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Kurzfassung

Parallele Koordinaten sind eine außergewöhnliche Visualisierungsmethode, welche vielver-
sprechende Einsatzmöglichkeiten für die Visualisierung von großen, vielfältigen multivaria-
ten Datensätzen bietet. Häufig sollen solche Daten in web-basierten Visualisierungen oder
Dashboards dargestellt werden. Im modernen Web gängige Konzepte wie Interaktivität,
benutzerdefinierte Einstellungen, oder Responsive Design, wobei sich eine Webseite an
jede beliebige Bildschirmauflösung anpassen können sollen, bewegen uns dazu, die Rolle
des Seitenverhältnisses beim Gestalten von Visualisierungen zu berücksichtigen. Ein
webbasiertes Werkzeug wurde implementiert und eine statistische Analyse von Winkel-
parametern in Parallele-Koordinaten-Diagrammen durchgeführt. Diese deutet auf einen
signifikanten Einfluss des Seitenverhältnisses auf die Darstellung von Parallelen Koordi-
naten hin, und zeigt, dass Diagramme im Querformat robuster gegenüber Änderungen
des Seitenverhältnisses sind als im Hochformat.
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Abstract

Parallel coordinates are a unique visualization technique that presents promising oppor-
tunities for the visualization of large and diverse multivariate datasets. Applications
such as web-based visualizations and dashboards are common use cases for this type
of data. Prevalent concepts in the modern web are responsive design - the ability of
a web page to fit any screen resolution - as well as interactivity and customizability,
requiring us to consider the role of aspect ratio in the design of visual displays. We
implemented a web-based tool and conducted a statistical analysis of angle parameters
in parallel coordinates plots. Our results indicate a significant influence of aspect ratio
on the display of parallel coordinates, and show that landscape orientations are more
consistent across different aspect ratios than portrait orientations.
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CHAPTER 1
Introduction

A prominent area of research in information and data visualization constitutes the display
of multivariate, or multi-dimensional data. With the advancement of internet connectivity
and storage capacities, more and more data is being collected and stored, resulting in
large datasets with many distinct attributes. Trying to visualize this data requires
innovative solutions, especially if we wish to convey more than two or three dimensions
in one graph.

A well-known visualization technique for multivariate data is the parallel coordinates
plot (PCP). Axes, each representing a single dimension (column) of the dataset, are
placed in parallel, and their data ranges are scaled to be the same size. A data sample
(row) is represented as a polyline that intersects each axis at a given point on the scale.
An advantage of this type of plot is that it can be used to display a high number of
dimensions. Unlike other multivariate visualization techniques, where a certain hierarchy
or order of dimensions has to be assigned before drawing the plot, a PCP allows for
flexible reordering of axes. On the other hand, a common criticism of parallel coordinates
is that they are unintuitive. It will take first-time users a while until they are able to
read the plot and to recognize certain patterns. This may discourage designers from
utilizing them for applications where the goal is to clearly and quickly convey certain
information. To address this, the original concept of PCP has been developed further by
many researchers, introducing new display methods and features. For example, automatic
axis ordering or bundling techniques aim to reduce visual clutter, allowing for previously
hidden patterns and outlier data to be discovered. Interactive techniques such as brushing
or highlighting let users visually explore datasets.

We specifically look at the use case of PCPs being included in a web-based visualization
or dashboard, where the dimensions are dependent on the user’s device screen size, or
where the size of the plot can be changed interactively by the user. An unsuitable aspect
ratio can impact the effectiveness of a visualization, or even lead to visual errors. While
many dashboard design guidelines have been proposed, dealing with suggestions for plot
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1. Introduction

selection and layouting, not many address the problem of variable aspect ratios. To
understand this issue, we conducted a literature review in which we researched various
visualization techniques that have been developed, and looked at different perspectives
on the role of aspect ratio in visualization.

We then implemented an interactive parallel coordinate viewer. The core feature of our
implementation is the ability to dynamically resize the plot. This tool can be used to
interactively explore a dataset using a PCP and check how the plot behaves if the aspect
ratio is changed. An example of the same plot in two different aspect ratios is shown in
Figure 1.1. Additionally, using our application, we can systematically simulate what a
plot of a given dataset would look like in several predefined aspect ratios and use this
data for further analysis.

Figure 1.1: A subset of the “Sleep Health and Lifestyle” dataset [Tha23] visualized in
our PCP application, using two different aspect ratios.

Based on the results of our statistical analysis, we formulated design guidelines for
parallel coordinates, specifically targeted at designers of multiple-view dashboards that
incorporate parallel coordinates.

2



CHAPTER 2
Literature review

We conducted a review of related work, starting with a general look at the history
and motivations behind information visualization, and continuing with an overview of
different multivariate visualization approaches with a focus on parallel coordinates. We
discuss how different visualization techniques can be assessed and compared to each
other. Finally, we look at some existing literature related to the topic of aspect ratio in
visualization.

2.1 Overview of visualization and information visualization
Visualization allows us to comprehend large amounts of data, find properties within
datasets that were not evident previously, and form hypotheses based on these observations.
Data visualization can reveal data patterns and special characteristics both on a local
and a global scale, and allow for quality control by exposing issues such as value errors,
artifacts, or flaws of the data collection method [War04].

Referring to a “graphical representation of data or concepts” [War04] the term data
visualization has only emerged in recent decades. Previously, data visualization was
defined as “constructing a visual image in the mind” [War04]. Still, both of these
definitions are important to take into account when studying computer-based visualization.
When we are viewing a graphic, there is some information that only “lives” in our head,
and some that is only explicit in the digital domain [SMM12].

Examples of data being presented in a structured way similar to what we today consider
a chart, can be found as early as the middle ages. From the 18th century onwards,
visualizations became much more sophisticated, being primarily used in scientific works,
starting with time-series charts. These graphics were often used instead of tables if it
was necessary to display a large number of variables and data points [Tuf01], and often
doubled as data-transmission devices, which were made by hand and commonly contained
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2. Literature review

Figure 2.1: Charles Joseph Minard’s visualization of Napoleon’s invasion of Russia. Image
taken from Raposo et al. [RTB20].

additional guiding elements such as grid lines, to ensure precision as well as to increase
the accuracy of reading data from the diagram [Cle93]. Figure 2.1 shows a well-known
example of a multivariate visualization from 1869 drawn by Charles Joseph Minard,
displaying army movements and strength during Napoleon’s invasion of Russia. This
visualization is notable because it conveys six variables in an easily understandable way,
including troop strength and losses, positions given as latitude and longitude, distance
and direction of travel, significant dates, and temperature [Tuf01].

In the 19th and 20th century, people started to use “decorative” graphics for commercial
and political purposes, with the goal of conveying certain statistical data to a broad
audience. These visualizations often prioritized creativity and visual appeal, and maybe
the communication of a selected message, over data accuracy. A common pitfall is the
representation of one-dimensional data using two-dimensional area. We do not perceive
differences of area proportionally to the actual differences of the data. This is expressed
in the “Lie Factor” [Tuf01]. The human perception of visual elements such as position
or area has been the subject of many studies, with researchers developing perception
models that can serve as guidelines for accurately conveying quantitative or qualitative
differences in a visualization.

Nowadays, more data than ever is being collected and stored, and massive volumes of
data from many different domains are available to us. On the one hand, this provides
unprecedented opportunities to gain valuable new insights. On the other hand, it also
confronts us with an “information overload problem”, which occurs if data is not selected
correctly for the current task, processed inappropriately, or presented inappropriately
[KAF+08].
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2.2. Types of data

To address challenges when analyzing large amounts of data, several fields of research have
emerged which focus on the theory of visualization. A strong emphasis has been placed
on using methods from scientific fields such as psychophysics or cognitive psychology
to develop theories and models of vision science, which can be used to choose optimal
visual representations [Cle93].

Information Visualization (InfoVis) is a field of research that primarily deals with abstract
data, unlike Scientific Visualization (SciVis), which focuses on data that has some kind
of geometric or spatial representation, and as a result, an inherent mapping in the 2D
or 3D space. Examples of scientific visualizations are volume or flow visualization. On
the other hand, InfoVis is used to visualize data with no such spatial reference, often
referred to as abstract data, for example, business data or demographic data. This data
is often sourced from large databases and is multivariate, meaning it contains more than
three dimensions. Traditional 2D or 3D visualizations such as scatterplots, line plots, bar
charts, or histograms may not be sufficient for representing a multivariate dataset in its
entirety. [Kei02, KAF+08].

Visual Analytics is an area of research closely associated with InfoVis. It focuses on devel-
oping interactive solutions based on established visualization techniques, with the goal of
enabling visual data exploration and model building [KAF+08]. This knowledge discovery
process follows the “Visual Information Seeking Mantra” introduced by Shneiderman:
“Overview first, zoom and filter, then details on demand.” [Shn96]. Since interaction is
not the primary focus of this work, Visual Analytics will not be a major topic. However,
the visualization tool that we developed does contain interactive elements, so Visual
Analytics models and approaches have been taken into account.

2.2 Types of data

When we are looking for a visualization technique for a certain dataset, it is crucial to
first understand what type, or types, of data it contains. Classifying data into clean and
distinct categories is not always possible. Fundamentally, we can think of two types of
data: entities, which are individual data values or objects, and relationships, or relations,
between entities. Both entities and relationships can have attributes which can be in any
scale of measurement [War04].

2.2.1 Scales of measurement

Stevens [Ste60] introduced a taxonomy consisting of four different measurement scales,
focusing specifically on how they influence sensory communication. Each of these scales
is different in how they are perceived by a user, and what mathematical or statistical
operations can be performed on them. Because each visualization technique utilizes
different scales of measurement, we must carefully consider their individual properties
when choosing a display method.
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• Nominal data includes categorical items, such as labels. It can be numerical or
non-numerical, but it has no inherent order.

• Ordinal data is numeric data which can be ordered in a sequence. Each set of items
has a rank quality, where one is higher or lower than the other.

• Interval data defines a gap between two values, for example, elapsed time.

• A ratio scale requires that there is a zero value, allowing for a comparison of
ratios. Multiplication by a certain factor always results in the same relative change.
For example, the Kelvin temperature scale satisfies this requirement, while the
Fahrenheit and Celsius scales do not, they are considered interval scales.

In modern programming, interval and ratio scales are combined into the concept of
real-number data. Similarly, integer data represents values on an ordinal scale, which are
discrete and ordered.

Operations performed on the data may also be considered data themselves. Mathematical
operations on numbers, or transformations of the database, may have to be visualized as
well, for example through the use of animation [War04].

2.2.2 Scale vs physical information
Cleveland [Cle93] presents a model of graphical perception which differentiates between
quantitative and categorical data. Data can be shown in two different ways in a visual-
ization: scale information describes the units of measurements or category names which
are typically used to label the axes, while physical information represents features such
as the position of an element or the icon, size, or color assigned to the element.

When choosing a visualization technique, it is important to understand that different types
of data have certain physical representations with which they are commonly associated.
For example, the attribute of size, e.g. in a bar chart, is usually linked with quantitative
information, using it to show categorical data may cause users to misunderstand the
graph as representing a quantity, or a ranking between the categories. On the other hand,
the color attribute usually depicts data categories. While it may be used to visualize
discrete categories of ordinal data, e.g. in a choropleth map, it is not as effective for
conveying metric intervals [War04].

2.2.3 Dimensions
Data may also be classified into the number of dimensions contained within the dataset.
One-dimensional data may be as simple as a string of text, or a list of values. Temporal
data can be considered one-dimensional data [Kei02], or as its own data type [Shn96].

Common visualization techniques for two dimensions include the x-y plot (scatterplot)
or line plots. These plots can easily visualize both abstract and scientific 2D data. Maps
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2.3. Visualizing multivariate data

are a special case of an x-y plot where the longitude and latitude are the x and y axes
[Kei02].

In scientific visualization, three-dimensional data commonly contains digital models
of real-world objects. Researchers of 3D computer graphics have developed advanced
methods for digitally visualizing these objects. However, the visualization of abstract 3D
data presents a significant challenge in the InfoVis field [Shn96].

While the terms multivariate and multidimensional are often used interchangeably in
the visualization literature, some researchers argue that multidimensional data is more
closely associated with SciVis. The visualization of scientific sample data with more than
three dimensions is an emerging area of research. On the other hand, InfoVis deals with
multivariate data, which is usually abstract data [dB04].

2.3 Visualizing multivariate data
Multivariate data contain more than three dimensions, and describe “homogenous sets
of items by values of their attributes” [CvW11], with each attribute having its own
associated domain. For example, a row might be a person, with columns describing
attributes like gender, age, height, etc. Common tasks when working with multivariate
data include “finding patterns, clusters, correlations among pairs of variables, gaps, and
outliers.” [Shn96]

To demonstrate an example where multivariate visualization techniques can be advanta-
geous over “traditional” techniques, we try to visually assess the “80 Cereals” dataset
[Cra17] for correlations between different quantitative columns. First we create a scat-
terplot (Figure 2.2a). We can plot up to four dimensions by also using color and point
size along with the x- and y-axes. In this plot, we can perceive the (negative) correlation
between ratings (x) and sugars (y). We can also tell that sugars and fiber (point size)
are slightly negatively correlated. Judging the correlation of fiber and protein (color) is
possible, but it requires some focus, and it is difficult to compare exact values of the two
dimensions. On the other hand, in Figure 2.2b, we see a PCP of the same columns. Here,
each pair of axes is represented using the same graphical elements. We do not have to
choose two dimensions that should be, for example, the x- and y-axis. While reading
parallel coordinates might take some practice, an experienced user can quickly tell that
the first two axes have a relatively strong correlation, while the other axis pairs are more
weakly correlated. We can also read precise values from all four axes instead of having to
estimate and interpolate color or point size.

2.3.1 Challenges when visualizing multivariate data

Multivariate data are often found in systems that automatically record large numbers of
parameters for the purpose of data mining, resulting in datasets with numerous rows and
columns. Extracting new knowledge from such datasets is often impossible with a simple
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(a) A scatterplot of four quantitative attributes.

(b) A PCP of the same four attributes.

Figure 2.2: Four quantitative attributes from the “80 Cereals” dataset [Cra17] visualized
using different techniques.

textual or tabular view, since only a small fraction of the data can be viewed at once
[Kei02]. As a result, it was necessary to develop new methods for displaying the data.

Columns in multivariate datasets can contain a mix of numerical and categorical columns,
in very different scales. Many visualization techniques are based on the comparison of
sets of items by their relation. This may be difficult if the data contains different data
types [BBK+18].
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2.3. Visualizing multivariate data

A multidimensional visualization may include or leave out any of the dimensions in a
dataset, and arrange them in any order. This leads to the curse of dimensionality, as
the number of columns increases, so does the number of possible mappings. Interesting
relationships between certain dimensions may be overlooked [BBK+18]. Conflictingly, it
is often not possible to know what properties we want to highlight in a graph, as we have
not discovered these properties. Without this knowledge, we may choose an unsuitable
visualization technique and end up missing important information [vW06]. This paradox
affects all visualization in some way, but is especially important to keep in mind when
working with multivariate data.

Fundamentally, the mapping of high-dimensional data into a two-dimensional visual
representation is not a trivial task. Graphical elements have to be carefully chosen to
avoid cognitive overload, and to make sure different dimensions can be easily distinguished.
Inevitably, some details will be lost [Cha06]. This may prevent viewers from discovering
certain characteristics of the data. However, visualization designers can address these
issues by including interactivity [vW06], for example, by letting the user choose columns
to be displayed in a secondary visualization.

2.3.2 Examples of multivariate visualization techniques
Keim and Kriegel [KK96] defined four categories of multivariate visualization approaches:
geometric, icon-based, pixel-oriented, and hierarchical and graph-based techniques.

Geometric techniques use certain geometric projections in combination with statistical
methods to find interesting and expressive ways to display data. One such technique is a
scatterplot matrix, shown in Figure 2.3. Dimensions are represented as rows and columns,
each cell contains a scatterplot of two given variables. Parallel coordinates are a popular
multivariate visualization method, they are discussed along with similar methods in
Section 2.4. These methods are able to display any number of dimensions, but also quickly
become cluttered and impractical. To address this, the class of geometric techniques also
includes projection pursuit methods, which aim to automatically discover combinations
of dimensions that provide the most insight into the data [KK96]. How “interesting” a
subset of dimensions is, can be determined through dimensionality reduction methods
such as principal component analysis (PCA) [EDF08], which extract a set of principal
components while preserving variance [JFJW09]. Generally, geometric methods are
suitable for large and high-dimensional datasets, and are most effective for pattern and
outlier detection. Potential issues are visual cluttering, and loss of information through
an improper selection of the axis order.

The idea of icon-based techniques is to visualize data by associating them with a certain
type of icon based on their dimension. A unique, well-known example are Chernoff Faces
(Figure 2.4a). Each data item is represented as a human face, each dimension is a specific
facial feature. These features are drawn differently, depending on the value of the given
dimension [Che73]. Similarly, the stick figure technique (Figure 2.4b) maps dimensions
to limbs of a stick figure, the data values dictate the lengths and angles of limbs [PG88].
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Figure 2.3: A scatterplot matrix gives a quick overview of all axis pairs. Each cell contains
a scatterplot of the two dimensions given along the x- and y-axis. Image taken from
Elmqvist et al. [EDF08].

In both these techniques, two dimensions are already represented in the x and y axis -
they determine the width and height of the figures - while the rest are conveyed in the
figures themselves [KK96]. Star plots, also known as radar charts, seen in Figure 2.4c,
can also be considered an icon-based method, since each data item is represented as a
star-shaped symbol [Cha83]. In this method, axes are arranged in a star pattern, with
lines connecting them, similar to parallel coordinates. Ideally, all axes are ordered in
the same direction, so different samples can be compared based on the area of the star
[PPLF24].

10



2.3. Visualizing multivariate data

(a) Chernoff Faces. Each face repre-
sents a row in the dataset, each facial
feature an attribute. Image taken from
Chernoff [Che73].

(b) Stick figure technique. Each figure
represents a row, each limb an attribute.
Image taken from Pickett and Grinstein
[PG88].

(c) Star plot/radar chart. Axes are arranged in a circle, resulting in a unique shape for each row.
Image taken from Chambers [Cha83].

Figure 2.4: Examples of icon-based multivariate visualization techniques.

An example of a two-dimensional pixel-based visualization method can be seen in
Figure 2.5. Correspondingly, a multivariate pixel-based visualization consists of sev-
eral windows representing different dimensions. Every data item is mapped to one
pixel in each window, which is colored according to the value of that dimension. These
techniques prevent visual clutter and overlap, as each element has a strictly defined
position and size. They are capable of supporting large datasets, only being limited by
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Figure 2.5: The GitHub activity feed is an example of a pixel-based visualization. Each
pixel represents a date, the number of contributions on a certain date is conveyed using
a color encoding. Image taken from GitHub, Inc. [Git24].

Figure 2.6: Query-independent pixel-based multivariate visualization technique. Each
row is represented using one fixed pixel in each rectangle, which represents an attribute.
Image taken from Keim and Kriegel [KK96].

the screen size in pixels. One challenge associated with pixel-based techniques is the
ordering of the data. Figure 2.6 shows a query-independent pixel-based method, where
the entire dataset is visualized, with the order of items being determined by thea specific
attribute. On the other hand, query-dependent methods visualize subsets of the data
based on a user query for a certain value or value range [KK96].

A variety of techniques exist that can be used to visualize hierarchical data structures.
Classic examples are space-filling methods like treemaps (Figure 2.7a), or node-link
representations such as radial trees (Figure 2.7b) [ZS21]. For multivariate hierarchical
data, the standard approach is to subdivide k-dimensional space into 2D-subspaces which
are then arranged in a hierarchical structure. An example of this is the dimensional
stacking method [LWW90] seen in Figure 2.7c.

12



2.4. Parallel coordinates

(a) Treemaps visualize hierarchy and propor-
tions of values using area. Image taken from
Zheng and Sadlo [ZS21].

(b) Radial trees visualize a hierarchical data
structure. Image taken from Zheng and Sadlo
[ZS21].

(c) Dimensional stacking allows visualization of multiple categorical variables on one horizontal or
vertical axis. Image taken from Im et al. [IML13].

Figure 2.7: Examples of hierarchical visualization techniques.

2.4 Parallel coordinates

Parallel coordinates, also known as parallel coordinates plots (PCPs), are one of the
most popular multivariate visualization techniques. The idea can be found as early as
1880. Figure 2.8 shows a visualization of rankings of US States across multiple attributes,
developed by Henry Gannett [Fri08]. In 1885, Philbert Maurice d’Ocagne introduced a
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Figure 2.8: Henry Gannett’s 1880 graphic ranking US States by different attributes,
utilizing parallel coordinates. Image taken from Friendly [Fri08].

similar concept as part of his work on Nomography [d’O85, HW13]. Figure 2.9 shows an
example of a nomogram, and how it may be used for calculation. In 1985, Alfred Inselberg
introduced what we know today as parallel coordinates [Ins85], having developed the idea
while studying multidimensional geometry and wishing to find a way to visualize multidi-
mensional objects, instead of simply working with mathematical equations. Inselberg

Figure 2.9: A nomogram used for mathematical calculations, in this example, addition.
Image taken from Esaulov [Esa20].

14



2.4. Parallel coordinates

states that he was initially not aware of d’Ocagnes work, but points out that nomography
was intended mainly for computational applications, while parallel coordinates are meant
to be specifically a visualization technique [Ins09]. Beyond the idea of visualizing multi-
dimensional geometry, Wegman introduced the parallel coordinates plot as an InfoVis
technique that has become popular in exploratory data analysis [Weg90, HW13].

2.4.1 Implementation of parallel coordinates

To understand the basic motivation behind PCPs, we first examine a traditional orthogonal
line plot (Figure 2.10a). Showing the relationship between two dimensions is trivial, a
third can simply be added by using a 3D representation, or for example, by using color or
symbols. For PCPs, the x- and y-axes are moved so that they are parallel to each other
(Figure 2.10b). A data sample is now represented as a polyline which intersects each axis
at the point corresponding to the coordinate of that dimension. With this new layout,
we may add as many axes as needed, by arranging them next to each other. Just as in
an orthogonal plot, we can still visually infer the relationship between two dimensions by
recognizing the pattern of lines. Figure 2.11 shows common patterns in a 2D scatterplot,
and the equivalent patterns in a parallel coordinates system. An interesting property
of parallel coordinates, shown in Figure 2.12, is the point-line duality: a point (x, y) in
Cartesian coordinates is represented as a line in the parallel coordinate domain, and the
other way around [Ins85].

(a) A line plot, using an orthogonal coordi-
nate system.

(b) A PCP, using a parallel coordinates sys-
tem.

Figure 2.10: The same data in an orthogonal line plot and an equivalent PCP.

Heinrich et al. [HW13] defined a parallel-coordinates system as the axis layer, and a
parallel-coordinates plot as the sample layer (lines representing data samples). In a
composite parallel-coordinates plot, an additional visualization layer may be added on top
of the plot.
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2. Literature review

Figure 2.11: Patterns in Cartesian coordinates (top row) and parallel coordinates (bottom
row). Image taken from Heinrich et al. [HW13].

Figure 2.12: A comparison of the same patterns in a Cartesian coordinate data domain
(left) and parallel coordinate domain (right), showcasing the point-line duality. Image
taken from Heinrich et al. [HW13].

The axes in a parallel coordinates system may be oriented horizontally or vertically
[AA01], although a vertical orientation is found more commonly. Classically, PCPs
represent data items as polylines, consisting of one vertex for every dimension, connected
by straight line segments. Various approaches have been introduced that use curved lines
instead. This can be for the purpose of encoding additional information [The00], or for
better readability [HW13].
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PCP visualizations are often paired with interactivity. Common interactive techniques
are highlighting selected lines, brushing, and reordering or flipping of axes. Highlighting is
crucial, since polylines are usually not labeled, and often overlap with each other in dense
datasets. It allows users to identify individual samples, and observe their values across
all dimensions [Wei19]. Similarly, brushing makes it possible to isolate a subset of data,
which can reveal valuable information in large datasets. For example, in Figure 2.13,
cars where the power attribute is within a certain range are selected, and we then can
see how the other variables are distributed for those samples. Brushing is often used in
multi-view visualizations to link data samples across multiple plots [HW13].

Figure 2.13: Brushing technique: highlighting a subset of data based on a range of values
from a given axis. Image taken from Weidele [Wei19].

A major challenge when using parallel coordinates is the axis order problem [HW13].
Only the relationship between two adjacent axes can be displayed at a time, meaning
we would have to redraw the plot many times to view every possible pairing, or else we
might miss an interesting observation. Allowing the user to manually rearrange, flip, add,
or remove axes can be helpful in the knowledge discovery process. When dealing with a
large number of dimensions, an automatic ordering method may be necessary.

Dimension arrangement is a major topic of research concerning not just parallel coordi-
nates, but multidimensional visualization in general. Ankerst et al. [ABK98] proposed
an ordering method based on the similarity between each pair of dimensions. Several
similarity measurement methods have been introduced, with a commonly used metric
being Pearson’s correlation coefficient (PCC) [LHZ16]. For example, axis pairs with the
highest PCC can be placed next to each other, making it easier to perceive correlations.
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(a) Multi-relational 3D parallel coordinates
combine a specific axis with all other dimen-
sions. Image taken from Johansson et al.
[JWFLC08].

(b) Many-to-many relational parallel coordi-
nates contain duplicate axes, showing all pos-
sible axis combinations at once. Image taken
from Lind et al. [LJWC09].

Figure 2.14: Examples of relational PCP techniques. Compared to traditional PCPs, more
axis combinations can be judged at a glance. This can be advantageous for discovering
correlations.

Other techniques may instead focus on highlighting outliers or clusters [JFJW09]. Peng
et al. [PWR04] noted that the axis order problem is closely related to visual clutter
reduction techniques, and defined a good axis order as one which minimizes visual clutter.
For parallel coordinates, they noted that a clutter-reduced axis order allows for better
perception of patterns and outliers. Another approach is to use dimensionality reduction
methods such as PCA, although this can be unintuitive for the user and may hide
interesting properties [JFJW09].

Multi-relational methods such as the many-to-many relational parallel coordinates intro-
duced by Lind et al. [LJWC09] present another potential solution to the axis ordering
problem. Instead of having to create multiple plots to show different permutations
of axes, all possible combinations are displayed in one plot. Figure 2.14b shows this
concept. The letters label the different axes and a color coding is added to clarify axis
direction. This method was found to be more effective than traditional PCPs for judging
correlations between dimensions. A downside of this technique is that it can only handle
a very limited number of axes, and requires one axis (the one located the center) to be
prioritized.

Not just the axis arrangement must be carefully selected, but also the scaling of the axes
themselves. If axis values are in very different ranges, such as in Figure 2.15a, or outliers
are present, judging correlations between objects becomes difficult. This may be resolved
by scaling axes using a normalization technique such as the mean (Figure 2.15b) [AA01].
In this example, all axes were given in the same unit of measurement, age. However, a
characteristic of parallel coordinates is that each axis may be in a different scale and
range. While PCPs are considered more suitable for continuous data, categorical data can
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also be plotted, for example, by assigning each category a numerical value. Displaying
a mix of categorical and continuous data may require a more advanced visualization
technique [Sch22].

(a) A PCP before normalizing the axes. (b) The same PCP with normalized axes.

Figure 2.15: Normalizing axes using the mean to reveal information in datasets containing
distinct ranges of values. Images taken from Andrienko and Andrienko [AA01].

2.4.2 Applications of parallel coordinates
A large focus of study has been the relationship between different visualization techniques
and analysis tasks. For example, Johansson [JWF15] studied various plot types that have
been introduced over the years, and presents an overview of which techniques evidently
performed better or worse at certain tasks. The list of analysis tasks, which they used as
the basis of their study, included the visual analysis of correlations and clusters, discovery
of outliers and patterns, value retrieval, and tracing of lines.

Andrienko and Andrienko [AA01] formulated a list of tasks for which parallel coordinates
were effective. Generally, these fall into two categories: evaluations of distribution,
similarities, and relationships between objects (represented as polylines), as well as
evaluations of correlation between dimensions (represented as axes).

A common criticism of PCPs is that they are unintuitive. First-time users are often
unable to infer information from the graph at first glance. This is due to the use of a
parallel coordinates system, which is very distinct from the more common orthogonal
Cartesian coordinate system. Parallel coordinates visualize attributes, relationships, and
patterns in a way that users may not be as familiar with. In a user study, Siirtola et al.
[SLHR09] found that participants who had some basic experience with graphing software,
but were unfamiliar with parallel coordinates, were able to solve simple tasks using PCPs
after just a short time. In the same study, first-time users remarked that they found
PCPs “messy”, and that they could not distinguish graphical elements at first. This
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problem may be exacerbated by overplotting, which occurs if too many samples (lines)
are plotted. Figure 4.1a shows an example where overplotting occurs: a highly dense
dataset is plotted without applying any clutter reduction techniques. These techniques
are divided into data-driven techniques, where the dataset is preprocessed in some way,
and screen-based approaches, which adapt the display method to deal with the given
data [HW13]. Some examples of screen-based methods are density- and frequency-based
plots [JWLJC06], as well as bundling techniques [PBO+14].

Density-based plots can be used to reduce visual clutter, especially in very large datasets.
Instead of plotting each item as a line, the line density at each point, which is given by
the proximity of lines [HW13], is calculated and plotted. An overview of different density
estimation techniques that may be used for such plots, was given by Moustafa [Mou11].
One such method is edge-bundling, shown in Figure 2.16. Unlike other density-based
methods, which show only aggregated information, this approach preserves the visual
representation of data items as lines. It was found to be more effective for correlation
and cluster judgements, as well as subset tracing, than traditional PCPs [PBO+14] .

Figure 2.16: The edge bundling technique groups data based on line density, while
preserving correlation and cluster information. Image taken from Palmas et al. [PBO+14].

A similar challenge to overplotting is presented by the line tracing problem. This occurs
if two samples have identical values in one or two adjacent dimensions, meaning they
touch at an axis or overlap on a line segment. In the classic polyline display method,
the two samples cannot be distinguished, but a curve model, shown in Figure 2.17, can
create a more readable representation.

An advantage of PCPs is their ability to handle different types of data, even a mix of
numerical and categorical data, in one display. However, one data type that can be
difficult to deal with is time. Parallel coordinates closely resemble time-series plots, but
actually capturing time information in a PCP is not trivial as just adding an axis [HW13].
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Figure 2.17: Using curved lines to mitigate the line tracing problem. Image taken from
Heinrich et al. [HW13].

To visualize how a multivariate dataset changes over time, researchers proposed to use
3D visualization methods [WLG97] or density-based representations [JLC07]. Most of
these approaches require some tradeoff or loss of information, so the visualization method
has to be selected carefully.

Several different approaches have been introduced to handle temporal and spatial infor-
mation. Multivariate samples may be given over a sequence of time steps, or at different
locations. This is often the case in scientific fields such as biology or functional genomics,
or in simulation applications. In order to fully display the datasets, a series of duplicate
plots would be necessary [HW13]. Three-dimensional techniques try to address this. An
example can be seen in Figure 2.18. 3D plots allow for clutter reduction, but make it
more difficult to perceive correlations and patterns [JWLJC06, JWF15]. Furthermore,
they may cause occlusion and distortion due to the projection from 2D to 3D [HW13].
Another 3D-based approach constitute multi-relational 3D parallel coordinates, shown in
Figure 2.14a. These were shown to be as effective for pattern recognition as 2D parallel
coordinates, but can only handle a small number of variables [JWFLC08].

PCPs may also be used to display hierarchical or conditional data. Generally, visualization
of conditional data is paired with interactivity: the user can choose to expand or collapse
sections in order to only see certain subsets of the data. In PCPs, this can be implemented
for example by having parent and child axes that can be individually expanded or collapsed,
also known as drill-down and roll-up operations [AOS15]. Another approach is to show or
hide dimensions based on whether certain conditions are met within the data, combined
with, for example, a brushing method as an input mode [FWR99, Wei19].

21



2. Literature review

Figure 2.18: A 3D-based parallel coordinate technique. A third dimension is added to
represent time. Image taken from Ruebel et al. [RWK+06].

Researchers have increasingly found use cases for PCPs in industry and other applications.
Some more recent examples include climate model analysis [SST+12] and visualization
of machine learning models [HK24]. While new visualization techniques are developed
continuously, research also includes evaluations of the practical applicability of PCPs,
and comparisons to other visualization techniques. Furthermore, it aims to find new
solutions to problems like axis ordering and clutter reduction [JWF15].

2.5 Evaluation of visualization techniques
Evaluation defines what makes a visualization effective for a certain task. Wehrend
[WL90] formulated a list of operations that a user may want to perform while viewing
a visualization, including identifying, locating, distinguishing, categorizing, clustering,
ranking, comparing, associating, and correlating. Other taxonomies such as that of Zhou
and Feiner [ZF98] include both the visual tasks performed by the viewer as well as the
task of visualizing something with a certain presentation intent. A visual technique may
be chosen based on the set of visual tasks, which help to achieve the presentation intent.

The development of a new interactive system usually goes through multiple cycles in the
process of interaction design. This process encompasses four steps [PRS15]:

1. Definiton of prerequisites

2. Finding alternative solutions

3. Prototype development

4. Evaluation
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In the visualization field, especially the final evaluation step presents challenges. An
effective visualization technique is often defined as one that enables insight into data,
however, insight is not an easily quantifiable or measurable metric. It is complex,
unpredictable, accumulative, and depends on existing domain knowledge of the user
[Nor06].

2.5.1 The visual perception process
Cleveland [Cle93] introduces a model for graphical perception which describes the process
of understanding, or decoding, a visualization. This process consists of pattern perception,
which is the decoding of physical information, and table look-up, the decoding of scale
information.

Pattern perception is divided into three stages. Detection is the time it takes for the user
to discover the graphical element that marks a data point. In parallel coordinates, this
would be a line, in a scatterplot, it could be a point or symbol. Assembly is the process
of grouping and filtering the elements in the chart, and determining which are relevant
for the current operation. Estimation is the assessment of multiple elements, and making
a judgment of their relation to each other, e.g. whether they are equal, bigger or smaller
than each other, or about their ratio.

Table look-up begins with scanning, where users determine the location of a point as
well as the extent of the axis. Users then interpolate the position of the point in relation
to the axis as a fraction. Finally, during matching, users read the labels and convert the
location to a value, interpolating between two ticks on the axis if necessary.

The latency, or how long the task takes, determines the effectiveness of each step. The
latency can be infinite if the task fails, for example, if a graphical element cannot be
detected due to being hidden by another element. Generally, the effectiveness of a
visualization is determined by how fast each step can be performed, or how accurate the
initial estimation is to the actual data.

2.5.2 Determining the effectiveness of visualization techniques
Tufte [Tuf01] analyzed visual perception, and points out that it can be a very individual
process that differs for every observer. Additionally, the effectiveness of a visualization
technique can be highly dependent on the type of analysis task, a technique may be ideal
for solving a certain problem, but completely unfit for another one.

Distinct types of research are required to drive innovation in a scientific field such as
visualization research. Problem-driven research aims to find solutions to real-world
problems, usually by studying actual users. Technique-driven research primarily focuses
on developing new techniques, without a connection to a specific user requirement.
[SMM12]. As we have discussed previously, a lot of knowledge about visual perception
can be gained from other scientific disciplines such as psychology [Cle93]. Yet, a crucial
step in the development of new visualization methods is to conduct empirical studies.
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A common element of a visualization evaluation study is the measurement of performance,
such as the time a user takes to read a chart, or the error rate of answering specific
questions about the data. Subjects are also often asked for verbal feedback. However, not
all aspects of usability and effectiveness may be evaluated just through these methods
[APM+11].

The most common method for evaluating visualizations is to conduct controlled experi-
ments on benchmark tasks. They are usually precisely defined, conducted under very
specific conditions, and only assess objective, measurable metrics such as task completion
time, or error rate. North [Nor06] emphasizes the importance of moving away from such
tightly controlled experiments, and finding more open-ended and qualitative methods to
measure insight. These measures of insight should not just be taken into account for the
evaluation, but during the entire design cycle of a visualization technique [PvW09].

Interestingly, in several of the research works that were analyzed as part of this thesis,
which feature user studies, the subjects themselves were experts in visualization, or
professionals in another relevant field [PvW09, SR06, PVF05]. This was mostly the case
in studies which evaluate a specific visualization method, or try to develop a solution for
a specific technological use case. Working with domain experts is crucial in this case,
many visualization techniques can be quite complex and require domain knowledge to be
used effectively [SMM12].

On the other hand, studies where the goal was to gain a deeper understanding into
visual perception often used a more diverse range of subjects. A common approach
more recently has been the use of crowdsourcing. Researchers such as Heer and Bostock
[HB10] used Amazon’s Mechanical Turk (MTurk) platform [Ama18] to study visual
perception. Crowdsourcing can be a way to effectively collect large amounts of quantitative
performance data on a diverse set of users. It is not suited for tasks that cannot be easily
split into small microtasks, and that require subjective or qualitative judgments [KCS08].
Additionally, some time has to be spent removing inaccurate results, or developing
methods to filter out users who may not correctly perform the task.

2.5.3 Visual area judgments
One of the topics that Heer and Bostock [HB10] looked at, is how accurately users are
able to visually perceive differences between areas. This is relevant for visualizations
that use area to show comparisons between ordinal data, or to visualize some kind of
hierarchy.

Stevens’ power law [Ste60] expresses the relationship between the physical intensity of a
stimulus, expressed as ϕ, and its perceived intensity ψ:

ψ = k · ϕn

where k is a constant depending on the units used. There is a bias, expressed as the
exponent n, that measures how much users either underestimate or overestimate the
actual magnitude. An exponent of 1 means an accurately perceived stimulus. Stevens
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stated that the exponent of visual area is 0.7 while that of visual length is 1. This means
that when presented with two 2D shapes where B is twice as large in area as A, humans
will generally estimate B as less than double the size of A. Cleveland et al. [CHM82]
conducted an experiment where the average exponent of visual area came out to be 0.95,
confirming that changes in area are usually underestimated. However, the results ranged
from 0.58 to 1.27, suggesting that accuracy of area perception varies strongly per person.

Cleveland and McGill [CM84] proposed an order of elementary tasks of graphical per-
ception, based on how accurately they are judged: position is the most accurate one,
followed by length, then area. Direction and angle are included with length. Finally,
volume, shading and color are the least accurately perceived stimuli.

Heer and Bostock [HB10] tested various graphical encodings. They were able to replicate
the results of Cleveland and McGill. Position judgments performed best, followed by
length and then area. On top of this, they tested how aspect ratio would affect judgments
of rectangular area. For this, they used two different display conditions: two rectangles
by themselves, as well as rectangles in a treemap layout (Figure 2.19). Interestingly,
for both conditions, comparisons between two squares were judged least accurately. In
general, both display conditions showed the same results, suggesting that rectangular
treemap elements are judged similarly to stand-alone rectangles. A more detailed analysis
of area judgments in relation to treemaps has been conducted by Kong et al. [KHA10].

Figure 2.19: Center-aligned rectangles (bottom left), Treemap (right). Image taken from
Heer and Bostock [HB10].
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2.6 Relevance of aspect ratio in data visualization
The aspect ratio of a 2D chart, also sometimes called the shape parameter, is defined as
the ratio of the height and width of the data rectangle, the area between the minima
and maxima of data along each axis. An aspect ratio of 1 represents a square data
rectangle. The aspect ratio plays a crucial role in graphical perception, and greatly
influences how effectively a visualization can be “visually decoded” [CMM88]. Certain
interesting properties of a dataset may only be perceived at specific aspect ratios, while
being hidden at others. Figure 2.20 shows an example of two line plots with different
aspect ratios visualizing the same dataset, which shows the number of sunspots over
time. Looking at the upper image, we can tell that this process is cyclical. In the lower
image, an important observation becomes visible: within each cycle, the number usually
rises more quickly than it shrinks [Cle93]. Bertin [Ber11] recognized the importance
of maximizing angular legibility in line charts, or the ability of the viewer to correctly
perceive the rate of change in a line.

2.6.1 Banking to 45°

Plenty of researchers dealt with the topic of aspect ratio in visualization, and proposed
different ways of choosing an optimal value. Cleveland et al. [CMM88] reviewed some
of the existing literature, specifically focusing on line plots. Some researchers proposed
either specific fixed aspect ratios, or multiple fixed aspect ratios that should be chosen
from depending on the data, the medium, or other factors. Cleveland et al. claimed
that these earlier works did not present sufficient scientific evidence or conduct empirical
studies. Some authors did recognize the importance of looking at the orientation (angle)
of different line segments to calculate an ideal aspect ratio. Based on this, Cleveland et al.
introduced their own principle. As we saw in Figure 2.20, the aspect ratio is poorly
chosen if the slopes of individual line segments cannot be judged accurately. An ideal
aspect ratio is given if the midangle (average orientation) of line segments is centered
around 45° for positive slopes and -45° for negative slopes. This is given if the median
absolute slope of all line segments is 1. This principle has become known as banking to
45° [WWF+19], the banking technique introduced by Cleveland et al. [CMM88] is called
Median Absolute Slope procedure (MS).

Several other methods have been found, which can be used to find an ideal aspect ratio
that fulfills the 45° principle. Cleveland [Cle93] introduced Average Absolute Orientation
(AO) and Weighted Average Absolute Orientation (AWO) methods, which use the
orientation of line segments rather than the slope. Presented by Heer and Agrawala
[HA06], Global Orientation Resolution (GOR) and Local Orientation Resolution (LOR)
methods attempt to maximize angles between all, or successive, pairs of line segments.
Along with this, they developed the approach of multi-scale banking, which combines
multiple banking techniques, resulting in a set of aspect ratios that are then shown in
a combined graphic. Multi-scale banking techniques help accentuate both local and
global features. An example is shown in Figure 2.21. Talbot et al. [TGH11] pointed
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Figure 2.20: The same line plot in two different aspect ratios, showing the number of
sunspots over a certain time period. Only if looking at the lower image, we discover that
the cycles tend to rise faster than they fall. Image taken from Cleveland [Cle93].

out that the previous methods are not parameterization invariant, meaning that the
calculated aspect ratio is not always the same regardless of how the line segments are
parameterized. They proposed an arc-length (AL) based approach, where the total length
of line segments is minimized while area of the plot is kept constant. This method does
not explicitly bank to 45° or any other angle. Wang et al. [WWZ+18] compared all
previous methods, and expanded Heer and Agrawala’s work by introducing L1-LOR,
which is parameterization invariant in certain cases. They proved that L1-LOR performs
better than previously mentioned techniques. Additionally, they elaborated on multi-scale
banking by introducing their own dual-scale banking technique, and demonstrated that
such a technique is very effective for pattern perception.

While banking to 45° has held up until today, and is still being developed further, there
has been a desire to generalize this approach and find techniques that can be applied
to different types of 2D charts, as opposed to just line plots. Fink et al. [FHSW13]
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Figure 2.21: Multi-scale banking technique, where several aspect ratios are included to
reveal different properties of the data. Image taken from Heer and Agrawala [HA06].

introduced a method for scatter plots, where the aspect ratio is chosen so that the
Delaunay triangulation of the plot has certain geometric properties. Ideally, this creates
more visible clusters and geometric features in the visualization. Other approaches for
scatter plots calculate local polynomial regression (LOESS) curves [CL96] or isolines
[TGH11], to essentially create a line plot, and then use one of the established methods.
Wang et al. [WWF+19] introduce an image-based approach that is supposed to be
independent of the type of plot, using Kernel Density Estimation (KDE).

Research on aspect ratio selection methods for other types of plots, aside from line plots,
has not been as common. The results presented in this thesis show a strong impact of
the selected aspect ratio on the visual perception of trends and patterns in the data.

2.6.2 Aspect ratio in web visualization and multiple-view systems

Today, an increasingly important area of use for visualization is in web-based visualization
and multiple view (MV) systems. Websites need to be properly displayed on various
screen sizes, and support both landscape and portrait orientations. This is addressed
by responsive design, and more specifically, responsive visualization. Hoffswell et al.
[HLL20] performed an analysis of news articles which feature visualization, and which
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responsive techniques they use to deal with changes in screen size. The most common,
simple methods were no changes and resize (while retaining all elements), other prevalent
approaches were to remove or reposition content.

The topic of area judgment, which was discussed in Section 2.5.3, is highly relevant for
MV systems. These combine two or more visualizations, which may all be different types
of views, into one comprehensive representation, in order to “support the investigation of
a single conceptual entity” [WBWK00]. MV dashboards are commonly found online, for
example in intelligence or analytics applications [BFAR+22]. So far, we have discussed
design approaches only in the context of specific visualization techniques. Dashboards
must be consistent and comparable across multiple separate views, requiring their own,
complex set of design guidelines [SCB+19]. Several researchers have proposed dashboard
design frameworks, often focusing on a specific genre of dashboards. Dashboard design
guidelines generally emphasize the prevention of visual clutter, a conscious choice of
data attributes and elements, grouping of views, and a consistent and organized design
[BFAR+22].

Organizing individual elements of an MV system in a way that maximizes usability and
effectiveness is a challenging task for designers, and researchers have studied ways to
automate this layout arrangement process [LLW+24]. MV tools are also often used in
combination with responsive display methods. Simple proportional rescaling or reordering
of elements may lead to overlaps or cause content to be too small. This means that
MV components each have to be adaptable to different orientations and aspect ratios
[ZCH+24].

A common requirement for dashboard applications is an interactive design mode, where
users should be able to add, remove and adjust the order of elements according to their
needs. However, this presents a conflict with design guidelines and best practices. A
trade-off may be a “recommendation system” where a layout is chosen from an existing
set of designs based on user input [CZL+21]. This could be used to limit possible aspect
ratios to a finite set of values, making it easier for visualization designers to consider
the impact of different aspect ratios. Kristiansen et al. [KGB22] use an algorithm to
automatically identify potential adjustments to a dashboard, for example, combining or
splitting up views. These recommendations are presented to the user after each action,
allowing the dashboard to be improved iteratively.

An interesting topic in relation to this are composite visualizations. Rather than being
arranged beside each other, like in an MV system, they feature multiple types of visual
structures in one combined view [JE12]. These may be especially helpful for analytical
tasks [DCM+23]. Figure 2.22 shows several types of composite visualizations. While the
study of composite visualizations has not been as extensive as research on other tech-
niques, they offer a novel approach to MV visualization, and may provide an interesting
perspective for the problem of responsive dashboard layout. For example, two or more
views may be either individual or combined, depending on the current available aspect
ratio. Different combinations could be suggested to the user using a recommendation
system.
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Research on treemaps, which was discussed earlier, reveals important details on how users
perceive area and hierarchy in rectangular layouts. This should be taken into account
if dealing with MV visualizations, since MV systems may require visual comparison of
values across different charts.

Figure 2.22: Types of composite visualizations of a scatterplot (green) and a bar chart
(purple). Image taken from Javed and Elmqvist [JE12].
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CHAPTER 3
PCP Application

This thesis specifically focuses on the relevance of aspect ratio of PCPs. We aimed to
understand how aspect ratio influences the display of parallel coordinates. For this, we
implemented a web-based application that lets us render a PCP from a dataset and
allows us to export statistical data for further analysis.

3.1 Used technologies
We implemented our own parallel coordinate viewer as a web-based application using
HTML/CSS and JavaScript. While many libraries and online tools already exist for
generating PCP, there are several reasons for creating a customized solution. Firstly,
we wanted to make sure that the PCP can be dynamically resized without significant
re-rendering time, while keeping proper axis scale and proportions between elements.
Furthermore, to analyze the angles of line segments across different aspect ratios, we
needed the ability to access the exact position of each polyline-axis intersection to be
able to calculate each angle. We decided on a vector graphics based solution, enabling
clean and inexpensive resizing while also allowing us close control over each individual
line element [App12].

D3.js [BO24b] is a widely used JavaScript library for creating web-based visualizations.
We used the latest version 7.9.0. D3 is considered a low-level library; rather than
predefined charts, it provides a set of primitives - graphical elements that can be used to
construct advanced visualizations. Elements created using D3 can be appended directly
to the document object model (DOM) as scalable vector graphics (SVG) objects, making
them highly dynamic and responsive.

Statistics.js [Pla17], a simple JavaScript library providing utilities for statistical data
analysis, was used for correlation calculations.
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The application was implemented using IntelliJ IDEA as an integrated development
environment (IDE) and tested in several browsers including Microsoft Edge, Google
Chrome, and Mozilla Firefox.

Additional analysis was performed using the spreadsheet application OpenOffice Calc, as
well as the R statistical computing language in the RStudio IDE, in combination with
the ggplot2 library [Wic16] to help visualize analysis results. Furthermore, Python was
used to preprocess datasets.

3.2 Implementation
Our implementation consists of two main components: visualization and analysis. First,
we implemented a dynamic and interactive parallel coordinate visualization. Figures 3.1
and 3.2 show screenshots of our tool. In this example, the “80 Cereals” dataset [Cra17]
was imported, and the columns sugars and vitamins are selected for the detail view. The
sample with the name Total Whole Grain is currently highlighted, which is shown in the
output in the top left in Figure 3.1. In the detail view (Figure 3.2), the two highlighted
axes are visualized. To the right, statistical properties of angles of all line segments
between the dimensions sugars and vitamins are displayed.

Figure 3.1: The main plot view, showing the entire dataset.
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Figure 3.2: The detail view, where two columns from the dataset are shown in focus.

The upload button (marked as 1 in Figure 3.1) can be used to import a dataset in a
.csv file format. The entire dataset is then graphed in the main plot window (marked as
3). The application automatically selects the first column of the dataset as the primary
key which will be used to identify rows. If this column is not the desired primary key,
another column can be chosen in the key select input (2).

The main diagram is interactive. If the user hovers over one of the polylines, the entire
sample is highlighted, and the primary key value (such as the name of the sample) is
displayed in the data display (4). In the main plot, axes can be reordered by left-clicking
the name displayed on top (7) and dragging the axis left or right. Axes can be removed
from the plot by right-clicking the name. Currently there is no way to re-add deleted
axes, the application will have to be reloaded. Above each axis name, a magnifying glass
icon (6) is displayed. The user can click this icon to select axes to be displayed in the
detail window (9 in Figure 3.2). Only two axes can be focused at a time. If the detail
view is loaded, lines that the user hovers over in either window, will be highlighted in
both.
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Both views can independently be resized by moving the resize handle in the bottom right
corner of each window (8). This “drag-and-drop” resize operation is shown in Figure 3.3.
It works similar to resizing a desktop window, with horizontal and vertical guidelines
to show the new dimensions of the plot. The plot size is limited to a certain maximum
width and height, calculated based on the dimensions of the browser window.

Figure 3.3: Drag-and-drop resize operation in progress, with the mouse location high-
lighted in yellow. Horizontal and vertical guidelines show the new size of the plot.

The current width, height, and resulting aspect ratio of each view are displayed above the
plot windows (5 in Figure 3.1, 10 in Figure 3.2). Width and height can be set manually,
by entering a value into the input, the plot will be resized accordingly. It is important to
note that we calculate aspect ratio as width/height.
The purpose of the detail view is to be able to more closely inspect two specific axes.
On the right side in our application (11), several statistical values are displayed. The
first field shows the angle of the currently highlighted line segment. We measure this
as the angle between the line and the first of the two connected axes, marked in yellow
in Figure 3.4. A completely horizontal line would have an angle of 90°. Naturally, this
angle is dependent on the aspect ratio of the plot.

If the detail view is loaded, and everytime it is resized, we determine all angles of all
lines given the current aspect ratio. To calculate the angles, we utilize the same methods
we use to draw the x- and y-axes, which utilize functions from the D3 library. Instead of
rendering the results, we store the absolute positions of the line on each axis, then pass
them to a separate function for calculating the angle based on the two positions.
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Figure 3.4: Two axes rendered in our application, in two different aspect ratios. We define
the angle of a line as the top angle between the axis and the line segment connecting the
two axes (annotated in yellow).

Once we have a list of angles, we determine statistical values and show them in the
corresponding fields (11):

• Average: the mean of all angles

• Min: the minimum angle

• Max: the maximum angle

• Median: the median in the list of all angles.

We also display primary keys of the samples with the minimum/maximum/median angle.

Finally, the field correlation coefficient shows the correlation between the two axes, which
is independent from the current aspect ratio. If both dimensions are nominal, PCC
is used to calculate this value. Otherwise, Spearman’s rho is used, a rank correlation
measure that is also suitable for ordinal scales [Pla17].

Once a dataset has been loaded, a statistical analysis of the data is created. The radio
buttons (12 in Figure 3.2) can be used to choose between different predefined sets of
aspect ratios to be used for the analysis. If “Use normally distributed aspect ratios” is
selected, a list of 16 random, normally distributed values is used. Otherwise, a set of 16
common aspect ratios of images is used [Fir24].

An analysis object, which describes statistical values of two given axes in one specific aspect
ratio, is represented as a JavaScript object (Figure 3.5) with the following properties:
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Figure 3.5: Properties of an analysis JavaScript object of two axes in one aspect ratio.

• axes: the names of both axes, given as a string

• aspectRatio: the aspect ratio used for the current calculation

• corr: the correlation coefficient

• average: the average of the list of angles

• min: the minimum value in the list of angles

• max: the maximum value in the list of angles

• median: the median in the list of angles

• sum: the sum of all angles.

We calculate these values for each possible combination of axes and each aspect ratio in
the selected predefined list, resulting in the final analysis file containing a list of objects.
For a dataset with n columns, an analysis file contains

(︁n
2
)︁

∗ 16 rows. This file can be
downloaded in a .csv format by clicking the “Analyze” button (12 in Figure 3.2). These
results can then be used for further analysis using different tools.

Figure 3.6a shows how the detail view may be used to explore a dataset. Two dimensions,
Alcohol and BMI, in the “Life Expectancy (WHO)” dataset [Raj18] are selected. In the
statistical value output on the right side, we see that these variables have a moderately
positive correlation, with a PCC of 0.29. The minimum angle, meaning the line with
the largest incline, belongs to the sample Kiribati, telling us that this country has the
highest BMI relative to alcohol consumption. Vice versa, the country with the maximum
angle, Austria, has the highest alcohol consumption relative to BMI. Nepal represents
the median in the list of all countries sorted by angle.
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3.2. Implementation

(a) The plot at an aspect ratio of 0.5, resulting in a portrait orientation. We can visually identify
line segments with noticeably low or high angles, revealing a high relative difference between the
two variables for the selected sample (represented by a line). To the right, we see the statistical
properties of angles.

(b) The same plot as in (a), resized to a landscape orientation.

Figure 3.6: Two dimensions, Alcohol and BMI, in the “Life Expectancy (WHO)” dataset
[Raj18], visualized in the detail view of our PCP application, with two different aspect
ratios.
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CHAPTER 4
PCPs and Aspect Ratio

4.1 Statistical analysis of angles
The goal of our analysis was to understand how changing the aspect ratio of a PCP
influences the graphical representation. To achieve this, we examined the angles between
all line segments representing a sample in a PCP.

4.1.1 Dataset selection
Publicly available datasets were downloaded from Kaggle [Kag24] and imported into
our application. It was found that some datasets were either unsuitable for our analysis
purposes, or could not be effectively visualized using our current implementation. Some
examples of this were:

• Large, dense datasets such as the “Apple Quality” dataset [Elg24] present the issue
of overplotting. This can be mitigated using some of the techniques described
earlier, such as interactive highlighting (Figure 4.1a), brushing, or different methods
of scaling. With the current implementation, dataset could not be used for analysis
as the calculation of so many angles was computationally too expensive.

• Datasets with many categorical dimensions. Usually, not a lot of interesting
information could be extracted from the diagram. Especially dimensions consisting
of only a few categories, such as boolean data types, caused a lot of line bundling.
We can see this in the “1500 North American Restaurants” dataset [Kum24] of
which a subset of columns is shown in Figure 4.1b. This dataset even has one
column whose value is always TRUE. More advanced display methods could help
with this, such as brushing, or simply filtering out columns that are not useful, but
for the purpose of this thesis, we stuck with the simple method of using a band
scale [BO24a] for categorical data.
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4. PCPs and Aspect Ratio

(a) PCP of the “Apple Quality” dataset [Elg24] with 4000 rows, causing overplotting issues and
making statistical analysis expensive.

(b) PCP of the “1500 North American Restaurants” dataset [Kum24] containing several categorial
columns, leading to line bundling. Columns of unique identifiers like the state column are not
suitable for visualization, and can be manually filtered out.

Figure 4.1: Two datasets, which were unsuitable for our application.

Eventually, four datasets were chosen for further analysis.

• The “80 Cereals” dataset [Cra17] which includes nutritional information of 80
different brands of cereals,

• The “Cars 2022” dataset [Tya22] which lists specifications of 199 different car types,

• The “Sleep Health and Lifestyle” dataset [Tha23] where 374 subjects were evaluated
for various health metrics, and
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• The “Life Expectancy (WHO)” dataset [Raj18] which contains development factors
for all countries over several years. Since visualizing the time dimension would
require more advanced techniques, a subset of this dataset was created, which only
includes a single year (2000).

All four datasets were suitable to be visualized in our PCP tool; they could be rendered
without causing significant overplotting issues. Each dataset contained some categorical,
but predominantly numerical columns, meaning there was less line bundling. Interesting
properties, such as correlations, groups, and outliers, were able to be discovered through
visual inspection. We assumed that such datasets would be typical use cases for PCPs in
real-world applications.

4.1.2 Statistical Analysis
We wanted to study the relationship between aspect ratio and each of the statistical
properties of the line angles. For this we used an unequal variance t-test (Welch’s Test)
[Alb24], which is implemented in the TTEST function in OpenOffice Calc [Ope24].

The four selected datasets were imported into the PCP tool, and for each, an analysis file
was exported. For this analysis, we used normally distributed values of aspect ratios, as
a t-test assumes a normal distribution [Alb24]. A combined dataset was prepared, which
included five randomly selected columns from each of the four datasets, resulting in 20 *
16 (number of aspect ratios) = 320 different samples. The TTEST function was used
to compare the aspect ratio column with the columns representing each statistical angle
value (average, min, max, median, and sum). Each t-test resulted in a p-value very close
to 0, shown in Table 4.1. Since each p-value is lower than 0.05, we can conclude that the
differences between the means of columns are statistically significant.

Statistical property P-value

average 1.35E-314
min 1.2E-292
max 1.63E-222

median 8.97E-290
sum 8.48E-112

Table 4.1: T-test of aspect ratio and different statistical properties.

We then wanted to find groups of aspect ratios that can be clustered according to their
statistical values. For this, an analysis file was exported using the set of commonly used
aspect ratios. The analyses of all four datasets were merged into a single file, resulting in
a combined length of 8784 samples (549 axis combinations). A multidimensional k-means
clustering was performed in R over the dimensions min, max, average, median, and sum.

The number of clusters was chosen using the fviz_nbclust function of the factoextra
package [Dat20]. The first step was to apply the elbow method, this means to calculate
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the total within sum of squares for each k number of clusters and plot the result as a line
chart to see if a sharp elbow point is present. In our case, this did not yield a clear result.
Furthermore, the average silhouette and Calinski-Harabasz methods were applied, both
suggesting three as the optimal number of clusters [Ozt23].

Figure 4.2 shows how the three extracted clusters are distributed over different aspect
ratios. Since we calculated aspect ratio as width divided by height, smaller aspect ratios
correspond to portrait orientations, while larger ratios represent landscape orientations.
We can see that the larger aspect ratios are quite uniform, since only Cluster 3 is available
there. For smaller aspect ratios, two clusters can be found (Cluster 1 and 2).

Figure 4.2: Distribution of aspect ratios among clusters. The horizontal axis shows the
different aspect ratios featured in our analysis dataset, the vertical axis shows how many
samples contain each of the three clusters. A “sample” is defined as a PCP, containing
two axes plotted in one specific aspect ratio.

Being aware of the three clusters in the data, we further wanted to see how the individual
angle parameters are distributed over the three clusters. An analysis using boxplots can
be seen in Figure 4.3. Every plot represents an angle parameter, and boxplots are related
to one of the three clusters, respectively.

We saw in Figure 4.2 that Cluster 3 describes almost exclusively large aspect ratios,
and we can see that this cluster is the least variable one in regards to all statistical
values, whereas the clusters containing smaller aspect ratios are more spread out. We
also notice that the distribution of clusters behaves differently between angle parameters.
The sum shows a distinct distribution from other parameters. Here, the three clusters
are very concentrated and contain similar ranges of values, meaning that the sum stays
the most consistent in different aspect ratios. The median displays a very similar result
to the average, showing that our analysis dataset did not contain many outliers. The
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minimum and maximum angle also show very similar distributions of clusters. For these
four parameters (average, min, max, and median), we observe that Clusters 1 and 2 are
very distinct from Cluster 3, meaning that angles change significantly as the aspect ratio
increases.

4.2 Results and interpretation
In this thesis, we did not try to measure effectiveness or any other aspect of the visual
perception process, as this would require a user study which is outside the scope of this
work. We aim to understand how much the individual elements making up the plot
visually change if applying different aspect ratios, and whether there are certain groups
or ranges of aspect ratios where this change is more or less impactful. This knowledge
can be used to formulate certain hypotheses about the perception of parallel coordinates
that may then be discussed in further works.

Our statistical analysis indicates that the choice of aspect ratio has a strong influence on
the display of PCPs. Since the angles of lines between two axes are directly related to
the statistical correlation of two dimensions, and judging correlations is one of the most
common visual analysis tasks performed in PCPs, we hypothesize that aspect ratio has a
significant effect on how PCPs are perceived.

Angles stay more consistent among larger aspect ratios. Landscape-oriented plots with
similar aspect ratios will not be much different in terms of statistical distribution of the
angle parameters. This is not the case for squared or portrait-oriented plots, where small
changes of the aspect ratios can have less predictable effects on the distribution of the
angle parameters.

For designers and programmers who want to implement a PCP as part of an information
or data visualization application, this means that they should test their layout across
multiple aspect ratios to find possible unsuitable configurations. In a responsive, or
dynamically resizable parallel coordinate view, it might be a good idea to only allow
landscape orientations.
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(a) Average angle (b) Minimum angle

(c) Maximum angle (d) Median angle

(e) Sum of angles

Figure 4.3: Clustering of different statistical properties based on our k-means analysis.
Cluster 3 (red) describes the group of large aspect ratios.44



CHAPTER 5
Conclusion and Future Work

The literature analysis revealed many aspects that we have to take into account for
developing a visualization application. We looked at various topics - from a broad
overview and history of visualization and different data types, to a comprehensive review
of literature on parallel coordinates as well as aspect ratios.

As visualization has evolved, the purpose has shifted from computational applications,
towards visual knowledge discovery, with an increasing influence of cognitive sciences.
More recently, with the rise of large-scale data collections, a lot of research has fo-
cused on multivariate InfoVis techniques which can allow us to comprehend these large
heterogeneous datasets.

Today, common uses of visualization include dashboards and web-based systems, which
have to fit various screen orientations and have to be responsive, meaning, they should
be adaptable to any given width and height. The aspect ratio has been a major topic
in visualization research, as it can significantly influence how well information can be
perceived in a graphic. Several researchers have shown how an improper choice of aspect
ratio can completely hide certain properties of the data, and have proposed different
methods for automatically determining an ideal value, for example, different banking
techniques for bivariate line- and scatterplots. While these methods are primarily intended
for static graphics, they still introduce interesting principles for graphical perception that
we may be able to apply to interactive, responsive visualizations as well.

An important takeaway is that size comparisons are not perceived the same way for
different types of graphical elements. For example, humans can generally judge the size
difference between two lines more accurately than of two different areas. The visualization
techniques we looked at were highly diverse in which graphical elements they use. An
example of this can be found in the parallel coordinates plot. This display method
is quite unique, as it uses its own non-orthogonal coordinate system. The graphical
perception models that were formulated about position, area, and angle judgements in
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Euclidean space, may not be applicable. Furthermore, in other visualization techniques,
data samples are not represented as polylines, but as points, curves, areas, colors, or
many other primitives. Since these elements are all perceived differently, we presume
that the aspect ratio problem has no easy, universal solution - we must closely study
the specific visualization technique we are working with, and understand its individual
elements.

In this thesis we wanted to understand the role of aspect ratio specifically in PCPs. We
implemented an interactive application that serves as a basis for exploring a PCP, with
a strong focus on allowing a quick, dynamic resizing of the plot. This allows the user
to experiment with different aspect ratios. Additional interactive techniques include
highlighting of lines, which enables inspection of individual data and discovery of outliers,
as well as axis reordering, which allows for a more thorough exploration of correlations
and patterns. Axis deletion can be used to remove meaningless dimensions and to handle
datasets that have too many columns to be displayed effectively. These interactive
techniques were chosen as a minimal set of features which would allow effective data
exploration without having to individually preprocess each dataset.

While we identified a significant effect of aspect ratio on the display of parallel coordinates
plots, we cannot definitively say how different aspect ratios impact the visual perception
process without conducting user studies. More advanced statistical analysis of the
different graphical elements in a parallel coordinate plot could reveal correlations, trends,
or clusters among aspect ratios that we might have missed in our analysis.

A user of our application may want to perform a variety of visual tasks, such as finding
correlations, clusters, or outliers. Future user studies should take these different tasks into
account, and evaluate how aspect ratio affects them individually. For example, viewing
Figure 3.6, we notice that prominent angles seem to be easier to identify at a portrait
orientation. A user study focusing specifically on this task could confirm or disprove this
hypothesis.

Our PCP application can be extended with more advanced visualization techniques and
additional interactive features. During the literature review, several common features of
parallel coordinates tools were identified that may be added. Brushing methods seem to
be standard for parallel coordinates tools. A common analysis task is to select samples
that are within a given range or category in one dimension, and assess how this subset of
samples behaves in other dimensions. A similar approach is bundling, where polylines are
not just highlighted using different colors, but for example reshaped into density-based
curves. Once again, a user study could help us understand what role the aspect ratio of
a plot plays if working with these techniques. As we discussed earlier, visual comparisons
of area are perceived differently than position or angle. This might affect, for example,
the use of density-based representations.

Based on our analysis results, we made a suggestion for visualization designers to
preferably use landscape-oriented displays, since these were found to be more consistent
compared to square or portrait-oriented views. On the other hand, we discussed responsive
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design, especially in relation to multiple-view systems or dashboards, as well as the
importance of interactivity in visual data exploration. This presents a challenge for
visualization design: how can we allow a user a lot of freedom of customizing position, size,
shape, and orientation of graphical elements, while also preventing them from choosing
an aspect ratio that might hide important information?

Along with this, in our literature review we found different methods that have been
developed for mathematically choosing an ideal aspect ratio, such as banking techniques
for line plots. While implementation and evaluation of such aspect ratio selection methods
were outside the scope of this work, it would be interesting to study to what extent these
existing methods can be applied to parallel coordinates, or if new banking techniques
can be developed specifically for PCPs. Finally, a remaining question is whether we
can combine these selection methods with responsive web- or interface design principles.
Further evaluation studies could improve our understanding of how aspect ratio impacts
the visual perception process, helping us to develop a comprehensive set of guidelines for
visualization designers.
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