
Efficient User Guidance to
Next-Best-View Scan Positions

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Peter Fuchs
Registration Number 12125442

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Projektass. Mag.rer.soc.oec. PhD Stefan Ohrhallinger

Vienna, January 2, 2025
Peter Fuchs Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Peter Fuchs

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 2. Jänner 2025
Peter Fuchs

iii

Kurzfassung

Das Einscannen von Objekten in der Digitalisierung ist eine Aufgabe, die in den nächsten
Jahren vermutlich an Priorität gewinnen wird. Unterschiedliche wissenschaftliche Arbeiten
zeigen bereits das Porenzial von Augmented Reality (AR) in der Nutzernavigation,
daher können einige von den Erkenntnissen vermutlich auch für das Verbessern der
Nutzererfahrung in Scan-Prozessen benutzt werden. Diese Arbeit versucht, diesen Prozess
mithilfe von AR so effizient wie möglich zu machen. AR wird hierbei dafür benutzt, um
den Nutzer so effizient wie möglich zur nächstbesten Scan-Position (der Next Best View
(NBV)) zu führen. Diese Punkte werden von einem Algorithmus berechnet und, welcher
die bereits gescannten Teile des Objektes als Eingabe bekommt und die berechnete NBV
zurückgibt.
Weiters wurden einige Elemente für die AR-Nutzeroberfläche von vorherigen Studien
bewertet. Aus ihnen wurde eine Reihe an Guidelines erfasst. So sind für einen möglichst
Effizienten Scan-Prozess ein richtungsweisender Indikator, zum Beispiel ein Pfeil, und ein
Feedback-Mechanismus, zum Beispiel durch Text-Labels, erforderlich. Weiters erleichtern
im Raum positionierte Elemente, wie zum Beispiel kleine Sphären, das Finden der NBV.
Diese Guidelines wurden in einem Proof-of-concept-Projekt implementiert. Für das
Projekt wurden das Visual Simultaneous Localization and Mapping (vSLAM)-basierende
Real-Time Appearance-Based Mapping (RTAB-Map) gemeinsam mit NBVNet, einer
Convolutional Neural Network (CNN)-Implementierung eines NBV-Algorithmus, als
grundlegende Technologien verwendet. Für diese Implementierung wurde auch eine Liste
an Best-Practices für die Verwendung entwickelt.
Basierend auf der Implementierung wurden wurden die Guidelines noch einmal erweitert.
So wurde festgelegt, dass der richtungsweisende Indikator am besten im Raum selbst
und nicht am Bildschirm gerendert werden sollte, der Feedback-Mechanismus hingegen
nicht im Raum gerendert werden muss. Außerdem hat sich gezeigt, dass die an der NBV
positionierte Sphäre zwar hilfreich sein kann, in den meisten Fällen aber nicht benötigt
wurde.
Eines der Probleme der kombinierten Nutzung von vSLAM und NBV ist, dass vSLAM
alle Punkte der gescannten Umgebung speichert, während NBV den Fokus nur auf das
Objekt legen will. Daher wurde ein Viewpoint-intersection-Algorithmus implementiert,
welcher dafür sorgt, dass nur das Objekt selbst für die Berechnung der NBV benutzt
wird.

v

Abstract

Scanning objects for digitalization purposes is a task that, due to the ongoing digitalization
process, may gain priority over the next few years. Different papers already show the
potential of Augmented Reality (AR) within user navigation processes, thus some of
these findings can also be used for user guidance within a scanning process. This paper
aims to make this process more efficient, using AR as a guiding technology to reach
the most efficient scanning points. These points are calculated using a Next Best View
(NBV) algorithm, which receives parts of the scanned object as the input and provides
the next best scanning position, the NBV, in this model as the output.

Different User Interface (UI) elements were evaluated from preexisting studies and, based
on the research, a set of guidelines was developed. The outcome was that, for the most
efficient user scanning, a directional indicator, like an arrow, is needed alongside some
feedback mechanisms, like text labels. Additionally, positional elements, i.e. a marker
implemented as a sphere, help to find the NBV.

These guidelines were implemented in a proof-of-concept application using the Visual
Simultaneous Localization and Mapping (vSLAM)-based Real-Time Appearance-Based
Mapping (RTAB-Map) and NBVNet, a CNN implementation of NBV computation, as
the base technologies. For this application, a set of best practices for usage was developed.

Based on the implementation, the guidelines were further enhanced; the directional
indicator should be rendered in the 3D world and not on the screen, while the text labels
should be rendered on the screen. While the markers were not needed for finding the
NBV most of the time, they were still helpful sometimes.

One of the problems of using vSLAM and NBV in combination is that vSLAM saves every
point of the scanned environment, while NBV only works with the object itself. Thus,
a viewpoint intersection algorithm was implemented to make the NBV implementation
focus on the object and not the environment.

vii

Contents

Kurzfassung v

Abstract vii

Contents ix

1 Introduction 1

2 Related Work 3
2.1 Next Best View . 3
2.2 Visual Simultaneous Localization and Mapping 4
2.3 Augmented Reality user interface . 5
2.4 Guildelines for AR scanning UIs . 6

3 Method 11
3.1 Prerequisites . 12
3.2 Scanning process . 13
3.3 Next Best View implementation . 13
3.4 Point cloud acquisition . 15
3.5 Object centre computation . 16
3.6 Augmented Reality interface implementation 17

4 Results 23
4.1 Best practices . 23
4.2 Augmented Reality User Interface . 24
4.3 NBV and vSLAM . 27
4.4 Scanning process efficiency evaluation 28

5 Conclusion and Future Work 29

Overview of Generative AI Tools Used 31

List of Figures 33

List of Tables 35

ix

List of Algorithms 37

Acronyms 39

Bibliography 41

CHAPTER 1
Introduction

With digitalization gaining importance in the last few years, the digitalization of 3D
objects has become an increasingly important problem. Thus different technologies to
optimize this scanning process have been created. This includes Next Best View (NBV),
which aims to provide the next best position for the user to scan as many new points of
an object while still being able to map them to already scanned points. This is achieved
by following algorithms considering the object’s already scanned parts and returning the
position for the most efficient scan. While NBV algorithms have existed for a while and
have switched to AI-trained models in recent years, the display method of these next
best positions has not been researched yet.

Augmented Reality (AR) has also been on the rise recently. Recent developments in
Snapchat’s AR-glasses and Apple’s Vision Pro have also pushed this technology in the
commercial direction, aiming to become a staple technology that may be used in people’s
daily lives. Therefore, multiple areas of development have opened to the usage of AR,
including user navigation.

When breaking it down to the basics, guiding a user from their current position to the
position of the Next Best View is just a navigational task within a small space. Therefore,
some of the findings of related studies about user navigation using AR can be repurposed
to generate both guidelines and an implementation of a User Interface (UI) for this task.
The guidelines are necessary since AR is used in vastly differing environments thus having
a set of rules that can easily be followed helps generate a consistent and working UI.

The end goal of this project is to build an environment in which all these technologies
are joined together, enabling the user to scan objects as efficiently as possible. It will
use a camera system to track the user’s position and the already scanned points in the
environment. These points are then run through the NBV model to generate the next
scan location. This location is then sent to the AR system that guides the user from his
current to this new location.

1

CHAPTER 2
Related Work

This section will discuss the theoretical background behind the different technologies. It
shows different approaches to the problems of efficient scanning and user guidance.

2.1 Next Best View
The problem of searching for the most efficient point for the next best view of a partially
scanned object has been around for many years with the first approaches being presented
by Conolly in 1985 [6]. In his work, he proposed two algorithms which aimed to recreate
3D objects from depth images using an octree structure [6]. These algorithmic approaches
further developed over time covering multiple algorithmic types and input datatypes.

In 2016, Isler et al. proposed the first learning-based Machine Learning (ML) approach
to the problem of NBVs [7]. While Isler et al. based their work on robotic vision and
their potential information gain for different candidate views, which makes the work
not applicable to this problem, it was more effective and flexible than the algorithmic
approaches [7].

Zeng et al. approached the problem of NBV by having a Deep Neural Network (DNN),
named PC-NBV, propose a series of different next-best views and choosing the most
effective series by its coverage [32]. Since the problem of evaluating the NBV is NP-
complete, a utility function futil is used to select the most effective one. This utility
function is the DNN, PC-NBV [32]. As the name suggests, this model works with point
clouds as the input data for training and NBV prediction.

In their work, Mendoza et al. use a 3D-Convolutional Neural Network (CNN) to select
the best view from a list of candidate views [15]. In contrast to Zeng et al., however,
these candidate views are based on a predefined list and not on the input data [15]. While
this makes the work usable for most scanning problems, it might struggle with flexibility
and multi-object scenes.

3

2. Related Work

Model name Input datatype Model type
Isler et al. (2016) [7] Volumetric DNN
Zeng et al. (2020) [32] Point Cloud DNN
Mendoza et al. (2020) [15] 3D probabilistic grid 3D-CNN
Wang et al. (2024) [31] Point Cloud DQN

Table 2.1: Comparison of NBV models

Wang et al. base their work on Zeng et al.’s PC-NBV but use a reinforcement learning-
based approach (Q-deep Network (DQN)) instead of a model-based one (DNN) [31].
This model improved accuracy and prediction speed [31], thus making it a more effective
version of PC-NBV.

Since learning-based approaches proved more effective in generating the NBV, this paper
focused only on them. Table 2.1 compares the different NBV models with their input
datatype and model type. The models that were preferred for this project, are highlighted
in bold. They were mainly chosen by model speed (according to [31, 15]), input type
and ease of implementation, which is further discussed in 3.1.1.

2.2 Visual Simultaneous Localization and Mapping

Visual Simultaneous Localization and Mapping (vSLAM) describes the process of simulta-
neously localizing the user’s position and generating a 3D map of the user’s surroundings
using visual input data, such as (depth) images [26]. There are multiple approaches
to vSLAM algorithms: feature-based methods (where features are extracted from the
images and inserted into the map), direct methods (transforming images directly to
maps without extracting features beforehand) and RGB-D vSLAM (uses depth images
to create more accurate maps) [26]. RGB-D vSLAM is the newest of these algorithms
as it increased in popularity with the release of cheap and small RGB-D cameras like
Microsoft’s Azure Kinect [26]. Since they already provide 3D information in real-time,
they are the most popular form of vSLAM algorithms nowadays.

Different RGB-D vSLAM algorithms include Newcombe et al.’s KinectFusion [17] that
was also ported to mobile devices successfully [9]. It does, however, not support global
optimization or loop closures making the algorithm more prone to errors than newer
algorithms [26].

Salas-Moreno et al. proposed SLAM++, an algorithm that uses online resources to
register 3D objects [24].

Labbé et al. proposed Real-Time Appearance-Based Mapping (RTAB-Map) [11], an
algorithm that uses loop closures and depth images to build a 3D map [22].

4

2.3. Augmented Reality user interface

2.3 Augmented Reality user interface

Multiple studies have related to UIs within AR. In the scope of this paper, they will be
split into studies about conventional AR UIs and studies that propose UIs for navigation
using AR.

2.3.1 Conventional AR-UIs

In their works, Cao et al. summarize the current state of the art for mobile AR user
interfaces and practices, going into more detail about different requirements for AR UIs
[5].

Arifin et al. propose metrics that allow the evaluation of user experience in AR UIs for its
objective measurements, such as effectiveness or usability. While there are still metrics
that cannot be measured objectively (e.g. user preference or attractiveness), the UX can
be judged based on the following categories: performance (how well the user performs on
the task), issues (how many problems while performing the task), user perceptions (ease
of use, usefulness) and subjective criteria (i.e. user emotions, attractiveness) [1].

Sandor et al. compare different state-of-the-art AR interfaces over multiple fields. While
they mainly focus on general UIs, they also look at navigation interfaces such as CAR, a
navigation interface for driving [25].

2.3.2 AR navigation UIs

Lee et al. studied user preferences for UI elements in navigation spaces. In their study,
they differentiated between multiple environments, namely outdoor spaces and large and
small indoor spaces and provided results based on the surroundings [12]. The proposed
elements can be seen in Figure 2.1.

Figure 2.1: Proposed UI elements for user navigation in AR. [12]

Ventä-Olkkonen et al. looked at the differences between navigation in real cities versus
augmentations of that city. They studied user preferences regarding watching a videotape
of the navigation instructions, the instructions being overlaid over the live camera feed,
and the whole environment being approximated using digitalization [29].

5

2. Related Work

In his master thesis, Mang proposes a system for vision-based indoor navigation. He
further conducted two studies; first, he proposed three instruction modes: fully automatic,
decision-point, and manual. These modes indicate how often users want to receive updates
on the AR UI. The second study focuses on different UI elements and their effectiveness
in the navigation process [13].

Joshi et al. and Martin et al. propose a AR UI for indoor navigation. While Joshi et
al. focus more on the technical implementation of the application, proposing different
technologies for creating a working application [8], Martin et al.’s work implements a
navigation application within an indoor environment [14].

2.4 Guildelines for AR scanning UIs

Guiding a user to a specific scanning location around an object can generally be described
as a navigation process in a small space. In the context of scanning, this process requires
that the destination point is found as accurately as possible, and, since the AR interface
is the only interaction point with the user, two preconditions must be met to make
the User Experience (UX) as smooth as possible: The UI must follow some guidelines
to be consistent and efficient and the user must know his goal is to scan an object as
efficiently as possible. The second precondition is due to the limitations of RTAB-Map,
as it cannot distinguish between the 3D object and the environment, thus pointing the
camera away from the object may result in less performant scanning. This also generates
the main goal of the interface: The user should be able to move from his current position
to the current NBV without pointing the camera away from the 3D object. This section
will summarise the solutions to this problem described by the different navigation user
interfaces described in section 2.3 and the most relevant findings. The implementation
within the RTAB-Map-framework is described in section 3.6.

2.4.1 Requirements for AR UIs

When it comes to general requirements for AR UIs, Cao et al. propose a set of requirements
that must be fulfilled to display the information efficiently: Information Filtering and
Clustering (filter and group information so only the important information is shown
not to overstimulate the user), Occlusion Representation and Depth Cues (giving depth
information to UI elements to help the user understand the correct three-dimensional order
of the elements), Illumination Estimation (estimating the illumination of UI elements
so they do not feel out of place), Registration Error Adaptation (the AR system should
be able to adapt to slightly misplaced graphical components) and Adaptive Content
Placement (informative UI elements, like text labels, must be drawn on the visible parts
of the corresponding components) [5].

6

2.4. Guildelines for AR scanning UIs

2.4.2 Navigation UIs in AR

While navigation in a closed space differs from navigation in a wider open space, there
can still be some findings from comparing and finding similarities between the different
navigation UIs. For example, as Lee et al. mention, arrows are some of the most
important elements of navigational UIs [12]. This is also established in Mang’s proposed
UI, where directional navigation plays an important role, as well as in Joshi et al. and
Martin et al.’s UIs, which both also use arrows as the main indicator [8, 14], which can
also be seen in Figure 2.2.

Figure 2.2: Arrow being used as the main indicator by different UIs [13, 8, 14]

According to Lee et al., other popular UI components for navigation include callouts [12],
which were also the preferred navigation component in Ventä-Olkkonen et al.’s work [29],
as well as desaturation [12], which was not directly implemented in any of the mentioned
works. However, text labels, which are 2D implementations of callouts, are mentioned
in multiple studies, like Martin et al.’s navigation UI [14]. They can either be used as
feedback elements when successfully finishing a task but also as general information
elements [14] as they can also be used in callouts [12, 29] (see Figure 2.3).

Figure 2.3: Text labels being used in AR UIs [29, 14, 12]

Finally, when reaching the destination, multiple ways of displaying the final point of the
navigation were used. Mang et al. marked the destination with a specific finishing UI
element [13], while Martin et al. displayed a success message when the destination was
reached [14] and Lee et al. proposed other visualization techniques like desaturating
every part of the image except for the destination point [12].

2.4.3 AR navigation in small spaces

Since most papers mainly focused on general navigation, these findings cannot directly
be translated into small spaces. However, some of the proposed UI elements are more

7

2. Related Work

important for navigating small spaces than others. For example, having a marker at the
final destination (at all times) is more important for navigation in small spaces than
within large spaces, like streets or large indoor spaces, as the destination is visible at
most times. This marker can and should also indicate how close the user is to reaching
the destination. This can be done by using text labels to display the absolute distance
from the destination or by adapting the marker’s size with the absolute distance (see
Figure 3.13).

Figure 2.4: Different marker sizes with different distances

Additionally, some elements, like arrows, serve a different purpose in small spaces than in
large ones. For large spaces, the main goal of UI elements is to guide the user to different
checkpoints and instruct them to further navigate to the desired endpoints [12]. This is
not only unnecessary in small spaces, as the destination point is visible at most times,
but might also be counterintuitive, as, for example, arrows are difficult to track in small
environments [12]. Therefore, UI elements should aim to accomplish a directional input to
the user, as presented by Martin et al. [14], since overusing them might lead to a cluttered
environment [5]. Looking at the UI elements proposed by Lee et al. (see Figure 2.1),
only a number of these elements can be used as indicators for directional change. These
can be put in two categories: instructive indicators that propose directional change (i.e.
arrows, callouts, glowing paths) and informative indicators that propose some need for
change (i.e. desaturated image when the destination is not visible). While informative
indicators might be valid for certain environments, for example when UI elements can not
be used properly, they might lead to confusion, since they do not indicate the necessary
change (i.e. in which direction to turn).
In contrast to the final destination, instructive indicators may be placed in both 2D and
3D space. They do not necessarily need to give depth cues since the destination marker
already gives the necessary depth cues for the destination. Thus, the indicator’s main job
is to provide feedback about needed changes in rotation and, in contrast to navigation in
bigger spaces, not necessarily movement.
Additionally, the indicators must be able to give information to the user all the time.
The user should never be in a situation where he does not know how they can reach the
destination or how he should proceed with the navigation process. This means that at
any moment, an indicator, ideally instructive, or the destination marker should be visible

8

2.4. Guildelines for AR scanning UIs

on the screen. This should, however, not lead to an overly cluttered screen. Having too
much information here has a similar effect as having no information [1]. The directional
indicator may also be removed when approaching the destination since this might lead
to clutter and overlapping elements.

When reaching the destination, a success message should be given to the user, giving
them feedback about the task. This message can either be shown as a text label, stating
that the destination was reached (see Figure 2.5), by providing a visual cue, such as
lighting up the screen in green colour, or a combination of them.

Figure 2.5: Text label that shows the final destination [14]

Finally, some of the mentioned requirements for AR UIs must be given extra priority.
Being in a small room carries the potential for an easily cluttered environment [5]
thus filtering out unnecessary information and grouping overlaying information becomes
exceedingly important. Furthermore, as the directional input is likely to overlap with the
marker of the final destination, depth cues for both elements are also of high importance.
Since the directional indicator will always point to the marker, it should always be placed
on top of it, as partial overlap between the elements might lead to confusion.

2.4.4 AR navigation while scanning

However, AR navigation has some properties that may inflict further problems when
it comes to the specific task of scanning an object using vSLAM in combination with
NBV. The main issue is the constant scanning of the environment, which, when focusing

9

2. Related Work

on the marker for reaching the next destination, leads to the surroundings gaining in
importance (i.e. being scanned more than the object) and thus potentially confusing
the NBV algorithm. This means that the goal of the UI is to lead the user to a specific
destination while trying to keep the focus on a different object.

While there are multiple solutions to this problem, the one implemented in this project
aims to use visual indicators, like bounding boxes, to give the user feedback about the cur-
rent scanning status, specifically the currently scanned object. A detailed implementation
description can be found in section 3.6.5.

10

CHAPTER 3
Method

The following chapter describes the different parts of the scanning process - in particular,
the necessary components: RTAB-Map as the scanning and visualization tool and AR
provider, the AR UI for the user guidance and NBVNet as the NBV computation tool.
Figure 3.1 visualizes the data flow between these components.

Figure 3.1: Overview of the different application components and the information flow
between them

11

3. Method

3.1 Prerequisites

This project was developed on Ubuntu 24.04 using the Azure Kinect DK as the camera
input and RTAB-Map [22] on the release of November 2023.

This section describes all the prerequisites that need to be met for the code to compile
successfully. This includes the necessary SDKs for the camera system, the NBV model
and the AR system. The source code can be found in [27].

3.1.1 Next Best View

In this project, the first instinct was to work with either PC-NBV or RL-NBV due to
point clouds being the input data and their faster processing speed compared to the other
models [31]. They did, however, require additional training of their model as they do not
provide a pre-trained AI model. Additionally, PC-NBV and RL-NBV base their work on
CUDA meaning that the code must be compiled before it can be called from the project.

For these reasons, Mendoza et al.’s NBV-Net was used since they provide an already
pre-trained model which can easily be loaded using torch [28]. The NBV is also calculated
using only Python, meaning that no additional CUDA-files must be compiled. NBV-Net
does, however, also provide CUDA compatibility, so it performs better on a GPU with
CUDA enabled.

3.1.2 Azure Kinect DK

The Azure Kinect DK needs the Azure Kinect Sensor Software Development Kit (SDK) [2]
to work. This can be installed using the installation guide provided by the developers [4].
For this project, the SDK was additionally built on the system itself as it was necessary
to debug some of the Kinect’s internal data. This process was done using the building
guide [3]. It was, however, necessary to switch to OpenSSL v1 as building the SDK
only works in this version when using Ubuntu 24. Additional changes include including
standard C++ libraries in the code (<limits> in k4adepthpixelcolorizer.h, <string>
in k4aaudiochanneldatagraph.h, <cstring> in k4amicrophonelistener.h and <string>
in perfcounter.h) as well as deleting some of the non-working unit tests (depth_ut.cpp
in the DepthTests-folder, depthmcu_ut.cpp of the general unit tests folder as well as
the test for object usage after being freed in handle_ut.cpp : 105 − 118). It was also
important that the CMakeLists.txt-files were adjusted accordingly.

3.1.3 RTAB-Map

All the corresponding packages must be installed to work with RTAB-Map. This includes
OpenCV, g2o and GTSAM [23]. This project was developed using RTAB-Map’s November
2023 release. It should, however, also work with the newer December 2024 release as this
mainly added new demos and examples [22].

12

3.2. Scanning process

3.2 Scanning process
The implemented scanning process can be split into two parts:

1. Initialization and object detection

2. Scanning and NBV calculation

The main goal of the initialization and object detection process is to initialize the
application and identify the object the user wants to scan. First, the packages necessary
for NBV computation are loaded into the program and the Python script is prepared
for execution (as described in section 3.3). After this step, a seven-second cooldown is
started, during which the user can position the camera correctly. This duration was
chosen through testing and was the most efficient, providing enough time to position the
camera and not making the user wait too long to start the scanning process. Afterwards,
the object detection algorithm (see section 3.5) is started. Here, the user is guided with
a simple text and progress bar UI that shows the current status of the object centre
detection process.

After the object centre is computed, the first NBV is calculated based on the area scanned
in the detection process. When the result is received in the application, a marker is
placed on the NBV position and a 3D arrow is rendered in the 3D space which points
to the destination. Even though the arrow is placed in the 3D world, one end is locked
on the camera, which allows the placement of a 2D label displaying the distance to the
NBV position in meters.

Once the user gets within 5cm of the calculated NBV, the newly scanned point cloud
is run through the NBV algorithm computing a new NBV. This process is repeated
indefinitely or until the user terminates the program. The point cloud last used for NBV
calculation can then be accessed in a .ply file to make the result of the scanning process
available.

3.3 Next Best View implementation
This section describes the steps to implement the Next Best View (NBV) computation.
This includes a C++ wrapper for calling the necessary Python function and a more
detailed explanation of the algorithm for the NBV calculation.

3.3.1 NBV interface

After ensuring the correct functionality of the NBV model, the interface between RTAB-
Map and the AI was defined. Since the RTAB-Map code runs on C++ and the NBV
model uses Python’s torch, the interface needed to call the Python code and retrieve
the result afterwards. For this, Python’s embedding API [20] was used from which the

13

3. Method

corresponding NBV methods were called. One of the important aspects here was that
the Python modules needed to be loaded on program startup as loading the modules
every time the NBV is calculated would add extra execution time to the calculation. For
this, the C++ object NBV Executor loads the prediction module (predict.py) in the
constructor and stores the function predict(), which runs the NBV prediction algorithm,
as an attribute. This function can be called anytime the NBV needs to be calculated.
One important aspect here is that the environment variable PY THONPATH includes
the project folder to find the predict-module and also points to a Python environment
where the necessary modules (i.e. torch, numpy and open3d) are installed (e.g. venv).

3.3.2 NBV calculation

The NBV calculation is based on NBV-Net’s nbv_inference Jupyter-workbook [16].
First, the point cloud is transformed into a 3D probabilistic grid following algorithm 3.1.
This algorithm maps the point cloud into a 32x32x32 grid, where each cell contains the
number of points. This number is then normalized between 0.3 and 0.7 (meaning that
the cell with the most points contains 0.7 and the cell with the least points contains 0.3).
These values are taken from the examples provided by Mendoza et al. [16].

Algorithm 3.1: Point cloud to 3D probabilistic grid
Input: Point cloud pc and scalar grid_size = 32
Output: 3D probabilistic grid with size 32x32x32

1 grid_spacing = [(max(pc) − min(pc))/grid_size];
2 for point in pc do
3 idx = [(point − min(pc))/grid_spacing];
4 grid[idx]+ = 1;
5 end
6 grid = grid/sum(grid);
7 grid = (grid − min(grid)/max(grid);
8 grid = grid ∗ 0.4 + 0.3;
9 return grid;

This grid is then run through the AI model which returns a list of possible NBVs each
containing a value of how well it fits as the Next Best View. The algorithm selects the
best of these views, calculates its position in the point cloud coordinate system and
returns this NBV to the program (algorithm 3.2). The final value is multiplied by 64
since it first needs to be readjusted from the centre of the grid size (times 16) and the
voxelmap has an approximate size of 0.25, which the output needs to be divided by
(16/0.25 = 64) [15].

14

3.4. Point cloud acquisition

Algorithm 3.2: Calculate NBV from grid
Input: 3D probabilistic grid with size 32x32x32 and point cloud pc
Output: Point nbv in point cloud coordinate system

1 grid_spacing = [(max(pc) − min(pc))/32];
2 net = torch.load(weights);
3 output = net.forward(grid);
4 best_nbv = output[val = max(output)];
5 return best_nbv ∗ 64 ∗ grid_spacing + min(pc);

3.4 Point cloud acquisition

RTAB-Map implements a vSLAM algorithm that tracks the current camera position
while simultaneously enabling AR. This works because RTAB-Map uses the camera feed
to build a 3D map, where digital elements can be inserted using the PCLVisualizer [18].
This map is then stored as a point cloud view, which can be displayed as a 2D image.
The project was built on the RGB-D usage example [21].

This project runs two point cloud viewers simultaneously: one scans the environment
continually, always keeping the 3D map up to date, and one displays the latest point
cloud used in the NBV algorithm to show the already scanned parts of the object. The
first viewer is not shown to the user as it runs in the background to collect data. The
second is put on top of the camera input using a QStackedLayout to create the illusion
that the 3D map is built on top of the camera input (see Figures 3.2 and 3.3). The AR
elements are then inserted into the displayed viewer, being shown on top of the 3D map
(see Figure 3.3).

Figure 3.2: Camera input without point cloud and corresponding point cloud

Since RTAB-Map already saves the map in the form of point clouds, they can be extracted
from RTAB-Map using its util3d-package and exported to a ply-file using PointCloud-
Library (PCL)’s savePLY File [19]. This procedure is executed every time the user gets
within 5cm of the next best view to generate a new point cloud for the next prediction of
the NBV algorithm. This value was chosen through testing.

15

3. Method

Figure 3.3: Camera input with point cloud and AR elements projected on top of it

3.5 Object centre computation

Since proper functionality of the NBV algorithm is necessary for the scanning process,
there has to be some distinction between the scanned object and the background, as the
NBV algorithm would otherwise value features from both equally. Thus, an algorithm
was implemented that computes the centre point of the scanned object by intersecting
the camera viewpoints. This task is done in the initialization part of the scanning process
before the NBV positions are calculated. The one criterion for this algorithm is that
the camera must be moved around the object on a sphere while always pointing at the
object. It then stores the camera angles and positions and calculates the intersection
point following algorithm 3.3. The algorithm first stores the camera positions P and
rotations (the viewpoint directions D) in a set of 3D vectors (set P and set D), where
the rotation vectors are normalized. The best intersection point x of this set of vectors
can be calculated by taking the sum of their squared distances and calculating the zero
point of its derivative:

∆(∑︁ ui⃗ · ui⃗) = 0⃗, where ui⃗ = Di
⃗ × (Pi

⃗ − x⃗), Di
⃗ ∈ D, Pi

⃗ ∈ P

According to [30], this function can be expanded and yielded into a 3x3 matrix multipli-
cation:

M ∗ x⃗ = b⃗

with b⃗ = ∑︁(Di
⃗ (Pi

⃗ · Di
⃗) − Pi

⃗ (Di
⃗ · Di

⃗) , Di
⃗ ∈ D, Pi

⃗ ∈ P
and Mk = ∑︁(DikDi

⃗ − (Di
⃗ · Di

⃗)ek⃗)T , Di
⃗ ∈ D, Pi

⃗ ∈ P , where Mk is the kth row of the
matrix and ek⃗ is the respective unit basis vector of the kth row [30]. This equation is
solved with a linear equation solver provided by [30].

This is done multiple times throughout the spherical camera movement around the object.
After enough camera viewpoints are considered (for this project it was 10 points with a
minimum angular difference of 6.75°) the calculated point is interpreted as the centre
point of the scanned object. This means that all points within a certain distance from the
computed centre (i.e. 3/4ths of the distance from the centre point to the original camera
position) are considered for the NBV calculation. Figure 3.4 visualizes this process.

16

3.6. Augmented Reality interface implementation

Figure 3.4: Process visualization of bounding box calculation

3.6 Augmented Reality interface implementation
The UI elements described in the section above were implemented using the PCLVisualizer-
and, if an UI element has to be built a custom, the Visualization Toolkit (VTK)-libraries.
Since section 2.4 already proposed some guidelines and UI elements, this section only
covers their graphical implementation. Section 4.2 further compares the different graphical
approaches regarding their strengths and weaknesses within the navigational task.

3.6.1 Arrows

Since arrows were found to be the most effective tool in user navigation [12] they were
also the primary focus of this study. The following approaches were chosen: 2D arrow in
2D space, 2D arrow in 3D space and 3D arrow in 3D space (see Figure 3.5).

The 2D arrows are built from a 2D rectangle combined with a 2D rectangular triangle,
where both are rotated in the direction of the destination. The rectangle and the triangle
are assumed to be centred around the origin, then rotated and finally translated to the
correct position. This resolves to the following formula for each point:

(x ∗ cosθ − y ∗ sinθ + tx, x ∗ sinθ + y ∗ cosθ + ty)
where x and y are the coordinates of the point, θ is the angle of rotation and tx and ty

correspond to the needed translations within the space. Figures 3.6, 3.7 and 3.8 present
this process visually.

The 3D arrow on the other hand is a combination of a cylinder and a cone (Figure 3.9).
The element generally works in a way where both the starting point of the arrow and the
direction of the arrow are provided by 3D vectors. The length of the cylinder is equal
to 5/8ths of the length of the directional vector while the cone takes up the remaining
3/8ths. This value was chosen by testing different arrowhead lengths, where the desired
outcome was showing direction and distortion change with arrow length. Since the radius

17

3. Method

Algorithm 3.3: Viewpoint intersection calculation for object centre
detection[30]

Input: Viewport positions vps which contain x, y, z-coordinates and
roll, pitch, yaw-angles

Output: Intersection point p as V ector3
1 n = size(vps);
2 points = V ector3[n];
3 directions = V ector3[n];
4 for cameraPosition in vps do
5 points[i] = cameraPosition[x, y, z];
6 pitch, yaw = cameraPostion[pitch, yaw];
7 directions[i] = [cos(yaw) ∗ cos(pitch), sin(yaw) ∗ cos(pitch), sin(pitch)];
8 directions[i] = normalize(directions[i]);
9 end

10 m = Matrix[3, 3], b = V ector3(), p = V ector3();
11 for i = 0; i < n; i + + do
12 d2 = dot(directions[i], directions[i]), dp = dot(directions[i], points[i]);
13 for k = 0; k < 3; k + + do
14 m[k]+ = directions[i][k] ∗ directions[i];
15 m[k][k]− = d2;
16 b[k]+ = directions[i][k] ∗ dp − points[i][k] ∗ d2

17 end
18 end
19 return solve(m ∗ p = b) for p;

of the cone’s base is set by the angle from the tip [18], this angle is calculated by the
arcus tangens of the radius divided by the cone’s length.

While the direction of the arrow is always provided by the camera’s current position and
the position of the final destination, its length is limited by the camera’s field of view
because the user must always know in which direction the arrow is pointing. Thus, having
parts of the arrow outside the field of view may lead to confusion (see Figure 3.11).

The 2D arrow in 3D space uses the implementation of the PCLV isualizer-library.

3.6.2 Labels

The main purpose of a label is to provide the user with more information, thus an
important property is the label’s positioning. For this project, one of the main use cases
for labels was displaying the distance to the NBV. The different versions tested in this
study were: The label positioned within the arrow, the label placed at the destination
and the label positioned on the screen to make it always visible (Figure 3.10). While the
VTK already provides small borders for the elements, some extra background elements,

18

3.6. Augmented Reality interface implementation

Figure 3.5: UI design implementation for the 2D/3D arrow in 2D/3D space respectively

Figure 3.6: Rotation of the rectangle

Figure 3.7: Rotation and translation of the triangle

like shadow texts or rectangles, should be added for increased visibility (Figure 3.11).

3.6.3 Markers

Markers are essential for pointing out specific positions in the environment. Since the
destination of the NBV is not known to the user but calculated within the system,
displaying this point to the user is necessary for the system’s functionality. It is, however,
also important that this marker is visible from all distances, thus this study mainly
focused on marker size changing with distance.

19

3. Method

Figure 3.8: Combination of rectangle and triangle

Figure 3.9: Combination of cylinder and cone to create the 3D arrow

Figure 3.12 shows the marker placed into the 3D world with a constant size, while
Figure 3.13 shows the marker when its size is calculated using the following formula:

size = (distance ∗ scaling) + sizeinit/2

with sizeinit < 0.1 (in this case 0.02), 0 < distance < 10 (mostly between 0.01 and 2)
and scaling = 0.03.

3.6.4 Scanned area

Specifically when scanning an object, telling the user which parts of the object have
already been scanned helps to understand the current completion status. This was
achieved with RTAB-Map’s point cloud implementation, a 3D representation of the
current map. This was laid on top of the images received by the camera to display what
has already been scanned and what has not (see Figure 3.14).

3.6.5 Bounding Boxes

Similar to the scanned areas, the bounding box is a feedback mechanism that aims to
provide the user with information about the current status of the scanning process. In

20

3.6. Augmented Reality interface implementation

Figure 3.10: The different implemented labels in direct comparison

Figure 3.11: Label with background compared to no background

this case, the bounding box tries to show which element is seen as the object to scan,
thus allowing the user to adapt or abort the scanning process if wrong information is
detected.

The size of the bounding boxes is calculated based on algorithm 3.3, which specifies a
centre point of the box. As already described in section 3.5 the distance from this centre
point to the original camera position defines the radius of a sphere around this centre
point. All the points, whose distance to the centre point is less than this sphere radius
are interpreted as part of the scanned object. This radius is displayed as the bounding
box’s width, height and depth.

21

3. Method

Figure 3.12: The marker without scaling close versus further away

Figure 3.13: The marker with scaling close compared to further away

Figure 3.14: The scanned area with and without the indicator

Figure 3.15: Bounding box around the object

22

CHAPTER 4
Results

The following section shows the findings of the paper. In particular, this includes some
of the best practices for working with the application, the reasonings for the chosen
AR elements, the implemented solution of combined NBV and vSLAM usage and an
evaluation of the efficiency of the implemented application.

4.1 Best practices

This section describes some of the best practices for object centre detection and the
scanning process.

4.1.1 Object centre detection

One of the most important aspects of the initialization process is that the camera always
faces the object. Thus, the seven-second countdown before the start of the process must
be used to position the camera accordingly. Here, it is important to move the camera
slowly, because the vSLAM algorithm is already computing the camera position. Since
the sphere radius around the object centre is set relative to the camera distance, the
best practice is to position the camera close enough to the object to make it fully visible
within the frame, but not further away. Otherwise, the radius will be too big and parts
of the surroundings may be seen as part of the object. If the camera’s position in the
beginning is not set correctly, the scanning process should be restarted.

As soon as the camera frame is shown, you can use the triangle placed in the centre
of the screen to keep the object in the centre frame, which enhances the bounding
box calculation. Additionally, while only the horizontal rotation (i.e. the camera’s
rotation around the z-axis) is measured for the scanning process, the camera should also
be moved vertically on the imagined scanning sphere. This gives the NBV algorithm

23

4. Results

more information on the object’s shape thus making the computed NBV positions more
accurate.

4.1.2 Scanning process

While the scanning process is very straightforward, some recurring problems exist. They
can be attributed to problems with the NBV algorithm since it sometimes might get
stuck on positions and only move by a little bit. One fix to this problem is to move the
camera to a position where new parts of the object are scanned and then again move the
camera to the NBV position. The algorithm should then compute a new, better position.

Another best practice for finding the NBV position as quickly as possible is to follow the
arrow and ignore the marker. The marker is most helpful if following the arrow leads to
missing the NBV position and positioning the camera behind it. Then, small parts of
the marker should be visible on the side parts, so the NBV position can be found quickly.
The marker also helps identify the next camera position if it is on the other side of the
scanning sphere. In the performed tests, this did not happen very often. The reasoning
for this may be that the algorithm aims to connect the newly scanned points to already
existing ones, thus positioning the NBV on the other side of the object might fail in that
regard.

4.2 Augmented Reality User Interface

One of the main tasks of this paper was to Figure out which AR-based UI elements were
the most useful when guiding the user to the next best scanning position. As mentioned
in section 2.4, there are several necessary elements, like arrows, text labels and markers,
but most elements have different possible implementations. This section shows which UI
elements were implemented and why they were chosen over the other implementations.

4.2.1 Arrows

As shown in section 3.6.1 arrows can be displayed on the 2D screen or in the 3D world
while rendered as a 2D or a 3D element. The arrow on the 2D screen and the 3D arrow
rendered in the 3D world were implemented within this project while the 2D arrow
rendered in the 3D world was already provided by RTAB-Map.

There are different pros and cons for choosing the arrow. Arrows rendered in the 3D world,
for example, can direct in six directions (forward, backwards, left, right, up and down)
while arrows in the 2D world are limited to only four directions (forward, backwards, left
and right). When the scanning position is straight above or below you, arrows rendered
on the 2D screen cannot direct the user to the position, as opposed to arrows rendered
in the 3D world (see Figure 4.1).

The most important aspect of arrows is that they easily provide directional information.
The element of the arrow responsible for this information is the arrowhead. Both

24

4.2. Augmented Reality User Interface

Figure 4.1: 2D and 3D arrow behaviour comparison with the destination right above the
current position

implemented arrows thus put extra focus on the arrowhead, where the arrowhead’s size
is 1/2 (2D arrow) and 3/8 (3D arrow), respectively, of the total arrow length. The native
arrow on the other hand does not focus on the arrowhead that much as it is always a fixed
size no matter the arrow length. This especially makes distorting the arrow impossible,
thus using the length of the arrow to display elements that are closer or further away is
less useful for the native arrow. A comparison between the differently scaled arrows can
also be seen in Figure 4.2.

Thus, when guiding the user to the next best scanning position the 3D arrow in the 3D
world is the preferred option.

4.2.2 Labels

When scanning an object the user should constantly receive feedback from the scanning
application. This includes information about the distance to the next scanning point,
the current status of the scanning process, and positive feedback on when one of the
subtasks, like reaching one of the NBVs, was achieved successfully. Some of this feedback
is best displayed with text labels, which can be either shown on the screen or rendered
in the world [10]. Each option has different advantages and problems for deciding on the
rendering type.

One of the biggest advantages of labels rendered within the 3D world is that they can
easily be placed next to or on top of the corresponding objects. This project includes,
for example, arrows rendered in the 3D world, the destination marker or the bounding
box around the object’s centre. Thus, information like the distance to the marker or the
current status of the initialization process may be placed as (text) labels in the 3D world

25

4. Results

Figure 4.2: Arrowhead scaling comparison between the different designs

(see Figure 4.3). However, one of the problems with these labels is that rendering them
with a shadow for increased visibility is more difficult since the text is rendered so it
always points towards the camera.

Figure 4.3: Example use cases of labels rendered in the 3D world

On the other hand, labels that are placed on the 2D screen have the big advantage of
being positioned more consistently. This means that no matter where the user looks, the
label will always be placed in the same position and can thus be found easily. Therefore,
labels unrelated to the 3D world, such as success messages, or that need to be placed
consistently, like progress bars, should be rendered on the 2D screen (see Figure 4.4).

26

4.3. NBV and vSLAM

Figure 4.4: Example use cases of labels rendered on the 2D screen

For this project, labels were only rendered on the 2D screen. The only label that could
be considered to be rendered in the 3D world is the distance to the marker. However, the
beginning of the 3D arrow is relative to the camera’s position, so it can also be rendered
on the screen, circumventing the potential problem of label incoherence [10].

4.2.3 Marker

Section 2.4 gave a short overview of why markers are an important element regarding AR
navigation in small spaces. This, however, does not fully apply to the scanning process.
As discussed in section 4.1, the marker is often not required for navigating to the NBV
position. However, it is still necessary for visualizing the point within the world, which is
the implementation reason for the scanning process.

4.3 NBV and vSLAM

In theory, NBV and vSLAM are technologies that accompany each other well. While
vSLAM tries to scan and create a map of the environment, NBV aims to find the best
position to achieve that. However, one of the biggest issues with specifically NBV is
that it is only trained on scans from objects without their surrounding environment. In
contrast, vSLAM wants to focus on this information since positioning the camera in the
3D map is better with more feature points.

The implemented fix for this problem was an algorithm which aims to compute the object
centre as accurately as possible. Afterwards, a spherical boundary was introduced, where
all the points within the sphere were considered part of the object. All the other points
were not further considered in the point cloud. This enhanced the NBV calculation and
sped up the point cloud saving process. However, this process might not work for all
objects. For example, objects that are very large on one axis (e.g. a lamp or a pencil
case) could be given a sphere radius that is not big enough for the whole object or too
big so features of the environment are considered part of the object (see Figure 4.5).

27

4. Results

Figure 4.5: Proposed sphere sizes for different objects and their problems

4.4 Scanning process efficiency evaluation
This section provides a short overview of the factual evaluations done by this paper. This
includes the processing speed of the point cloud, the computation speed of the NBV and
the mean time it takes to reach the NBV.

First, the scanning speed of the point cloud relies a lot on the actual size of the already
scanned data. In the tests, the minimum time for processing the point cloud was 0.2
seconds for around 7,000 points in the point cloud, while the maximum processing time
was 1.3 seconds. The scan result of this test can be seen in Figure 4.6. In contrast, the
computation speed for the NBV was consistently around 0.3 seconds, no matter the point
cloud size. This can probably be attributed to the small variance of point clouds within
the bounding box, as this value was mostly set between 700 and 1,000 points. With this
small number of points, translating the point cloud into a probabilistic grid does not
require much computation, thus it does not change the computation time. Finally, the
mean time to reach the NBV was about 9 seconds. However, this number was also highly
dependent on the position of the NBV compared to the current camera position. Points
close to the current camera position were reached within 5 seconds, while it took up to
15 seconds to reach positions opposite the current camera position since the camera still
needed to be moved on the scan sphere and point to the scanned object. Points close to
the camera were more frequent than points opposite it, which can probably be attributed
to NBVNet, which skewed the mean toward lower values.

Figure 4.6: Output point cloud after one complete scan, with and without the camera
data.

28

CHAPTER 5
Conclusion and Future Work

This project proposes guidelines for and implements the User Interface of an Augmented
Reality based scanning application. This application is based on Visual Simultaneous
Localization and Mapping (more precisely RTAB-Map for the scanning process, the
Artificial Intelligence-model NBVNet [15] for the Next Best View calculation and 3D
rendered arrows and markers (which in this case is implemented as a sphere) and
2D rendered labels as the navigation interface. While the reasoning for most of the
implemented elements is based on previous works and argumentative reasons, some of
the future work may include user studies for design evaluation and UI performance.

Other future work may also be done on the scanning completion process, i.e. figuring out
how much of the object is scanned and when the scanning process is completed. This
requires the implementation of object detection algorithms, which allow distinguishing
between the scanned object and background elements [33]. This fixes a big problem of
the combined usage of NBV and vSLAM, which is described in section 4.3 and may also
remove the initialization part of the scanning process. However, the bounding box around
the scanned object may still be kept for visual clarity and to provide user feedback on
the scanning process. Other parts of future work may be on the UI for the scanning
completion process and how its UX could be increased.

On the other hand, an algorithm or AI model which can compute the NBV while within a
scene may be implemented. However, to the author’s knowledge, this does not currently
exist and may need to be developed beforehand. But a NBV implementation that is
capable of computing the NBV of an object within a scene would also remove the necessity
of using object detection algorithms while also solving the NBV and vSLAM problem
described in section 4.3.

29

Overview of Generative AI Tools
Used

Parts of the code referenced as [27] was developed using ChatGPT as a generative AI
tool. The prompts used included the following topics:

• Generation of 2D triangles and rectangles using VTK

• Generation of filled and outlined 2D shapes using VTK

• Python script execution from C++

• 2D actor removal via VTK

• Cross and dot product calculation using Eigen’s Vector3d/Vector3f

31

List of Figures

2.1 Proposed UI elements for user navigation in AR. [12] 5
2.2 Arrow being used as the main indicator by different UIs [13, 8, 14] 7
2.3 Text labels being used in AR UIs [29, 14, 12] 7
2.4 Different marker sizes with different distances 8
2.5 Text label that shows the final destination [14] 9

3.1 Overview of the different application components and the information flow
between them . 11

3.2 Camera input without point cloud and corresponding point cloud 15
3.3 Camera input with point cloud and AR elements projected on top of it . 16
3.4 Process visualization of bounding box calculation 17
3.5 UI design implementation for the 2D/3D arrow in 2D/3D space respectively 19
3.6 Rotation of the rectangle . 19
3.7 Rotation and translation of the triangle 19
3.8 Combination of rectangle and triangle . 20
3.9 Combination of cylinder and cone to create the 3D arrow 20
3.10 The different implemented labels in direct comparison 21
3.11 Label with background compared to no background 21
3.12 The marker without scaling close versus further away 22
3.13 The marker with scaling close compared to further away 22
3.14 The scanned area with and without the indicator 22
3.15 Bounding box around the object . 22

4.1 2D and 3D arrow behaviour comparison with the destination right above the
current position . 25

4.2 Arrowhead scaling comparison between the different designs 26
4.3 Example use cases of labels rendered in the 3D world 26
4.4 Example use cases of labels rendered on the 2D screen 27
4.5 Proposed sphere sizes for different objects and their problems 28
4.6 Output point cloud after one complete scan, with and without the camera

data. 28

33

List of Tables

2.1 Comparison of NBV models . 4

35

List of Algorithms

3.1 Point cloud to 3D probabilistic grid . 14

3.2 Calculate NBV from grid . 15

3.3 Viewpoint intersection calculation for object centre detection[30] 18

37

Acronyms

AI Artificial Intelligence. 1, 12–14, 29

AR Augmented Reality. v, vii, 1, 5, 6, 9, 11, 12, 15, 23, 24, 27, 29, 33

CNN Convolutional Neural Network. v, vii, 3, 4

CUDA Compute Unified Device Architecture. 12

DNN Deep Neural Network. 3, 4

DQN Q-deep Network. 4

ML Machine Learning. 3

NBV Next Best View. v, vii, 1, 3, 4, 6, 9–16, 18, 19, 23–25, 27–29

PCL PointCloud-Library. 15

RTAB-Map Real-Time Appearance-Based Mapping. v, vii, 4, 6, 11–13, 15, 20, 24, 29

SDK Software Development Kit. 12

UI User Interface. vii, 1, 5–8, 10, 11, 13, 17, 24, 29, 33

UX User Experience. 5, 6, 29

vSLAM Visual Simultaneous Localization and Mapping. v, vii, 4, 9, 15, 23, 27, 29

VTK Visualization Toolkit. 17, 18, 31

39

Bibliography

[1] Y. Arifin, T. Galih, S. Barlian, and E. Barlian. User experience metric for augmented
reality application: A review. Procedia Computer Science, 135:648–656, 2018. The
3rd International Conference on Computer Science and Computational Intelligence
(ICCSCI 2018): Empowering Smart Technology in Digital Era for a Better Life.

[2] Azure Kinect Sensor SDK. https://github.com/microsoft/
Azure-Kinect-Sensor-SDK/tree/develop. Last accessed: 2025-01-01.

[3] Azure Kinect Sensor SDK build guide. https://github.com/microsoft/
Azure-Kinect-Sensor-SDK/blob/develop/docs/building.md. Last ac-
cessed: 2025-01-01.

[4] Azure Kinect Sensor SDK usage guide. https://github.com/microsoft/
Azure-Kinect-Sensor-SDK/blob/develop/docs/usage.md. Last ac-
cessed: 2025-01-01.

[5] J. Cao, K.-Y. Lam, L.-H. Lee, X. Liu, P. Hui, and X. Su. Mobile augmented reality:
User interfaces, frameworks, and intelligence. ACM Comput. Surv., 55(9), Jan. 2023.

[6] C. Connolly. The determination of next best views. In Proceedings. 1985 IEEE
International Conference on Robotics and Automation, volume 2, pages 432–435,
1985.

[7] S. Isler, R. Sabzevari, J. Delmerico, and D. Scaramuzza. An information gain
formulation for active volumetric 3d reconstruction. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 3477–3484, 2016.

[8] R. Joshi, A. Hiwale, S. Birajdar, and R. Gound. Indoor navigation with augmented
reality. In A. Kumar and S. Mozar, editors, ICCCE 2019, pages 159–165, Singapore,
2020. Springer Singapore.

[9] O. Kähler, V. Adrian Prisacariu, C. Yuheng Ren, X. Sun, P. Torr, and D. Murray.
Very high frame rate volumetric integration of depth images on mobile devices. IEEE
Transactions on Visualization and Computer Graphics, 21(11):1241–1250, 2015.

41

https://github.com/microsoft/Azure-Kinect-Sensor-SDK/tree/develop
https://github.com/microsoft/Azure-Kinect-Sensor-SDK/tree/develop
https://github.com/microsoft/Azure-Kinect-Sensor-SDK/blob/develop/docs/building.md
https://github.com/microsoft/Azure-Kinect-Sensor-SDK/blob/develop/docs/building.md
https://github.com/microsoft/Azure-Kinect-Sensor-SDK/blob/develop/docs/usage.md
https://github.com/microsoft/Azure-Kinect-Sensor-SDK/blob/develop/docs/usage.md

[10] T. Köppel, M. Eduard Gröller, and H.-Y. Wu. Context-responsive labeling in
augmented reality. In 2021 IEEE 14th Pacific Visualization Symposium (PacificVis),
pages 91–100, 2021.

[11] M. Labbé and F. Michaud. Rtab-map as an open-source lidar and visual simultaneous
localization and mapping library for large-scale and long-term online operation.
Journal of Field Robotics, 36(2):416–446, 2019.

[12] J. Lee, F. Jin, Y. Kim, and D. Lindlbauer. User preference for navigation instructions
in mixed reality. In 2022 IEEE Conference on Virtual Reality and 3D User Interfaces
(VR), pages 802–811, 2022.

[13] S. Mang. Towards improving instruction presentation for indoor navigation. Master’s
thesis, Dept. Electr. Eng. Inform. Technol., Inst. Med. Technol., München, Germany,
2013.

[14] A. Martin, J. Cheriyan, J. Ganesh, J. Sebastian, and J. V. Indoor navigation using
augmented reality. EAI Endorsed Transactions on Creative Technologies, 8(26), 2
2021.

[15] M. Mendoza, J. I. Vasquez-Gomez, H. Taud, L. E. Sucar, and C. Reta. Supervised
learning of the next-best-view for 3d object reconstruction. Pattern Recognition
Letters, 133:224–231, 2020.

[16] NBV-Net source code. https://github.com/irvingvasquez/nbv-net. Last
accessed: 2025-01-26.

[17] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi,
J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion: Real-time dense surface
mapping and tracking. In 2011 10th IEEE International Symposium on Mixed and
Augmented Reality, pages 127–136, 2011.

[18] PCLVisualizer documentation. https://pointclouds.org/documentation/
classpcl_1_1visualization_1_1_p_c_l_visualizer.html. Last ac-
cessed: 2025-01-09.

[19] PCL documentation. http://pointclouds.org/documentation/group_
_io.html. Last accessed: 2025-01-09.

[20] Python embedding in C and C++. https://docs.python.org/3/
extending/embedding.html. Last accessed: 2025-01-26.

[21] RTAB-Map example for RGB-D mapping. https://github.com/introlab/
rtabmap/wiki/Cplusplus-RGBD-Mapping. Last accessed: 2025-01-02.

[22] RTAB-Map build guide. http://introlab.github.io/rtabmap/. Last ac-
cessed: 2025-01-02.

42

https://github.com/irvingvasquez/nbv-net
https://pointclouds.org/documentation/classpcl_1_1visualization_1_1_p_c_l_visualizer.html
https://pointclouds.org/documentation/classpcl_1_1visualization_1_1_p_c_l_visualizer.html
http://pointclouds.org/documentation/group__io.html
http://pointclouds.org/documentation/group__io.html
https://docs.python.org/3/extending/embedding.html
https://docs.python.org/3/extending/embedding.html
https://github.com/introlab/rtabmap/wiki/Cplusplus-RGBD-Mapping
https://github.com/introlab/rtabmap/wiki/Cplusplus-RGBD-Mapping
http://introlab.github.io/rtabmap/

[23] RTAB-Map build guide. https://github.com/introlab/rtabmap/wiki/
Installation#ubuntu. Last accessed: 2025-01-01.

[24] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and A. J. Davison.
Slam++: Simultaneous localisation and mapping at the level of objects. In 2013
IEEE Conference on Computer Vision and Pattern Recognition, pages 1352–1359,
2013.

[25] C. Sandor, G. Klinker, B. Thomas, M. Billinghurst, and M. Haller. Lessons learned
in designing ubiquitous augmented reality user interfaces. In Emerging Technologies
of Augmented Reality, pages 218–235. IGI Global, United States, 2006.

[26] T. Taketomi, H. Uchiyama, and S. Ikeda. Visual slam algorithms: a survey from
2010 to 2016. IPSJ Transactions on Computer Vision and Applications, 9(1):16,
Jun 2017.

[27] Source code of the project with build guideline. https://gitlab.cg.tuwien.
ac.at/stef/nbv-guidance. Last accessed: 2025-02-18.

[28] torch documentation. https://pypi.org/project/torch/. Last accessed:
2025-01-26.

[29] L. Ventä-Olkkonen, M. Posti, O. Koskenranta, and J. Häkkilä. Investigating the
balance between virtuality and reality in mobile mixed reality ui design: user
perception of an augmented city. In Proceedings of the 8th Nordic Conference on
Human-Computer Interaction: Fun, Fast, Foundational, NordiCHI ’14, page 137–146,
New York, NY, USA, 2014. Association for Computing Machinery.

[30] Viewpoint intersection algorithm source. https:
//stackoverflow.com/questions/48154210/
3d-point-closest-to-multiple-lines-in-3d-space. Last accessed:
2025-02-11.

[31] T. Wang, W. Xi, Y. Cheng, H. Han, and Y. Yang. Rl-nbv: A deep reinforcement
learning based next-best-view method for unknown object reconstruction. Pattern
Recognition Letters, 184:1–6, 2024.

[32] R. Zeng, W. Zhao, and Y.-J. Liu. Pc-nbv: A point cloud based deep network for
efficient next best view planning. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 7050–7057, 2020.

[33] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for point cloud based 3d
object detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

43

https://github.com/introlab/rtabmap/wiki/Installation#ubuntu
https://github.com/introlab/rtabmap/wiki/Installation#ubuntu
https://gitlab.cg.tuwien.ac.at/stef/nbv-guidance
https://gitlab.cg.tuwien.ac.at/stef/nbv-guidance
https://pypi.org/project/torch/
https://stackoverflow.com/questions/48154210/3d-point-closest-to-multiple-lines-in-3d-space
https://stackoverflow.com/questions/48154210/3d-point-closest-to-multiple-lines-in-3d-space
https://stackoverflow.com/questions/48154210/3d-point-closest-to-multiple-lines-in-3d-space

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Next Best View
	Visual Simultaneous Localization and Mapping
	Augmented Reality user interface
	Guildelines for AR scanning UIs

	Method
	Prerequisites
	Scanning process
	Next Best View implementation
	Point cloud acquisition
	Object centre computation
	Augmented Reality interface implementation

	Results
	Best practices
	Augmented Reality User Interface
	NBV and vSLAM
	Scanning process efficiency evaluation

	Conclusion and Future Work
	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

