
SPSR Parameter determined by Neural Network

Florian Steinschorn*

TU Wien
Philipp Erler†

TU Wien

Abstract

CR Categories: I.2.6 [Artificial Intelligence]: Learning—
Parameter learning;

Keywords: machine learning, neural network, parameter opti-
mization

1 Introduction

In ’Parameter Optimization for Surface Reconstruction’ ([Stein-
schorn et al. 2025]) we tested different parameter optimization
methods to find the most accurate and fast way to find optimal
parameters for longer-running tasks that cannot be exhaustively
tested. One strategy that we did not test is using machine learn-
ing to solve this problem. If it is possible to train a neural network
to determine close-to-optimal parameters for a given task, then that
would certainly be faster than all the other tested solutions.
For this report, we generated training data for the problem of recon-
structing meshes from point clouds using Screened Poisson Surface
Reconstruction (SPSR). We used ParamILS ([Hutter et al. 2009])
for this, and then tested two different networks to see if this is
achievable. We describe our strategy for this, present our results,
and discuss the encountered problems.

2 Related Work

The reconstruction algorithm we try to optimize is Screened Pois-
son Surface Reconstruction by Kazhdan and Hoppe ([Kazhdan and
Hoppe 2013]). It is used to generate watertight surfaces from point
clouds by first converting them into a vector field, which can then
be split up by its sign into inside and outside the model. The border
between these two sets is then the surface of the model.
SPSRs advancement over standard Poisson Surface Reconstruction
is that it also adds a term to the error function that punishes results
that are farther away from the sampling points, therefore resulting
in a more accurate fit to the input points. Another difference to
PSR is that SPSR uses a different boundary function, which en-
sures water tightness. This does, however, pose the disadvantage
that non-watertight models (like many 3D scans that do not include
a bottom scan) can be blown out and connected to the edge of the
reconstruction space.

In this report, we show tests using two different neural networks.
The first one is PointNet by Qi et. al. ([Qi et al. 2017]). The au-
thors discuss the usage of PointNet to classify point clouds, or label
parts of them by partition or semantic differences. PointNet solves

*e-mail: f.steinschorn@gmail.com
†e-mail: perler@cg.tuwien.ac.at

the problem of having to be perturbation resistant, due to the na-
ture of the point cloud data, by including a max pooling layer after
some point-level feature extraction steps. The global feature de-
scriptor obtained this way is then also used for point-level labeling
for segmentation.

The second neural network that we tested is Point Convolution for
Surface Reconstruction (Poco) by Boulch and Marlet ([Boulch and
Marlet 2022]). In the first step, they generate a latent feature vector
for each input point. This information is then later used to deter-
mine whether a query point is inside or outside the object. For each
query point, a fixed-size neighborhood of input points is selected
and their feature vectors are used to decide on the probabilities of
the query point being inside or outside the object.

3 Data Generation

To train the neural network, a lot of input data is needed, for our
case, this means point clouds and their corresponding optimal pa-
rameters. We chose the ABC dataset ([Koch et al. 2019]) for this.
To generate ’ground truth’ optimal parameters for each point cloud,
we used ParamILS ([Hutter et al. 2009]) as described and imple-
mented in ([Steinschorn et al. 2025]) with a starting sample size of
70, a perturbation distance of 0.6 and 5 maximal repetitions.

3.1 Little Big Data

To speed up this resource-expensive step, we used the ’Little Big
Data’ cluster (LBDv3)1 provided by the TU Wien dataLAB. This
cluster contains 20 worker nodes each equipped with 2 Intel Xeon
E5-2650v4 processors, which have 12 cores with hyperthreading.
For these 48 available threads, each machine has 256GB of RAM.
With this setup, we managed to compute a close-to-optimal param-
eter set for 1079 point clouds.

While LBDv3 was a great asset, without which we would not have
been able to generate that amount of data, we also had some prob-
lems with it, which cost us more time than anticipated.

3.1.1 Documentation

The first problem with using LBDv3 was getting started. There is
not a lot of documentation aside from basic infrastructure. While
there are some example applications, they are all based on Jupyter
notebooks and did not apply to our system, which needs to start
spark calls from within Python.
A second problem was getting the dashboard to run, which al-
lows the user to monitor running processes and get error messages.
While there was some documentation, it did not work. The data-
LAB team was fortunately very helpful with this and managed to
help us fix this problem.

3.1.2 Environment Updates

There were two instances of environment updates on the LBDv3
cluster, that introduced breaking changes to our setup without be-
ing announced or documented.

1https://colab.tuwien.ac.at/display/DBD/Big+Data+LBD

https://colab.tuwien.ac.at/display/DBD/Big+Data+LBD


At one point, there were some library updates that required code
changes on our side. This caused a lot of idle time on the cluster
until we figured out what was happening.
Another time, the dashboard mentioned above stopped working.
Neither the available documentation nor the provided solution by
the dataLAB team has worked since. Because it happened quite
late in the data generation process, this did not cause any major
issues, since the dashboard was no longer needed for debugging.

3.1.3 Other

Apart from those fixable issues, we also had the problem that our
processes would regularly crash without any helpful error messages
after many hours of running. We do not know what caused this is-
sue, but it meant that we had to closely monitor the data generation
process and regularly restart it.

4 Implementation

In this section, we describe how we used each of the two systems,
what we had to change, and how well our implementation worked.

4.1 PointNet

For PointNet we used the Python implementation provided by the
authors 2 as a starting point. Very few modifications were neces-
sary to run this code on our data. We modified the classification net
by increasing the output vector to length 7 (the number of parame-
ters relevant for SPSR). We had to add a custom data loader for our
ABC data including the calculated ground truths. All our changes
are available on a fork of the PointNet repository 3.
We kept most settings as they are for the classification configura-
tion, retaining Adam Optimizer and the set learning rates for ex-
ample, but we changed the loss function to the mean square error
between the prediction and the ground truth.
We used 80% of our 1079 point clouds as training data and 20% as
test data and trained for 500 epochs.

4.2 Poco

For our tests with the Poco network, we used the implementation
by Erler et al. for PPSurf ([Erler et al. 2024]) 4. Similar to the
PointNet implementation, we had to add our own data loader to read
ABC data including our calculated ground truths. We modified the
model to use the mean square error between prediction and ground
truth as a loss function.
We had to modify the way Poco uses query points. The standard
behavior is to choose many query points, and for each determine
the probability of being inside or outside the model. This means
the output of the network is a vector of length 2 per query point. To
get only one output vector, instead of multiple query points, we only
use one. This point is placed in the center of the scene ([0, 0, 0]). To
still get global information, we extended the neighborhood used for
this query point to include all available input points. Additionally,
we increased the size of the output vector from 2 (inside and outside
probability) to 7 (number of parameters for SPSR). All our changes
are available on a fork of the PPSurf repository 5.
We used 90% of our 1079 point clouds as training data and 10% as
test data and trained for 500 epochs.

2https://github.com/fxia22/pointnet.pytorch
3https://github.com/thefloff/pointnet.pytorch.spsr parameters/tree/spsr
4https://github.com/cg-tuwien/ppsurf
5https://github.com/thefloff/ppsurf param opt

Figure 1: Loss curves during training of the Poco network for, train-
ing on the left and validation on the right.

Figure 2: Correlation between ground truth and PointNet predicted
outputs for the parameter ’depth’. The size of the dot represents the
number of occurrences.

5 Results

To evaluate our results we use the average mean square error (MSE)
of the test set, as well as the correlation between ground truths and
predictions. This is represented by the slope of the linear regres-
sion, which should be 1.0 for a perfect prediction.
Unfortunately, none of our results show strong correlations between
ground truth parameters and predicted parameters. Another indica-
tion for this, are the loss curves during training, which do not con-
verge. An example of this can be seen in Figure 1. The loss values
in this graph is calculated on the normalized feature vector and is
therefore smaller than the MSE presented in the following sections.

5.1 PointNet

The results created using the PointNet implementation are the worst
of the two networks. It achieved an MSE of 4.5.

It looks like the network managed to learn a generally good out-
put, that outperforms the default parameters of SPSR but did not
manage to catch differences between the individual point clouds
well. As an example, Figure 2 shows the correlation between the
ground truth and the prediction or depth values output by PointNet.
A somewhat better result has been achieved for samples per node,
as can be seen in Figure 3, but even here there is no clear correlation
between ground truth and prediction.

https://github.com/fxia22/pointnet.pytorch
https://github.com/thefloff/pointnet.pytorch.spsr_parameters/tree/spsr
https://github.com/cg-tuwien/ppsurf
https://github.com/thefloff/ppsurf_param_opt


Figure 3: Correlation between ground truth and PointNet predicted
outputs for the parameter ’samples per node’. The size of the dot
represents the number of occurrences.

5.2 Poco

In general, the achieved predictions by Poco more closely resemble
the distribution of input ground truths. There is, however, still no
clear correlation for individual point clouds. The achieved MSE of
1.42 is much smaller than for PointNet.

As can be seen in Figure 4, the network correctly learned the gen-
eral range of good values, but there is no clear correlation be-
tween ground truth and prediction. It is a similar situation for sam-
ples per node, where the network learned a general range of ex-
pected values, but does not seem to consider the actual point cloud.
Figure 5 shows this and it can be seen that especially higher ground
truth values are completely disregarded.

6 Conclusion

We have to conclude, that our approaches did not yield the results
we were hoping for. There are a few possible reasons for this.

6.1 Problems with Dataset

Our dataset of 1079 point clouds may be simply too small. Al-
though it would have been great to have more data, generating more
optimal parameters for point clouds was not possible due to time
and resource constraints.
Another possibility is that the ABC dataset is simply too uniform
and the individual point clouds too similar. The dataset consists of
only geometric shapes, as can be seen in Figure 6, which shows a
random sample of the dataset.

6.2 Problems with Ground Truth Parameters

It is possible that the limits used for generating the ground truth
were not optimal. Figure 7 shows the distribution of ground-truth
values for ’point weight’. As can be seen here, a lot of values are
the minimum of 2. It might be the case, that the actual optimum
for this parameter could be 1 in some cases, therefore causing our
ground truths to contain some wrong values. Similarly, ’depth’ of-
ten causes better results the higher it is chosen, but we limited it
to 8, since the computation time for SPSR increases dramatically

Figure 4: Correlation between ground truth and Poco predicted out-
puts for the parameter ’depth’. The size of the dot represents the
number of occurrences.

Figure 5: Correlation between ground truth and Poco predicted out-
puts for the parameter ’samples per node’. The size of the dot rep-
resents the number of occurrences.

Figure 6: Randomly selected meshes from the ABC dataset.



Figure 7: Correlation between ground truth and Poco predicted out-
puts for the parameter ’point weight’. The size of the dot represents
the number of occurrences.

above that.
It is also necessary to keep in mind that the ParamILS algorithm
used when generating the ground truths yields a very good, but not
necessarily the best possible parameter configuration. Especially,
if some parameters are less important for the quality of the result,
they may be farther off from the optimum. The importance of the
parameter is not considered in the loss function used in our tests.
Another issue is that all parameters get normalized to the range [0.0,
1.0] during training, but the number of options is different per pa-
rameter. So a difference of 1 in ’cgDepth’, which has a range of
[0, 1] is an error of 1, while a difference of 1 in samples per node,
with a range of [1, 10] in 0.1 steps, only causes an error of 0.01.

To eliminate the contamination of different scales and the impor-
tance of parameters, we also ran Poco with just one parameter
used in the loss function. The result of this for the parameter
’point weight’ can be seen in Figure 8. While the slope of the lin-
ear regression is slightly steeper, the result is still not satisfying. We
also do not get any output value under 3, although there are quite a
lot of inputs under 3.

References

BOULCH, A., AND MARLET, R. 2022. Poco: Point convolution for
surface reconstruction. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
6302–6314.

ERLER, P., FUENTES-PEREZ, L., HERMOSILLA, P., GUERRERO,
P., PAJAROLA, R., AND WIMMER, M. 2024. Ppsurf: Combin-
ing patches and point convolutions for detailed surface recon-
struction. Computer Graphics Forum 43, 1, e15000.

HUTTER, F., HOOS, H. H., LEYTON-BROWN, K., AND
STÜTZLE, T. 2009. Paramils: An automatic algorithm con-
figuration framework. J. Artif. Int. Res. 36, 1 (Sept.), 267–306.

KAZHDAN, M., AND HOPPE, H. 2013. Screened poisson surface
reconstruction. ACM Transactions on Graphics (TOG) 32, 3, 29.

KOCH, S., MATVEEV, A., JIANG, Z., WILLIAMS, F., ARTEMOV,
A., BURNAEV, E., ALEXA, M., ZORIN, D., AND PANOZZO,

Figure 8: Correlation between ground truth and Poco predicted out-
puts for the parameter ’point weight’ when only using this param-
eter in the loss function. The size of the dot represents the number
of occurrences.

D. 2019. Abc: A big cad model dataset for geometric deep
learning. In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

QI, C. R., SU, H., MO, K., AND GUIBAS, L. J., 2017. Pointnet:
Deep learning on point sets for 3d classification and segmenta-
tion.

STEINSCHORN, F., WIMMER, M., AND ERLER, P., 2025. Param-
eter optimization for surface reconstruction.


	Introduction
	Related Work
	Data Generation
	Little Big Data
	Documentation
	Environment Updates
	Other


	Implementation
	PointNet
	Poco

	Results
	PointNet
	Poco

	Conclusion
	Problems with Dataset
	Problems with Ground Truth Parameters


