivial and an active area
of research [Grittmann et al. 2019; Kondapaneni et al. 2019; Szirmay-
Kalos and Sbert 2022], and the effectiveness of a strategy depends
on the given situation. We illustrate how our framework can be used
to selectively perform MIS only in beneficial cases, independently
of the chosen strategy.

For this, we extend MIS by identifying strategies that should be
disabled in order to save computational effort and reduce noise. The
primary metric for this decision is the win rate, 𝜂𝑚 = 𝑛∗𝑚/𝑛𝑖 , of
sampling strategy𝑚, where a “win” (counted in 𝑛∗𝑚) is a non-zero
sample whose PDF value of strategy𝑚 exceeds the PDF values of all
other strategies. When determining this win rate—as in other MIS
approaches—we evaluate all sampling strategies for each sample
(not just the strategy that produced the sample), even if a strategy
has already been disabled earlier. Similarly to the average radiance
in the RR example described above, we estimate and denoise the win

rates per pixel and per bounce. In contrast to radiance samples, we
do not Box-Cox transform win rates. We again proceed iteratively,
starting with all MIS strategies enabled, tracking and denoising
win rates, and—from the second iteration onward—disabling infe-
rior (𝜂𝑚 < 10−3) sampling strategies (per pixel and per bounce).
Finally, note that disabling a sampling strategy generally does not
introduce bias, because two unbiased estimates (a MIS estimate
and an estimate from a single sampling strategy) can be naturally
combined without introducing bias. Figure 8 shows example results
and equal-time convergence behavior for combining bidirectional-
scattering-distribution-function and direct-light sampling.

8 Discussion and Conclusion

We have presented a simple yet effective denoising method for
Monte Carlo rendering. Using well-known image filters for variance
reduction and statistical tests (membership functions) to prevent
bias, we achieve state-of-the-art image quality. Our approach is
entirely free of pretrained components, using descriptive statistics
of the sample distributions instead that can be estimated online
during rendering. The properties of our membership function guar-
antee convergence with increasing sample counts. At low sample
counts, high variance dominates the image error. In this case, the
membership function becomes less discriminating, thereby reducing
that variance and accepting some bias. As rendering progresses and
more samples are added, variance decreases and the bias becomes
more relevant to the overall error. If bias is significant (relative to
variance), we set the corresponding filter weight to zero, based on
statistical tests, which essentially eliminates that source of bias. In
the limit, as variance approaches zero, any bias is unacceptable and
thus prevented by the membership function.

We have focused on binary membership functions in this work.
While we derive these functions from optimal pair-wise weights,
recall that these weights are noisy estimates in practice. Introducing
a threshold and restricting to binary memberships effectively pre-
vents this noise from propagating through the pipeline. We leave
investigating continuous membership functions for future work.

In contrast to neural-network-based approaches, our method does
not require any computationally expensive training and does not
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risk adding “wrong” details that were present in the training data
but should not be present in the output image.

Including our method as an additional input to existing meta-
denoisers, such as progressive denoising [Firmino et al. 2022] or
ensemble denoising [Zheng et al. 2021] could in turn deliver another
step up in image quality for these methods. Furthermore, we also see
great potential for the applicability of our statistics-based approach
to other types of estimators during MC rendering. In particular,
variance estimates have been used for adaptive sampling [Rousselle
et al. 2012], MIS [Grittmann et al. 2019], or path guiding [Rath et al.
2020] in the past. Efficiently denoising variance estimates with our
framework could yield improved performance of these methods in
the future.

Another promising avenue for future work is the extension of our
method to the temporal domain: Conceptually, estimates at different
points in time of an animation can be treated equivalently to esti-
mates at different image-space positions. Including such estimates
could improve denoising performance and temporal coherence for
animation denoising.
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