
Implementierung eines Hybrid
Renderers in Rust unter

Verwendung einer Forward+
Pipeline

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Software & Information Engineering

eingereicht von

Munir Yousif Elagabani
Matrikelnummer 12022518

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Dipl.-Ing. Lukas Lipp, Bsc

Wien, 3. Februar 2025
Munir Yousif Elagabani Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Implementation of a Hybrid
Renderer in Rust using a

Forward+ Pipeline

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software & Information Engineering

by

Munir Yousif Elagabani
Registration Number 12022518

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Dipl.-Ing. Lukas Lipp, Bsc

Vienna, February 3, 2025
Munir Yousif Elagabani Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Munir Yousif Elagabani

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 3. Februar 2025
Munir Yousif Elagabani

v

Danksagung

Ich möchte mich herzlich bei meiner Familie und meinen Freunden bedanken, die mir
immer beigestanden sind und mich bei der Anfertigung dieser Bachelorarbeit unterstützt
und motiviert haben.

Meinem Assistenten Dipl.-Ing. Lukas Lipp möchte ich auch einen großen Dank aussprechen.
Für die hilfreichen Anregungen und die entspannten Meetings bedanke ich mich herzlich.

Ebenfalls möchte ich mich bei meinen Freunden Sina Bayatmoghadam, Arian Sabri und
Stefan Brandmair für das Korrekturlesen dieser Arbeit bedanken.

Zu guter Letzt möchte ich mich nochmals bei meinen Eltern bedanken, die mir es
ermöglicht haben, dieses Studium ohne Sorgen abzuschließen.

vii

Acknowledgements

I would like to thank my family and friends who have always stood by me and supported
and motivated me during the development of this Bachelor’s thesis.

Special thanks to my assistant Dipl.-Ing. Lukas Lipp for his helpful suggestions and the
relaxed environment during the meetings.

I also want to thank my friends Sina Bayatmoghadam, Arian Sabri, and Stefan Brandmair
for proofreading this thesis.

Last but not least, I would like to thank my parents once again for making it possible for
me to complete this bachelor’s program without any worries.

ix

Kurzfassung

In dieser Arbeit untersuchen wir das Thema des hybriden Renderings, welches Rasterisie-
rung und Raytracing kombiniert, um realitätsnahe Bilder zu erzeugen. Die Rasterisierung
ist zwar seit Jahrzehnten die primäre Rendering-Technik, diese hat aber Schwierigkeiten
mit der Erzeugung akkurater Lichteffekte, da dabei jedes Primitiv isoliert verarbeitet
wird. Raytracing hat in den letzten Jahren an Popularität gewonnen, da mit dieser
Methode es möglich ist, akkurate Beleuchtungseffekte zu erzeugen, welche einer der
primären Faktoren für die wahrgenommene Realitätsnähe sind. Es ist jedoch durch die
hohe Anzahl an benötigten Strahlen eine Herausforderung, mit einem vollständig auf
Raytracing basierenden Renderer eine Echtzeitleistung zu erzielen. Das hat die Entwick-
lung von Renderern motiviert, die die Rasterisierung als primäre Rendering-Technik und
Raytracing für die Berechnung von Lichteffekten verwenden.

Das Ziel dieser Arbeit ist es, die Verwendung einer Forward+ Pipeline für das Bauen
eines hybriden Renderers zu zeigen, der die Hardwarebeschleunigung der Grafikkarte
für Raytracing-Aufgaben verwendet. Dazu bauen wir eine Rendering-Engine, die “ray-
traced hard shadows” implementiert und Methoden untersucht, die die Anzahl der
Schattenstrahle reduzieren. Das Culling von Strahlen auf der Grundlage des Winkels der
Oberflächennormalen mit der Strahlrichtung und das kachelbasierte Light-Culling sind
die zwei Methoden, die in dieser Arbeit implementiert worden sind. Die Ergebnisse zeigen
eine Leistungssteigerung von 39 % mit den in dieser Arbeit vorgestellten Verbesserungen.

xi

Abstract

In this thesis, we explore the topic of hybrid rendering, which combines rasterization and
ray tracing to produce high-fidelity images. While rasterization has been the primary
rendering technique for real-time applications for decades, it struggles with producing
accurate lighting effects because of its nature of processing each primitive in isolation.
Ray tracing has gained in popularity in recent years due to its ability to produce
accurate lighting effects, which is one of the primary contributors to perceived visual
fidelity. Achieving real-time performance with an entirely ray tracing-based renderer is
challenging because of the high number of rays required to produce images. This has
motivated the development of renderers that use rasterization as the primary rendering
technique and ray tracing for producing lighting effects.

The goal of this thesis is to showcase the usage of a forward+ pipeline to build a hybrid
renderer utilizing the hardware acceleration of the graphics card for ray tracing tasks.
To this end, we build a rendering engine that implements ray-traced hard shadows and
explore methods that reduce the number of shadow rays. Shadow ray culling based on
the angle of the surface normal with the ray direction and tile-based light culling are the
two methods implemented in this work. The results have shown a performance uplift of
39% with the improvements presented in this thesis.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Method . 2
1.2 Contributions . 2
1.3 Structure of this Work . 2

2 Background 5
2.1 Rasterization . 5
2.2 Limitations of Rasterization . 6
2.3 Ray Tracing . 6
2.4 Acceleration Structure . 7
2.5 Hybrid Rendering . 8
2.6 Reverse-Z Projection . 8
2.7 Cook-Torrance Light Model . 9

3 Related Work 11
3.1 Optimizing Bounding Volume Hierarchies 11
3.2 Introduction of Hardware Ray Tracing 11
3.3 Graphics API Support for Hardware Accelerated Ray Tracing 12
3.4 Light culling . 12

4 Designing a Rendering Engine 13
4.1 Depth-Prepass . 13
4.2 Light Culling . 14
4.3 Ray Traced Shadows . 17
4.4 Shading . 21

5 Results 23

xv

6 Conclusion and Limitations 27

Overview of Generative AI Tools Used 29

List of Figures 31

List of Tables 33

List of Algorithms 35

Bibliography 37

CHAPTER 1
Introduction

Light is a primary factor contributing to the perceived photorealism of computer graphics.
The demand for photorealistic graphics has been growing in recent years. This can be
observed in the gaming industry, where more and more new games aim to deliver high
visual fidelity.

Traditionally, the primary rendering technique for real-time applications has been rasteri-
zation. Rasterization’s strength is that it can render 3D meshes to the screen efficiently.
However, this rendering technique struggles with accurate light simulations. The reason
is that light calculations require the ability to query information about the whole scene,
which is usually enabled in rasterization by utilizing an approximated scene representation.

The rendering technique that does not suffer from this limitation is ray tracing. This
method allows information to be queried from any point to any direction in the scene
without resorting to approximated scenes.

Ray tracing is notorious for being computationally expensive to calculate. Even with
recent advancements in both hardware acceleration and software support, achieving
real-time performance by utilizing ray tracing remains challenging.

This has motivated the creation of hybrid renderers that take advantage of both ren-
dering techniques. These renderers use ray tracing for a selection of lighting effects and
rasterization as the primary rendering technique. Utilizing both techniques yields high
performance and visual fidelity.

One technique to integrate ray tracing into a rasterization-based rendering engine is to
use the rasterized world positions as a ray tracing starting point to determine the shading
for each fragment. The problem one quickly runs into while doing that is that triangles
might overlap, resulting in already shaded fragments getting overdrawn, rendering all
shading computations for the overdrawn fragments obsolete. This can be addressed by
utilizing the deferred rendering pipeline. It solves this so-called overdraw problem by

1

1. Introduction

storing all the visible geometry in a collection of textures, often called the geometry
buffer (G-Buffer), which are then utilized by a shading pass.

Forward+ is an alternative rendering technique aiming to reduce overdraw by utilizing a
depth prepass to determine the closest fragment to the camera. Compared to deferred
rendering, it requires less memory bandwidth, enables more complex materials, and
allows for easier transparency and hardware anti-aliasing.

Another benefit of the Forward+ pipeline is that it supports many-light rendering via
light culling. Light culling organizes lights into a data structure to enable the retrieval of
potential illuminators for each point in the scene. This is relevant for the ray tracer, as
the information from light culling also allows the culling of shadow rays, which we will
explore in this thesis.

1.1 Method

In this thesis, a hybrid renderer is built using the Rust programming language and Vulkan
Graphics API. The goal is to build an example hybrid renderer that illustrates the usage
of a Forward+ pipeline in a hybrid renderer.

This hybrid renderer implements hard shadows. Although hard shadows are rarely found
in nature, all the concepts used to reduce the number of shadow rays can be applied
to a soft shadow implementation. We will utilize the light culling from the Forward+
pipeline to minimize the number of shadow rays required. Although Forward+ does have
other positive properties that have already been mentioned, this thesis only focuses on
the points relevant to light.

We chose Rust as the programming language due to personal preference and its convenient
package manager called Cargo. The Vulkan graphics API is used to interface with the
dedicated hardware, which accelerates ray-tracing tasks.

1.2 Contributions

We will discuss how to design a hybrid rendering engine that uses both rasterization
and ray tracing. We will show how shadow rays can be culled based on light culling and
surface normals. We will highlight an improved method of accurately converting depth
values to world positions necessary for ray tracing. The surface normals for shadow ray
culling are reconstructed from depth values. We highlight a method that produces more
accurate reconstructed normals.

1.3 Structure of this Work

In Chapter 2 we dive into the theory of hybrid rendering explaining the concept of both
rasterization and ray tracing. Additionally, the limitations of rasterization are highlighted.

2

1.3. Structure of this Work

Chapter 3 discusses the related work that made it possible to integrate ray tracing into
real-time rendering applications.

Chapter 4 presents the design of the hybrid rendering engine. We go over all the necessary
rendering stages to produce a rendered image with ray-traced shadows.

The results and testing setup of the evaluation of this rendering engine and the methods
used to cull rays are presented in Chapter 5. In Chapter 6 we discuss the limitations and
viability of hybrid rendering methods for real-time applications.

3

CHAPTER 2
Background

This chapter gives an overview of the theory of rasterization and its limitations. We
introduce ray tracing and explain how rasterization and ray tracing can be combined
in a hybrid renderer. In order to improve the accuracy of depth values, the reverse-Z
projection is discussed. Finally, the theory of the light model used in the hybrid renderer
developed in this thesis is explained.

2.1 Rasterization

Figure 2.1: Overview of rasterization-based rendering [DNL+17]

Rasterization-based rendering is enabled by the graphics pipeline. The graphics pipeline,
as illustrated in Figure 2.1, consists of several stages, some programmable and others
fixed-function, meaning they are implemented on a hardware level and can therefore only
be configured. We will not cover geometry and tessellation shaders, as they are not used
in this project. In this context, scenes are represented as a set of meshes, where each
mesh is a set of primitives, usually triangles [AMHH19].

5

2. Background

The first stage of the graphics pipeline is Input Assembly, where vertex attributes, such
as position, texture coordinates, and normals are fetched from memory. Next comes
the programmable Vertex Shader stage, where vertices are transformed into clip space,
and additional vertex attributes for later shading are computed. In the following stage
Primitive Assembly groups vertices into primitives and culls primitives that face away
from the camera and those outside the viewport.

After those stages, often also referred to as the geometry processing stage, comes the
rasterization stage. This stage generates fragments through spatial sampling on a regular
grid for the remaining primitives and interpolates vertex attributes across the surface of
each primitive. Fragments are candidate pixels of the final image.

The following stages are usually referred to as the fragment processing stage. It starts with
the stage where early per-fragment operations are performed, which includes discarding
fragments through early depth and stencil testing. Next comes the programmable
fragment shader stage, where the fragment’s color is determined using the interpolated
vertex attributes generated in the rasterization stage. Finally, if early tests are disabled,
stencil and depth tests are performed, blending is applied and the final fragments are
written into the frame buffer.

2.2 Limitations of Rasterization

The fact that primitives in rasterization-based rendering are handled separately introduces
a limitation. This limitation is the ability to accurately simulate light transport. Light
effects such as shadows, reflections, refractions, and global illumination require that
multiple primitives can be considered at once. This is because those effects need to query
the surroundings, which rasterization can not provide without resorting to workarounds
[WS19].

Rasterization-based rendering techniques that work around this limitation include shadow
mapping, screen-space reflections, screen-space ambient occlusion, and baked light maps.
What all of those techniques have in common is that they build data structures that
contain approximations of the scene that are used for lookups during shading. Pre-
computing and storing this simplified scene in a resolution suitable for accurate light
simulations is generally infeasible, resulting in rendering artifacts or missing effects
[WS19]. In contrast to rasterization, ray tracing considers all primitives while tracing
rays. This makes it possible to query the surroundings and enable accurate light transport
simulations.

2.3 Ray Tracing

Ray tracing works similarly to how humans see. We see objects because they reflect light
from a light source into our eyes. Not all reflected light rays from a light source arrive
at our eyes. In ray tracing-based rendering, only rays that finally hit the camera are

6

2.4. Acceleration Structure

Figure 2.2: Ray tracing-based rendering [DNL+17]

relevant. For this reason, the process is performed in reverse, meaning the rays start
from the camera rather than from the light sources. This is valid because it is assumed
that light travels in straight lines. The inverse path of a line is again a line. The physical
properties of light hold regardless of the direction in which it travels.

As illustrated in Figure 2.2, for every pixel on the screen a ray is traced from the
camera’s position through the screen’s pixel into the scene. Those initial rays are called
primary rays. When those rays intersect with an object, secondary rays are cast from
the intersection point to determine the shading of the point. Shadow rays are used to
determine whether any light source illuminates the intersection point of the primary ray
with the scene’s geometry. Other secondary rays include the reflection ray for reflective
materials and the refraction ray for translucent materials.

There are different types of ray tracing that allow the calculation of certain lighting effects.
With Whitted ray tracing, a single deterministic sample per pixel is sufficient to create
effects such as hard shadows or specular reflections [Whi80]. Distributed ray tracing
uses several random samples per pixel from different directions, making soft shadows
or diffuse reflections possible [CPC84]. Path tracing builds on this and enables global
illumination using several stochastic samples per pixel and multiple bounces [Kaj86]. As
it is necessary to limit the number of samples per pixel for real-time performance, the
stochastic nature of distributed ray tracing and path tracing leads to noise in the image.
This thesis focuses on Whitted ray tracing to create hard shadows.

2.4 Acceleration Structure

A naive implementation of ray tracing tests each ray for intersection with every primitive
of the scene. The number of operations of this approach is in Ω(n · m), where n is the
number of rays and m is the number of primitives. With a scene that consists of several
thousands to millions of triangles and a ray for each pixel of a 1080p screen, the number

7

2. Background

of operations hinders real-time performance. To address this, acceleration structures
have been developed to reduce the number of intersection tests.

The Bounding Volume Hierarchy (BVH) is the de facto standard acceleration structure.
Bounding volumes are tightly enclosing geometries that are cheap to test for intersections
with a ray. Common volumes are Axis-Aligned Bounding Box (AABB), Oriented
Bounding Box, or Bounding Spheres. In a BVH, the bounding volumes are organized
into a tree-structured hierarchy, where each inner node represents a bounding volume
and the leaf nodes are primitives [MOB+21].

The traversal of the acceleration structure starts by testing for intersection with the root
bounding volume. If an intersection is found, then the ray is recursively tested with the
subsequent child nodes until a leaf node is reached, where only a handful of primitives
need to be tested for intersection. Using this acceleration structure, all ray-triangle
intersection tests of triangles contained in a bounding box can be skipped if the ray does
not intersect the respective bounding volume.

2.5 Hybrid Rendering
Ray tracing can be integrated into traditional renderers that use rasterization. Raster-
ization can be used to find the intersection point of the primary ray with the scene’s
geometry. This is possible because a depth buffer is used for rasterization-based rendering
to ensure that only the closest fragment to the camera is written into the frame buffer.
The depth buffer stores the depth of each fragment, which is used during depth testing
in the graphics pipeline. Those depth values can be converted back into world positions
that can be used as the starting point for secondary rays such as shadow rays.

2.6 Reverse-Z Projection
A reverse-Z projection matrix can be used to enhance the precision of the depth values.
As seen in Equation 2.1, the matrix is adapted for use in Vulkan, which has a right-handed
coordinate system with the y-axis pointing down. In the equation, a is the aspect ratio
of the framebuffer w

h , ϕ the field of view angle, f the distance to the far plane, and n the
distance to the near plane.

P (a, ϕ, zn, zf) =

⎛⎜⎜⎜⎜⎜⎝
a−1

tan ϕ
2

0 0 0
0 − 1

tan ϕ
2

0 0
0 0 − zf

zn−zf
− zf ·zn

zn−zf

0 0 −1 0

⎞⎟⎟⎟⎟⎟⎠ (2.1)

The traditional projection matrix maps the near plane to a depth value of 0.0 and the
far plane to 1.0. Due to the nature of IEEE 754 floating point numbers, most of the
precision is near 0.0, where the range from 0.0 to 0.5 contains 99.21% of all representable

8

2.7. Cook-Torrance Light Model

values [HH]. This results in most of the depth buffer’s precision being concentrated near
the camera, while at greater distances the precision is decreased significantly.

The reverse-Z projection matrix maps the near plane to a depth of 1.0 and the far plane
to 0.0. This results in a more uniform distribution of precision across the entire depth
range [Ree]. Consequently, the depth testing operator has to be changed from ≤ (less
than or equal) to ≥ (greater than or equal) and the clear value to 0.0 instead of 1.0.
Additionally, when fetching the maximum depth, the depth at which objects are the
furthest, the minimum operator has to be used, and vice versa.

2.7 Cook-Torrance Light Model
The Cook-Torrance light model is based on the microfacet theory where it is said that
any surface can be described by tiny imaginary surface patches, which are much smaller
than an output pixel. The alignment of said surface patches can vary depending on the
roughness parameter [WMLT07].

Using the rendering equation, the outgoing radiance Lo(x, ω0) at point x in direction ω0
can be calculated as follows [BWB19]:

Lo(x, ω0) = Le(ω0) +
∫︂

Ω
fr(x, ωi, ω0)Li(x, ωi)(ωi · n)dωi (2.2)

In this equation, Le(ω0) represents the self-emitted radiance, fr(x, ωi, ω0) is the Bidi-
rectional Reflectance Distribution Function (BRDF), Li(x, ωi) denotes the incoming
radiance of the i-th light from direction ωi and n the normalized surface normal.

The Cook-Torrance BRDF models how much each light ray contributes to the final
reflected light from an opaque object. The BRDF is composed of a diffuse and specular
term and is combined as follows:

fr = kd · flambert⏞ ⏟⏟ ⏞
diffuse term

+ ks · fcook-torrance⏞ ⏟⏟ ⏞
specular term

, where ks + kd = 1 (2.3)

In this model, the constants ks and kd represent the ratio of incoming light that is
reflected and refracted, respectively, and must sum to 1 to ensure energy conservation.
The Lambertian reflection model denoted as flambert is the diffuse part of the BRDF.
The ks constant is calculated through the Fresnel function, which models the proportion
of reflected and refracted light [Sch94].

The specular term fcook-torrance is further refined by the normal distribution function and
the geometry function. The normal distribution function approximates the proportion of
microfacets that are orthogonal to the halfway vector h between the surface normal n
and light direction ωi. The geometry function approximates the proportion of microfacets
that are self-shadowing [WMLT07].

9

CHAPTER 3
Related Work

In this section, we will discuss the advancements in hybrid rendering. Since rasterization
has been a well-established rendering technique in real-time rendering for decades, we
will focus on the advancements that made ray tracing possible in real-time.

3.1 Optimizing Bounding Volume Hierarchies
Current research on acceleration structures focuses on optimizing both the construction
time and rendering time of the bounding volume hierarchies. The quality of an acceleration
structure is determined by the predicted number of required operations to find an
intersection with a ray [MOB+21]. For real-time applications with dynamic scenes, we
strive for a balance of construction time and traversal time. In the survey by Meister
et al. [MOB+21], they present heuristics for determining the probability of traversing a
child node given the parent node is hit. One of the highlighted heuristics is the surface
area heuristic (SAH). Under the assumption that rays are uniformly distributed, SAH
states that the probability of hitting a node is proportional to its surface area. Other
heuristics also mentioned in the paper use the ratio of ray hits or the ratio of visible
primitives [MOB+21].

3.2 Introduction of Hardware Ray Tracing
Motivated by the growing demand for photorealism in the gaming industry, graphics card
manufacturers have started integrating dedicated hardware into their graphics cards that
accelerate ray tracing tasks. The two most common ray tracing tasks are the traversal
of acceleration structures and ray-triangle intersection tests. The acceleration structure
implemented on the graphics card for ray tracing is the Bounding Volume Hierarchy
(BVH). Nvidia and Intel accelerate the traversal of the Bounding Volume Hierarchies
(BVHs) and ray-triangle intersection tests with their RT Core and Xe Cores, respectively

11

3. Related Work

[NVI18, Int22]. AMD’s Ray Accelerator solely accelerates the calculation of ray-triangle
intersections [Pom21].

3.3 Graphics API Support for Hardware Accelerated Ray
Tracing

With the introduction of specialized hardware for ray tracing, graphics APIs had to add
an interface to utilize them. Older graphics APIs such as OpenGL or prior versions of
DirectX 12 do not support interfacing with the dedicated hardware. Interfacing with
said hardware is possible in Vulkan using the ray tracing extensions or in DX12 using the
DirectX Raytracing feature. The two interface implementations provide ways to build
acceleration structures and trace rays on the GPU. Rays can be traced inline in any type
of shader or in a dedicated ray tracing pipeline to enable dynamic shader execution based
on different object hits.

3.4 Light culling
Light culling can not only improve shading performance but also reduce the number of
shadow rays. Essentially, light culling determines which lights illuminate a certain region.
If light culling determines that a certain light does not affect a given space, then the light
does not need to be considered in the shading calculation, and no shadow ray needs to
be traced to that light.

A common approach is to divide the screen into tiles. This approach is used in both tiled-
[OA11] and clustered [OBA12] shading. The screen-space tiles extend into volumes in
3D. Each tile stores the lights where the light’s volume intersects with the tile’s volume.
In clustered shading, the volumes are also subdivided along the Z axis to reduce the
number of false positives due to depth discontinuities such as edges.

A different approach that is especially suited for ray tracing is to use bounding volume
hierarchies. In the work of Moreau et al. [MPC19] they use a two-level BVH to enable
efficient updates. Instead of recreating the entire hierarchy from scratch, they refit
changes and retain the original topology.

12

CHAPTER 4
Designing a Rendering Engine

This chapter describes the implementation of the hybrid rendering engine. As depicted
in Figure 4.1, the rendering engine goes through four passes to render a final frame.
Those passes are the depth pre-pass, light culling pass, ray traced shadows pass, and the
forward pass for shading. Since the results of each pass are required in subsequent passes,
it is necessary to place synchronization barriers between each pass.

The pipeline used for this renderer is based on the Forward+ pipeline presented by
Harada et al. [HMY12] and is extended with a ray-traced shadow pass.

4.1 Depth-Prepass
The entire scene is rendered in the depth pre-pass stage, but only depth values are stored.
No fragment shading is performed, eliminating the need for a fragment shader in this

Depth Pre-pass

Light Culling

Ray Traced

Shadows

Shading

Execution flow

of one frame

barrier barrier barrier

Figure 4.1: Overview of rendering pipeline: The pipeline consists of four passes highlighted
in yellow boxes. The arrows illustrate the data flow between different passes, while the
barriers ensure proper synchronization necessitated by the data dependencies.

13

4. Designing a Rendering Engine

pass. We utilize a reverse Z projection matrix to improve the precision of the depth
values as described in Section 2.6. This pass is essential for the other three passes that
use the depth values.

4.2 Light Culling
Light culling is a technique for rendering many lights by efficiently determining which
lights affect which parts of the scene and therefore minimizing the number of lights that
need to be considered for each texel’s shading. Performing light culling on a per-pixel
basis is not only computationally expensive due to the required number of intersection
tests, but it also significantly increases the memory footprint due to the need to store
light indices [HMY12].

4.2.1 Tile-based Light Culling

A more practical solution to this problem of per-pixel light culling is to divide the frame
into equally sized square tiles and perform light culling for those larger areas. All pixels
within a tile share a common light list. This means that even if only a single pixel of a tile
is affected by a light source, this light would still be included in the shading calculation
of all the tile’s pixels. It is therefore crucial to choose a tile size that balances accuracy
and efficiency [HMY12].

In 3D space, each tile’s volume forms a frustum due to perspective effects. Lights that
intersect a tile’s frustum are included in its shading calculations. Figure 4.2 illustrates
how light culling works on a single tile.

Pointlight

near plane of tile

min depth

max depthPointlight

far plane of tile

Figure 4.2: Light Culling: Visualized in a top-view is the frustum of a single tile outlined
in red, with two point lights (blue and green) and objects (purple). The minimum and
maximum depth bound the frustum. Lights volumes such as the blue shaded point light
that intersects the tile’s frustum, are stored in a list of lights for the corresponding tile.
The green shaded point light does not intersect the tile’s frustum and can therefore be
omitted in the shading calculations.

14

4.2. Light Culling

4.2.2 Light Range Calculation

Light culling requires that light sources have a finite range because lights with an infinite
range can never be culled as they illuminate the whole scene. The glTF file format used
for scene loading in this renderer, allows light sources to have an undefined range, which
should be interpreted as an infinite range. In this case, it is necessary to calculate a
range where most of the light is transported. We have chosen a threshold of 0.02 for the
minimum light intensity, similar to the approach in [dV].

I/D2 = 0.02 ⇐⇒ D = 50 ·
√

0.02 · I (4.1)

Here, I is the intensity of the light source, and D is the distance at which the light’s
intensity is measured. This constant 0.02 is a threshold that is close to the 5/256 =
0.01953125 from [dV]. When solving for D, this results in a function that requires only a
few operations to calculate. Only non-negative solutions are relevant for D.

4.2.3 Implementation

We implement light culling using the gather approach, as described by Harada et al.
[HMY12]. The idea is to have a thread group for each tile, each calculating the light
culling for their respective tile, and then gather light culling results into a common data
structure. In this implementation, the light culling step is split into two compute shaders
that run in sequence.

Two data structures are used together to store the results of light culling: The Light
Index List and the Light Grid. The Light Index List contains sets of light indices for
all tiles, stored in a linear list. The Light Grid data structure associates a tile to its
corresponding slice in the Light Index List by specifying the offset and length. This is
illustrated in Figure 4.3.

The first step in light culling is to calculate the four side planes of the tile’s frustum.
This involves transforming the screen-space positions of the four tile corners into view
space. A plane is defined by its normal and the distance to the origin. For each plane
of the frustum, two of the transformed corner positions and the eye position are used
to determine the plane parameters. Note that the eye position is at the origin in view
space and can therefore be hard-coded to (0, 0, 0). Those steps are performed by the first
shader, which stores the resulting frustums in a buffer for use in the next light culling
shader.

Next, the remaining two front and back planes are calculated by finding the maximum
and minimum depth within the tile. The depth values are fetched from the depth
buffer created during the depth pre-pass. When using a reverse Z projection matrix, the
minimum operator must be used to determine the maximum depth and vice versa.

15

4. Designing a Rendering Engine

Figure 4.3: Light culling data structures: The Light Index List is a linear list consisting
of sets of light indices for all tiles. The Light Grid associates a tile to its corresponding
slice in the Light Index List. Each entry consists of the offset (top value) and the length
(bottom value). [Jer]

In a round-robin fashion, each thread in the thread group is assigned a light to check for
intersection with the tile’s frustum. Different algorithms are used for the three punctual
light types:

• Point lights intersect the frustum if the sphere is not fully contained in the negative
half-space of at least one of the frustum’s planes [Eri05].

• Spot lights intersect the frustum if the tip of its cone or the point Q on the base,
which is furthest away from the plane, is not inside the negative half-space of any
of the frustum’s planes [Eri05].

• Directional lights do not have a limited range and are therefore never culled.

There is, however, a problem with those intersection tests: It is possible to have a point
light that intersects the planes but not the actual frustum volume. This issue is illustrated
in Figure 4.4. Such cases, where a light is incorrectly determined to intersect the frustum,
are false positives.

To reduce the number of false positives, we apply an optimization described by Turanszkij
[tur18]. The axis-aligned bounding box (AABB) of the tile’s frustum is calculated. The
AABB is a reasonable approximation when the range between minimum and maximum
depth is small, as illustrated in Figure 4.5.

This optimization is used together with the previous intersection testing method for
point lights. Combining both approaches makes it possible to leverage the benefits of the

16

4.3. Ray Traced Shadows

AABB optimization while not introducing new false positives when the depth range is
large.

Pointlight

Tile

Frustum Plane

Figure 4.4: False positive case: Front view of a tile and point light. The point light
intersects two side planes of the tile’s frustum but not the actual frustum.

far-plane

max depth

min depth

near-plane

Pointlight

Pointlight

Figure 4.5: AABB Optimization: Two top views of tile’s frustums with varying depth
ranges. The left frustum has a bigger depth range, while the right one has a smaller
depth range. The area highlighted in orange represents the volume where false positives
may occur using this method. This volume is smaller for smaller depth ranges.

Finally, the results of each thread group are written into the data structure and to be
used in both the subsequent shadow and shading pass.

4.3 Ray Traced Shadows
In this renderer, shadows for punctual lights producing hard shadows are implemented
using ray tracing through ray queries in a separate compute shader. Ray queries enable

17

4. Designing a Rendering Engine

testing for intersections with geometry within the scene.

4.3.1 Normal Reconstruction from Depth

Since ray tracing is a relatively expensive operation, we aim to minimize the number of
traced rays. One way to save shadow rays is to examine the surface normal and only
trace when the angle between the surface normal and the light direction is less than 90°.
When both vectors are normalized, this can be calculated using the dot product of both
vectors. In this case, a negative dot product indicates that the surface is facing away
from the light and the corresponding shadow ray does not need to be traced. Given
that only depth values from the depth pre-pass are available at this stage, we opted to
reconstruct the surface normal through the depth values.

The shadow compute shader is invoked for each texel of the depth buffer with a group
size equal to the tile size, used in the light culling step. For the normal reconstruction,
at least one extra depth sample per axis has to be fetched. Every sample from the depth
buffer is used multiple times, when it is the current texel and as the neighboring sample
for normal reconstruction. As reading from shared memory is cheaper than fetching a
texture, group shared memory is used to reduce the number of texture look-ups. For
this, each group, responsible for a single tile, fetches the relevant depth information for
its tile and puts it in the group shared memory. This is implemented in a way where
each thread only fetches at most 2 texels.

The naive approach for reconstructing the normal takes two samples in each axis, the
current and next one, converts all three depth values to world positions, calculates the
vectors from the current world position to the next world positions, and finally computes
the cross-product of the resulting two vectors. However, this approach struggles to produce
correct normals at the edges. Figure 4.6 (1) illustrates how this naive implementation
can lead to incorrect shadow ray culling at edges.

A more sophisticated approach, as described by Yuwen Wu [Wu] and also implemented in
this renderer, takes advantage of using five depth samples per axis compared to the two
of the naive approach. These samples include the current sample and the neighboring
two samples in either direction. To calculate the derivative for both axes, the two extra
samples for each direction are extrapolated to the center sample, creating two new points.
The point that is closer to the actual center point is taken for the derivative calculation.
Each depth value is first transformed into world space and subtracted from each other.
Finally, the cross-product of the horizontal and vertical derivatives is calculated to get
the normal. This approach promises to provide reconstructed normals with no artifacts
on depth discontinuities or edges. There is however the edge-case where artifacts do
occur on triangles that are less than 3 pixels across. This method is illustrated in Figure
4.6 (2).

18

4.3. Ray Traced Shadows

a

b

c

d

e

a

b

c

d

e

c1

c2

LL

(1) (2)

Figure 4.6: Normal Reconstruction: Geometry is sampled at 5 positions (a-e) with a
light at L. The semi-circle represents all light directions where ray tracing still needs to
be performed for shadow determination. In (1), the naive approach calculates the normal
to the segment cd, which leads to c falsely being in shadow, even though the normal at c
(blue) faces L. In (2), the improved approach extrapolated segments ab and ed to get the
points c1 and c2, respectively. The extrapolated point c1 is closer to the actual point c,
so the normal to segment ab is correctly determined to be the surface normal at sample
point c.

4.3.2 Optimized Depth-To-World-Position Conversion

Measures have been implemented to ensure that the world positions in both the shadow
pass and shading pass are as close as possible to each other by minimizing floating-point
errors in the depth-to-world-position conversion. Tracing rays for a different position
from what is ultimately shaded could lead to incorrect shadows. Additionally, motivated
by the frequent use of the conversion function, the number of operations required for
calculating world positions from depth values is reduced to improve performance.

The Herbie web demo is used, which can optimize expressions by finding floating-
point problems and suggesting alternative expressions [Gro]. Herbie optimizes the
accuracy of the first step of the depth-to-world-space conversion where the screen-space
position is transformed into Normalized Device Coordinates (NDC). The initial expression
((u + 0.5) ∗ (1/w)) ∗ 2 − 1, which yielded a 99.6% accuracy, but Herbie optimized it
to fma (u+0.5

w , 2, −1) with a 100% accuracy. fma (a, b, c) performs a fused multiply-add
operation a ∗ b + c. In the initial expression, u is the texel coordinates in the [0, w] range,
and w is the width of the window extent. The same expression is used to calculate the
second component of the NDC vector.

Another accuracy optimization is simplifying from a matrix-vector multiplication to a

19

4. Designing a Rendering Engine

vector definition where the result of the original multiplication is inlined. The transfor-
mation from NDC to view space is done via the inverse of the used projection matrix.
The used projection matrix, which can also be seen in Equation 2.1, has the following
structure:

⎛⎜⎜⎜⎝
A 0 0 0
0 B 0 0
0 0 C D
0 0 −1 0

⎞⎟⎟⎟⎠ (4.2)

The computer algebra system Mathcad [PTC] is used to find the simplification as seen in
Equation 4.3. The inverse matrix is calculated using this formula: A−1 = 1

det AÂ
T . The

calculation of the determinant alone requires 28 multiplications, 12 subtractions, and 5
additions, as seen in the implementation of the determinant method for 4x4 matrices
[Ols20]. It can be argued that this simplification results in fewer rounding errors since
the inverse of the projection matrix is not needed anymore.

⎛⎜⎜⎜⎝
A 0 0 0
0 B 0 0
0 0 C D
0 0 −1 0

⎞⎟⎟⎟⎠
−1

·

⎛⎜⎜⎜⎝
sx

sy

depth
1.0

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
sx
A
sy

B
−1.0

depth+C
D

⎞⎟⎟⎟⎠ (4.3)

The final version of the depth-to-world-position conversion function can be seen in
Algorithm 4.1.

Algorithm 4.1: Conversion from depth value to world positions
1 Function world_pos_from_depth(vec2 screen, float depth):
2 vec2 ndc = fma((screen + vec2(0.5)) / vec2(data.extent), vec2(2), vec2(-1));
3 float A = camera.proj[0][0];
4 float B = camera.proj[1][1];
5 float C = camera.proj[2][2];
6 float D = camera.proj[3][2];
7 vec4 view_space = vec4(ndc.x / A, ndc.y / B, -1.0, (depth + C) / D);
8 view_space /= view_space.w;
9 vec4 world_space = camera.view_inv * view_space;

10 return world_space.xyz;

4.3.3 Tracing Shadow Rays

Each thread calculates the visibility via ray tracing for its corresponding texel to all
lights in its tile where the angle between the surface normal and the light direction does
not exceed 90°.

20

4.4. Shading

The direction of the ray is the normalized light vector pointing to the light. A constant
tmin of 0.001 is used for ray tracing, skipping any intersections that are closer than 0.001
units from the origin of the ray to eliminate self-intersection artifacts. tmax is in the
case of a point or spot light the distance between the light source and the current world
position and for directional light a constant large distance of 1000.0 is used. Ray tracing
flags gl_RayFlagsTerminateOnFirstHitEXT and gl_RayFlagsOpaqueEXT are
set to stop at the first intersection and indicate that there is no transparency in place.

A 32-bit integer texture is used, with each texel representing a bitmask that stores the
visibility information. For every light at index i in the tile’s light list, if no intersection
from the texel’s world position with any geometry in the light direction is found, the i-th
least significant bit is set in the bitmask. This bitmask is later used in shading pass to
darken areas that are in shadow.

4.4 Shading
In the shading pass, the entire scene is rendered again, taking advantage of the already
calculated depth buffer to minimize overshading. The usage of the depth buffer does not
eliminate overshading, as shading is performed in 2x2 texel quads for the calculation
of derivatives used for mipmapping, and even if only one of the four texels in the quad
is shaded, all four have to be shaded [Wim23]. Since we only have opaque objects, the
depth tests compare operator is set to EQUAL, which translates to only keeping fragments
whose depth is the same as the one from the depth buffer.

To use the albedo and roughness-metallic textures in the shading pass, a descriptor set
with variable length is used, which can be accessed with an index given in the material
struct. This approach is called bindless textures, because it allows for fewer binds of
textures, as all textures are bound at once, enabling the use of indirect draw calls.

This renderer employs the Cook-Torrance light model [CT82] to achieve physically based
rendering, which is further described in more detail in Section 2.7. For the Fresnel
function, the renderer uses Schlick’s approximation [Sch94] and implements the GGX-
Trowbridge Reitz normal distribution function. Additionally, the geometry function
utilizes the Smith method in conjunction with the Schlick-GGX model [WMLT07].

Since we have a finite number of infinitely small light sources, we can replace the integral
in Equation 2.2 with a sum. Furthermore, our objects do not emit light so the Le(ω0)
term can be omitted. Shadows are introduced by adding a visibility term v(xs, ωl) that
equals 1 if the screen-space position sx of point x can see the light source Li and 0
otherwise. The visibility term is queried from the shadow bitmask texture generated in
the shadow pass. Additionally, only direct illumination is calculated.

With these considerations, the outgoing radiance equation simplifies to:

Lo(x, ω0) =
∑︂

l

fr(x, ωl, ω0)Li(x, ωl)V (xs, ωl)(ωl · n) (4.4)

21

CHAPTER 5
Results

We tested various tile sizes, the effect of light culling, and the application of the AABB
optimization. Additionally, culling shadow rays using reconstructed normals is tested
with both the naive and improved approach.

As the test scene, we used the widely used Sponza scene [DMM10] with ten point-lights
spread around the scene with varying intensities, colors, and ranges. A fixed camera is
positioned in a central location, to capture most of the scene’s complexity.

All tests were performed on a machine running Windows 10 with a Ryzen 7 3700X
CPU and Nvidia RTX 2060 SUPER GPU at a resolution of 1080p. The timings of each
rendering stage are measured using Vulkan timestamp queries and are averages over the
last second.

Enabled Optimisations FT (ms) Diff (%)
no optimisations 16 0.00
light culling 11.52 -28.00
light culling + AABB 10.93 -31.69
light culling + AABB + shadow ray culling 9.59 -40.06
light culling + AABB + improved shadow ray culling 9.67 -39.56
improved shadow ray culling 13.55 -15.31

Table 5.1: Frame time (FT) of different optimization configurations along with the
difference in frame time in % compared to the reference performance with no optimizations.
Measurements are performed using a tile size of 8x8.

Table 5.1 shows our performance measurements for different optimization configurations
using a tile size of 8x8. The optimal configuration combines AABB-optimised light culling
and shadow ray culling using the improved normal reconstruction. This configuration
achieves the shortest frame time with the fewest artifacts, being 39.56 % faster than the

23

5. Results

reference configuration with no optimization enabled. The primary bottleneck in the
rendering pipeline is the ray-traced shadow pass, which on average takes up 92 % of the
frame time.

The optimization that had the greatest impact on performance, after light culling, is the
culling of shadow rays using reconstructed normals. Even with light culling disabled, this
optimization improves performance by 15.31 %. Enabling the AABB optimization yields
a frame time improvement of 5.12 %. The improved normal reconstruction method only
takes 0.8 % longer than the naive approach.

Tests have shown that smaller tile sizes improve frame times but only to a small degree.
With each halving of the tile size, the memory footprint of the light culling data structures
increases by a factor of 4. Going from 16x16 to 8x8 improves the frame time by 1.25 %
but requires about four times the memory.

Figure 5.1: Rendered Image

The rendered image is shown in Figure 5.1. In Figure 5.2 several heatmaps visualize the
number of traced rays for each pixel. In the heatmaps, black and blue indicate 0-3 rays,
cyan and green 4-7 rays, and yellow and red 8-10 rays.

Figure 5.3 illustrates the naive and improved reconstruction along with the reference
face normals. The error maps highlight how much the reconstructed normals differ from
the reference normals. The naive approach has a mean difference of 0.07975 and the
improved approach has a mean difference of 0.02264.

tile size frame time (ms)
8x8 9.44
16x16 9.56
32x32 9.99

Table 5.2: Frame times of different tile sizes having all optimizations enabled.

24

(a) No light culling (b) Light culling

(c) Light culling + AABB (d) Light culling + AABB + naive shadow culling

(e) Light culling + AABB + imp. shadow culling (f) No light culling + imp. shadow culling

Figure 5.2: Ray Count Heatmaps: The heatmaps are computed in a shader within the
rendering engine. The values in the heatmaps range from 0 to 10, with low counts
represented in black and blue, medium counts in cyan and green, and high counts in
yellow and red. Heatmaps (b-c) appear pixelated because they only use per-tile data,
which remains constant across all the pixels in a tile. Note that the missing rays at edges
in (d) result from the incorrect normal generated by the naive normal reconstruction
approach.

25

5. Results

(a) Reference

(b) Naive normal reconstruction with FLIP Error Map to reference [ANA+20]

(c) Improved normal reconstruction with FLIP Error Map to reference [ANA+20]

Figure 5.3: Normal reconstructions: Visualization of reconstructed normals along with
their respective error map to the reference normals.

26

CHAPTER 6
Conclusion and Limitations

This implementation of a hybrid renderer has a few limitations. First, it only supports
hard shadows, as all light sources are punctual, resulting in sharp shadow edges. This
pixel-perfect nature, without any filtering, leads to aliasing artifacts. Additionally, the
renderer limits the number of lights per tile to 32 to fit the binary visibility information
of a pixel within a tile into a single 32-bit integer. Tracing more than 32 lights per pixel
in a tile would result in less than real-time rendering performance.

Another limitation is that the renderer only supports opaque objects and cannot handle
transparent or translucent materials. Supporting those would require more logic in both
the light culling step and shadow calculation, which is beyond the scope of this project.

Despite these limitations, this thesis demonstrates the viability of using a Forward+
pipeline for hybrid rendering. We showed that rather than using a G-Buffer that includes
world positions, it is possible to convert the already existing depth values from the
Forward+ depth-prepass to world positions for ray tracing purposes.

Moreover, light culling has proven to be a significant performance improvement, as it
reduces the number of lights to consider and, consequently, the number of rays that need
to be traced. As the shadow pass takes the most time to calculate, reducing the number
of rays improves performance. It is therefore worth optimizing the light culling stage
to minimize the number of false positives. Even optimizations such as using AABBs
to better bound the tile’s volume, which slow down the light culling stage, have a net
positive impact, as ray tracing is the primary bottleneck.

Another ray reduction method, resulting in a substantial performance gain, is culling
shadow rays for surfaces that face away from the light. We showed that the required
surface normal can be accurately reconstructed using the depth values from the depth
pre-pass, as long as the triangle size is greater than 3 pixels across.

27

6. Conclusion and Limitations

In conclusion, the result of this work demonstrates that Forward+ is a viable option for
real-time hybrid rendering applications.

28

Overview of Generative AI Tools
Used

During the writing of this thesis, ChatGPT 4o and Grammarly were used to find better
formulations and for proofreading.

29

List of Figures

2.1 Overview of rasterization-based rendering [DNL+17] 5
2.2 Ray tracing-based rendering [DNL+17] . 7

4.1 Overview of rendering pipeline: The pipeline consists of four passes highlighted
in yellow boxes. The arrows illustrate the data flow between different passes,
while the barriers ensure proper synchronization necessitated by the data
dependencies. 13

4.2 Light Culling: Visualized in a top-view is the frustum of a single tile outlined
in red, with two point lights (blue and green) and objects (purple). The
minimum and maximum depth bound the frustum. Lights volumes such as
the blue shaded point light that intersects the tile’s frustum, are stored in a
list of lights for the corresponding tile. The green shaded point light does
not intersect the tile’s frustum and can therefore be omitted in the shading
calculations. 14

4.3 Light culling data structures: The Light Index List is a linear list consisting
of sets of light indices for all tiles. The Light Grid associates a tile to its
corresponding slice in the Light Index List. Each entry consists of the offset
(top value) and the length (bottom value). [Jer] 16

4.4 False positive case: Front view of a tile and point light. The point light
intersects two side planes of the tile’s frustum but not the actual frustum. 17

4.5 AABB Optimization: Two top views of tile’s frustums with varying depth
ranges. The left frustum has a bigger depth range, while the right one has a
smaller depth range. The area highlighted in orange represents the volume
where false positives may occur using this method. This volume is smaller for
smaller depth ranges. 17

4.6 Normal Reconstruction: Geometry is sampled at 5 positions (a-e) with a
light at L. The semi-circle represents all light directions where ray tracing
still needs to be performed for shadow determination. In (1), the naive
approach calculates the normal to the segment cd, which leads to c falsely
being in shadow, even though the normal at c (blue) faces L. In (2), the
improved approach extrapolated segments ab and ed to get the points c1 and
c2, respectively. The extrapolated point c1 is closer to the actual point c, so
the normal to segment ab is correctly determined to be the surface normal at
sample point c. 19

31

5.1 Rendered Image . 24
5.2 Ray Count Heatmaps: The heatmaps are computed in a shader within the

rendering engine. The values in the heatmaps range from 0 to 10, with low
counts represented in black and blue, medium counts in cyan and green, and
high counts in yellow and red. Heatmaps (b-c) appear pixelated because they
only use per-tile data, which remains constant across all the pixels in a tile.
Note that the missing rays at edges in (d) result from the incorrect normal
generated by the naive normal reconstruction approach. 25

5.3 Normal reconstructions: Visualization of reconstructed normals along with
their respective error map to the reference normals. 26

32

List of Tables

5.1 Frame time (FT) of different optimization configurations along with the
difference in frame time in % compared to the reference performance with no
optimizations. Measurements are performed using a tile size of 8x8. . . . 23

5.2 Frame times of different tile sizes having all optimizations enabled. . . . 24

33

List of Algorithms

4.1 Conversion from depth value to world positions 20

35

Bibliography

[AMHH19] Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. Real-time rendering.
AK Peters/crc Press, 2019.

[ANA+20] Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson,
Kalle Åström, and Mark D. Fairchild. FLIP: A Difference Evaluator for
Alternating Images. Proceedings of the ACM on Computer Graphics and
Interactive Techniques, 3(2):15:1–15:23, 2020.

[BWB19] Jakub Boksansky, Michael Wimmer, and Jiri Bittner. Ray traced shadows:
maintaining real-time frame rates, pages 159–182. Springer, 2019.

[CPC84] Robert L Cook, Thomas Porter, and Loren Carpenter. Distributed ray
tracing. ACM SIGGRAPH Computer Graphics, 18(3):137–145, 1984.

[CT82] Robert Cook and Kenneth Torrance. A reflectance model for computer
graphics. ACM Trans. Graph., 1:7–24, 01 1982.

[DMM10] Marko Dabrovic, Frank Meinl, and Morgan McGuire. Sponza model.
https://github.com/KhronosGroup/glTF-Sample-Assets/
tree/main/Models/Sponza, 2010. Accessed: 2024-09-22.

[DNL+17] Yangdong Deng, Yufei Ni, Zonghui Li, Shuai Mu, and Wenjun Zhang. Toward
real-time ray tracing: A survey on hardware acceleration and microarchitec-
ture techniques. ACM Comput. Surv., 50(4), August 2017.

[dV] Joey de Vries. LearnOpenGL - Deferred Shading. https://learnopengl.
com/Advanced-Lighting/Deferred-Shading. Accessed: 2024-07-16.

[Eri05] Christer Ericson. Chapter 5 - basic primitive tests. In Christer Ericson, editor,
Real-Time Collision Detection, The Morgan Kaufmann Series in Interactive
3D Technology, pages 125–233. Morgan Kaufmann, San Francisco, 2005.

[Gro] UW PLSE Group. Herbie: Automatically improving floating point accuracy.
https://herbie.uwplse.org/. Accessed: 2024-08-08.

37

https://github.com/KhronosGroup/glTF-Sample-Assets/tree/main/Models/Sponza
https://github.com/KhronosGroup/glTF-Sample-Assets/tree/main/Models/Sponza
https://learnopengl.com/Advanced-Lighting/Deferred-Shading
https://learnopengl.com/Advanced-Lighting/Deferred-Shading
https://herbie.uwplse.org/

[HH] Tom Hulton-Harrop. Reverse z (and why it’s so awesome).
https://tomhultonharrop.com/mathematics/graphics/2023/
08/06/reverse-z.html. Accessed: 2024-07-25.

[HMY12] Takahiro Harada, Jay McKee, and Jason C Yang. Forward+: Bringing
deferred lighting to the next level. In Eurographics (Short Papers), pages
5–8, 2012.

[Int22] Intel. Introduction to the xe-hpg architecture. https://www.intel.
com/content/www/us/en/developer/articles/technical/
introduction-to-the-xe-hpg-architecture.html, 2022. Ac-
cessed: 2024-09-08.

[Jer] Jeremiah. Forward+ rendering. https://www.3dgep.com/
forward-plus/. Accessed: 2024-06-08.

[Kaj86] James T Kajiya. The rendering equation. ACM SIGGRAPH Computer
Graphics, 20(4):143–150, 1986.

[MOB+21] Daniel Meister, Shinji Ogaki, Carsten Benthin, Michael J. Doyle, Michael
Guthe, and Jiří Bittner. A survey on bounding volume hierarchies for ray
tracing. Computer Graphics Forum, 40(2):683–712, 2021.

[MPC19] Pierre Moreau, Matt Pharr, and Petrik Clarberg. Dynamic many-light sam-
pling for real-time ray tracing. In ACM/EG Symposium on High Performance
Graphics (HPG), June 2019.

[NVI18] NVIDIA. Nvidia turing gpu architecture: Graphics reinvented.
https://www.nvidia.com/content/dam/en-zz/Solutions/
design-visualization/technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf, 2018. Accessed:
2024-09-08.

[OA11] Ola Olsson and Ulf Assarsson. Tiled shading. Journal of Graphics, GPU:235–
251, 11 2011.

[OBA12] Ola Olsson, Markus Billeter, and Ulf Assarsson. Clustered Deferred and
Forward Shading. In Carsten Dachsbacher, Jacob Munkberg, and Jacopo
Pantaleoni, editors, Eurographics/ ACM SIGGRAPH Symposium on High
Performance Graphics. The Eurographics Association, 2012.

[Ols20] Gray Olson. ultraviolet. https://github.com/fu5ha/ultraviolet/
blob/377b0016211ddebc521a0ee784774d85118de2b0/src/mat.
rs#L1353-L1371, 2020. Accessed: 2024-08-08.

[Pom21] Andrew Pomianowski. Rdna™ 2 gaming architecture. In 2021 IEEE Hot
Chips 33 Symposium (HCS), pages 1–18, 2021.

38

https://tomhultonharrop.com/mathematics/graphics/2023/08/06/reverse-z.html
https://tomhultonharrop.com/mathematics/graphics/2023/08/06/reverse-z.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-the-xe-hpg-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-the-xe-hpg-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-the-xe-hpg-architecture.html
https://www.3dgep.com/forward-plus/
https://www.3dgep.com/forward-plus/
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://github.com/fu5ha/ultraviolet/blob/377b0016211ddebc521a0ee784774d85118de2b0/src/mat.rs#L1353-L1371
https://github.com/fu5ha/ultraviolet/blob/377b0016211ddebc521a0ee784774d85118de2b0/src/mat.rs#L1353-L1371
https://github.com/fu5ha/ultraviolet/blob/377b0016211ddebc521a0ee784774d85118de2b0/src/mat.rs#L1353-L1371

[PTC] PTC Inc. Mathcad: Engineering Math Software. https://www.mathcad.
com/en/. Accessed: 2024-08-08.

[Ree] Nathan Reed. Depth precision visualized. https://developer.nvidia.
com/content/depth-precision-visualized. Accessed: 2024-07-22.

[Sch94] Christophe Schlick. An inexpensive brdf model for physically-based rendering.
In Computer graphics forum, volume 13, pages 233–246. Wiley Online Library,
1994.

[tur18] turanszkij. Optimizing tile-based light culling. https://wickedengine.
net/2018/01/optimizing-tile-based-light-culling/, January
2018. Accessed: 2024-07-24.

[Whi80] Turner Whitted. An improved illumination model for shaded display. Com-
munications of the ACM, 23(6):343–349, 1980.

[Wim23] Michael Wimmer. Real-time rendering - rendering pipeline lecture. Lecture,
Vienna University of Technology, 11 December 2023, 2023. Accessed: 2024-
08-08.

[WMLT07] Bruce Walter, Stephen R Marschner, Hongsong Li, and Kenneth E Torrance.
Microfacet models for refraction through rough surfaces. Rendering techniques,
2007:18th, 2007.

[WS19] Turner Whitted and Martin Stich. Foreword. Ray Tracing Gems: High-
Quality and Real-Time Rendering with DXR and Other APIs, pages 15–19,
2019.

[Wu] Yuwen Wu. Accurate normal reconstruction from depth buffer. https:
//atyuwen.github.io/posts/normal-reconstruction. Accessed:
2024-07-27.

39

https://www.mathcad.com/en/
https://www.mathcad.com/en/
https://developer.nvidia.com/content/depth-precision-visualized
https://developer.nvidia.com/content/depth-precision-visualized
https://wickedengine.net/2018/01/optimizing-tile-based-light-culling/
https://wickedengine.net/2018/01/optimizing-tile-based-light-culling/
https://atyuwen.github.io/posts/normal-reconstruction
https://atyuwen.github.io/posts/normal-reconstruction

	Kurzfassung
	Abstract
	Contents
	Introduction
	Method
	Contributions
	Structure of this Work

	Background
	Rasterization
	Limitations of Rasterization
	Ray Tracing
	Acceleration Structure
	Hybrid Rendering
	Reverse-Z Projection
	Cook-Torrance Light Model

	Related Work
	Optimizing Bounding Volume Hierarchies
	Introduction of Hardware Ray Tracing
	Graphics API Support for Hardware Accelerated Ray Tracing
	Light culling

	Designing a Rendering Engine
	Depth-Prepass
	Light Culling
	Ray Traced Shadows
	Shading

	Results
	Conclusion and Limitations
	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

