
Inverse Material Synthesis via
Sub-Shader Extraction

A Neural Shader Parametrisation Approach With
Subsequent Shader Simplification

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Informatik

eingereicht von

Marcel Arthur Winklmüller
Matrikelnummer 01429490

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Projektass. Mag. Martin Ilcik

Wien, 15. März 2025
Marcel Arthur Winklmüller Martin Ilcik

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Inverse Material Synthesis via
Sub-Shader Extraction

A Neural Shader Parametrisation Approach With
Subsequent Shader Simplification

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Informatics

by

Marcel Arthur Winklmüller
Registration Number 01429490

to the Faculty of Informatics

at the TU Wien

Advisor: Projektass. Mag. Martin Ilcik

Vienna, 15th March, 2025
Marcel Arthur Winklmüller Martin Ilcik

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Marcel Arthur Winklmüller

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15. März 2025
Marcel Arthur Winklmüller

v

Kurzfassung

Ich erforsche die Möglichkeit, prozedurale Blender-Shader für selbstähnliche, semi-reguläre
Oberflächen zu generieren, die auf einem Eingabebild basieren, das von einem Foto oder
digitalen Rendering abgeleitet ist. Der resultierende Blender Shader soll einen Render
eines Materials erzeugen können das dem eingabe Bild ähnelt.

Dies wäre nützlich, da prozedurale Materialien 3D-Künstlern Flexibilität und kreative
Kontrolle über das Aussehen der Materialien bieten, die bildbasierte Materialien nicht
können, während sie alle Vorteile dieser bildbasierten Materialien, wie Verfügbarkeit und
Benutzerfreundlichkeit, erben.

Diese Shader-Erzeugung erfolgt durch Schätzung von Parametern eines gegebenen, vorab
erstellten, allgemeinen Shader-Graphen (dem Super-Shader) und anschließender extrakti-
on eines simpleren Untergraphen. Die Parameter werden durch ein MLP-Neuronennetz
geschätzt, das Texturstatistikbeschreiber als Eingabe verwendet. Diese Beschreiber wer-
den von einem vortrainierten Bildklassifizierungs-CNN extrahiert, das das ursprüngliche
Foto/Rendering als Eingabe nutzt. Mit dieser Pipeline kann ein großer Lern-Datensatz
für das MLP künstlich leicht mit Blender und dem Super-Shader generiert werden, indem
mit zufälligen Parametern gerendert wird.

vii

Abstract

I explore the possibility of generating procedural Blender shaders of self-similar semi-
regular surfaces from an input image derived from photograph or digital render. The
resulting Blender shader should produce a Material with a look similar to the input
image.

This would be useful because procedural materials give 3D artists flexibility and creative
control over the materials look, that image based materials cannot, while inheriting all
the benefits of said image based materials, like availability and ease of use.
This shader generation is done by a neural parameter predictor and subsequent extraction
of a sub-shader from a given, pre-built, general shader graph (the super-shader). The
parameters are predicted by a MLP neural network using statistical texture descriptors
as its input. Those descriptors are extracted from a pre-trained image classification
CNN, which uses the original photograph/render as its input. Using this pipeline a
large learning dataset for the MLP can be easily artificially generated with Blender by
rendering the super-shader with randomized parameters.

ix

Contents

Kurzfassung vii

Abstract ix

1 Introduction 1
1.1 Motivation . 2

2 Related Work 5
2.1 Texture Synthesis . 6
2.2 Material Synthesis . 8

3 Methodology 11
3.1 Training Pipeline . 12
3.2 Inference Pipeline . 13

4 Technical Background 15
4.1 Blender Material Node Graph . 15
4.2 Convolutional Neural Networks (CNN) 19
4.3 Gatys Style Descriptor . 22

5 Implementation 25
5.1 Super-Shader . 25
5.2 Learning Data Generation . 29
5.3 Parameter Predictor Training and Evaluation 32

6 Results and Conclusions 35
6.1 Issues . 36
6.2 Successes . 40
6.3 Future Work . 40

List of Figures 43

Acronyms 45

Bibliography 47

xi

CHAPTER 1
Introduction

Figure 1.1: Overview of the training (top) and inference (bottom) pipelines for
generating custom shader outputs. During training, a Super-Shader is assigned 50 random
parameters, and rendered to an image, which is then fed into a modified pre-trained VGG19
to compute style descriptors. An input mask, computed via a RFR, reduces the descriptor’s
dimensionality. The Parameter Predictor gets trained to predict shader parameters based on the
descriptor, minimizing the difference to the ground-truth input parameters. During inference, a
user-supplied image is processed through the same VGG19 and Parameter Predictor to estimate
the super-shader parameters. A script then extracts a simplified sub-shader that reproduces the
render with reduced complexity, making it easier for the user/artist to modify.

Texturing plays an essential role in creating photorealistic 3D renderings, defining surface
properties such as colour, roughness, shininess, and small surface details which are
used by a light transport algorithm [Kaj86; VG97]. In modern workflows, materials
are typically described using one of two main approaches: image-based materials and

1

1. Introduction

procedural materials. Each method offers unique advantages but also comes with
significant limitations. Table 1.1 and Figure 1.2 provide a comparison of both.

Image-Based Materials: Image-based materials rely on pre-generated texture maps,
often created from high-resolution photographs or manually painted in specialized software
such as Adobe Substance Painter. In PBR [Kum20] maps describe various surface
properties like colour, roughness, and bumpiness, and they are widely available and
relatively easy to use. However, their reliance on fixed-size textures introduces challenges.
When applied to surfaces larger than the original texture, tiling artifacts become apparent,
disrupting visual continuity. Additionally, customization is limited; modifying the
material’s appearance often requires creating entirely new texture maps, which is time-
intensive and demands significant expertise.

Procedural Materials: Procedural materials, in contrast, calculate surface properties
dynamically using mathematical noise generators and functions. This approach offers
several benefits, including resolution independence, seamless scalability, and significant
customizability. Artists can tweak parameters to modify material properties, such as
adjusting the coarseness of concrete or adding metallic inclusions, without needing new
texture maps. Procedural materials also require less storage space since they do not rely
on large image files. However, their creation is complex and time-consuming, demanding
advanced skills and a deep understanding of node-based systems.

Challenges with Existing Methods: While image-based materials excel in accessibility
and realism, their limitations in scalability and customizability make them less suitable
for large surfaces or varied artistic requirements. Procedural materials address these
shortcomings but at the cost of accessibility and ease of creation. Realistic procedural
materials are particularly challenging to create, even for skilled artists, as shown by their
relatively lower adoption compared to image-based methods.

Bridging the Gap: A system that bridges these two approaches could combine their
strengths, offering artists the scalability and customization of procedural materials with
the ease of use and visual fidelity of image-based materials. Such a hybrid workflow would
benefit novice artists by simplifying complex tasks and empower experts with greater
artistic freedom. By leveraging the advancements in neural networks, particularly in
image analysis and procedural generation, it is possible to create a workflow that inherits
the best of both worlds.

In this thesis, I explore the feasibility of using neural networks to generate procedural
shaders directly from image-based materials or even real-world photographs. This
approach aims to create a unified texturing workflow that combines the strengths of both
methods while addressing their limitations.

1.1 Motivation
Image-based materials are abundantly available, easy to use but hard to make, not freely
scalable because of tiling artifacts and hardly customizable. Procedural materials are

2

1.1. Motivation

Feature Image-Based Materials Procedural Materials
Definition Use pre-generated images

(textures) to define surface
properties.

Generate surface properties
dynamically using mathe-
matical functions.

Flexibility Limited to the provided tex-
ture; customization requires
creating or sourcing new tex-
tures.

Highly customizable; prop-
erties can be adjusted dy-
namically.

Resolution Independence Fixed resolution; scaling
leads to tiling or loss of de-
tail.

Fully resolution-
independent; no tiling
issues.

Ease of Use Easy to apply pre-existing
textures but harder to cre-
ate from scratch.

Requires expertise to create
but offers powerful control
once set up.

Storage Requirements Requires storage for multi-
ple texture maps.

Requires minimal storage as
textures are generated on-
the-fly.

Realism Often highly realistic due to
reliance on actual images.

Can achieve realism but typ-
ically requires more effort to
match image-based fidelity.

Performance May require less computa-
tional power during render-
ing.

Computationally intensive,
especially with complex
noise functions.

Table 1.1: Comparison of Image-Based and Procedural Materials

also hard to make, not as common as image-based materials but highly customizable,
storage space efficient, and borderless and therefore useable on large surfaces without the
danger of running into tiling issues.

In this thesis, I explore the possibility of a system which can generate a procedural shader
from an image-based shader, or even from a photograph of a real-world surface. Creating
a texturing workflow that inherits the benefits of both methods. Such a system would be
valuable for novice as well as expert artists, by speeding up the texturing workflow and
increasing artistic freedom.

The focus of this work is to explore the possibility of using neural networks to do this
procedural shader generation with minimal user input. An overview of the approach
is illustrated in Figure 1.1. A Super-Shader with 50 parameters being able to simulate
a variety of materials is taken as the underlying model. The main goal is to train a
Parameter Predictor for estimation of it’s parameter values that would produce the input
image. Instead of working directly on the image, a modified pre-trained VGG19 computes
a style descriptor based on Gram matrices. Details are discussed in sections 4.2.3 and 4.3.
A random forest regressor (RFR) further determines a mask for dimensionality reduction

3

1. Introduction

(a) Photo texture approach

(b) Procedural approach.

Figure 1.2: Comparison between texture based (a) and procedural concrete (b). Both resulting
renders (right) use the same scaling. The photo based approach leads to tiling issues because the
source texture has to be repeated once the surface size exceeds the source image size.

of the descriptor. Details follow in Section 5.3.1. Various material classes usually require
only a subset of parameters, therefore in Section 5.1.2 I also present a simplification
utility that given the estimated shader parameters isolates a sub-shader that reproduces
the render with reduced complexity, making it easier to control.

Having outlined the motivation for bridging image-based and procedural materials, this
chapter has set the stage for the investigation by highlighting the challenges and potential
benefits of a unified workflow. In the following chapter, I review related work in texture
synthesis and material generation, providing the necessary background and context that
informs the design of my system.

4

CHAPTER 2
Related Work

The field of computer graphics and material synthesis has witnessed substantial advance-
ments over the past few decades. In this chapter, I will discuss key contributions in
areas that directly inform this work; especially texture synthesis, material synthesis, and
shader parameter estimation. The goal of this review is to give context to my approach
and identify the strengths and limitations of existing methods.

We begin by taking a look at texture synthesis, where the concept of representing image
style through statistical measures; most notably using Gram matrices derived from layer
activations, was first introduced. This approach has not only revolutionized style transfer
applications but also provided a foundation for extracting rich texture descriptors from
images.

Next, I explore the evolution of material synthesis techniques, comparing image-based
methods with procedural approaches. As previously detailed in Table 1.1, while image-
based materials offer ease-of-use and high realism, they are often limited by issues such
as tiling and lack of scalability. Procedural methods, on the other hand, promise greater
flexibility and resolution independence, at the cost of increased complexity.

Finally, I look at methods for shader parameter estimation. Recent work in this area
explores how to automatically map visual features from images to the parameters used
in procedural shaders.

Overall, this chapter sets the stage by showing how earlier research has built the foundation
for my work and where there is still room for improvement. It explains the reasoning
behind the methods used in my thesis and how my contributions fit into the larger
picture.

5

2. Related Work

Figure 2.1: Gatys et al [GEB15a] texture generation using back propagation on white noise
image using Gatys style descriptor L2 distance as loss. Top: generated texture. Bottom: source
image. Image courtesy of Gatys et al. [GEB15a]

2.1 Texture Synthesis

Texture synthesis refers to the process of creating new textures that share statistical or
visual properties with a source texture. Traditional approaches, such as pixel resampling
[WL00; EL99] and patch-based methods [EF01], rearrange elements of the source texture
to generate new appearances. While effective for many applications, these approaches
are inherently limited as they rely on rearranging existing data, making it difficult to
produce genuinely new textures.

Parametric approaches that rely on measurement outputs instead of pixel values have
been done as early as 1962 [Jul62] and again later inspired by the early mammalian
visual system [HB95; PS00; SF95]. While these methods lead to good results in selected
categories of textures, Gatys et al. [GEB15a] introduced a parametric approach to texture
synthesis, leveraging the power of convolutional neural networks (CNNs). Instead of
comparing raw pixel values, their method measures the statistical properties of features
extracted by a pre-trained CNN, referred to as the Gatys style descriptor (explained in
Section 4.3). This innovation allowed for the generation of visually similar but unique
textures by optimizing a white noise image to match the source texture’s style descriptor
using gradient descent and an L2 loss function. The method demonstrated exceptional
results, producing textures that are both realistic and unique. However, it does not
address previously mentioned challenges like tiling artifacts or the lack of customizability
inherent in fixed-size image-based textures. These limitations motivate the exploration
of procedural approaches, as discussed in this work.

6

2.1. Texture Synthesis

While this approach of texture synthesis is only of limited use in the 3D rendering world,
Gatys et al. demonstrates that the statistical properties of textures can be effectively
captured through Gram matrix computations of CNN activations. This approach is
fundamental to this thesis, as it directly describes the method for extracting style
descriptors from rendered images used in this thesis. By leveraging a pre-trained VGG19
network, the pipeline abstracts the complex visual characteristics of a material without
relying on direct pixel comparisons, thereby mitigating common issues like tiling. This
procedure is detailed in Section 4.3, more implementation details can be found in Section
5.2.2.

2.1.1 Unified Neural Noise Generator

Maesumi et.al. proposed in their recent and catchy named work One Noise To Rule Them
All [Mae+24], a novel way to generate noise textures that could replace or greatly improve
the super-shader while at the same time simplifying it. Unlike the traditional fixed set of
discrete noise functions (such as Perlin, Worley or Voronoi noise), this approach leverages
a denoising diffusion probabilistic model (DDPM) to learn a continuous latent space of
noise patterns. By doing so, the model can generate a wide range of noise textures and
interpolate smoothly between them.

A set of relatively easy to interpret parameters like scale, distortion or noise type
parameters are used to condition the transformer network, to guide it in creating desirable
outputs. Importantly, these parameter spaces are fully differentiable.

The paper also demonstrates an application of this unified noise model within the context
of inverse procedural material design, particularly through its integration with the MATch
approach. In this setup, the neural noise generator replaces conventional noise nodes
within a procedural material graph. By feeding its interpretable parameters into the
optimization process, the model not only enhances the quality of results but also broadens
the space of possible materials. Artists are no longer limited to selecting from a discrete
set of noise functions; instead, they can explore a continuous spectrum of noise behaviours
that better capture subtle variations and transitions.

The differentiable nature of this approach would greatly benefit the super-shader. By
removing the discreet switching between noise generators that is currently employed by
the use of multiplexers, and therefore also the variable parameter mapping; the unified
noise generator and its seamless interpolation between noise types proposed by Maesumi
et.al., would reduce abstraction significantly and at the same time make large parts of
the super-shader differentiable.

Altogether, this method presents a promising approach for simplifying the work of the
parameter predictor ; however, since it was not originally intended for integration with
the Blender’s shader framework, adapting it would likely require some significant and
modifications.

7

2. Related Work

Figure 2.2: Texture sample photo setup. Image courtesy of Aittala et al. [AWL+15]

2.2 Material Synthesis

Material synthesis extends beyond texture generation to capture spatially varying prop-
erties like reflectance, bumpiness, and metallicity, often represented as SVBRDF maps.
These maps are essential for creating photorealistic materials in physically based rendering
(PBR) workflows and are a central topic of this thesis.

Research in this field has explored both image-based and procedural methods, each
with their own advantages and limitations. Image-based techniques, including methods
like image quilting and PBR map generation, offer ease-of-use and high realism but
can suffer from issues like tiling. In contrast, procedural methods provide scalability
and customization but are more complex to implement. By automatically generating
procedural shaders from image inputs, this thesis seeks to bridge these approaches.

Early work, such as that by Efros and Freeman [EF01], laid the groundwork by demon-
strating that textures can be synthesized by rearranging elements of an image. However,
these methods do not capture the physical properties needed for complete material
generation. Parametric approaches by Aittala et al. [AWL+15] improved upon this
by using controlled lighting setups to estimate SVBRDF maps, thereby reconstructing
materials with spatially varying properties. More recent methods, including Liang et
al.’s MATch system [Shi+20], have taken a neural approach to parameterize procedural
material graphs using differentiable shaders and dedicated networks.

Unlike traditional texture synthesis that focuses solely on visual appearance, material
synthesis aims to capture both the visual and physical aspects of a material. The insights
from these works have directly influenced the design choices in this thesis, particularly
in using neural networks for shader parameter prediction within a unified procedural
material framework.

2.2.1 Parametric PBR texture synthesis

One approach to overcome tiling issues in materials is to generate texture maps procedu-
rally, while an alternative is to directly produce photo-based PBR texture maps at the
desired size. In 2015, Aittala et al. [AWL+15] introduced a non-neural image quilting
technique that stitches parts of two input images together to create larger, seamless

8

2.2. Material Synthesis

texture maps. They evaluated their results by comparing the synthesized textures with
ground-truth measurements, such as laser-scanned normal maps and photographs.

In 2016, the same group expanded on this idea in their work “Reflectance Modelling by
Neural Texture Synthesis” [AAL16]. This time, they proposed a method to generate
SVBRDF parameters from a centrally lit input image. Their approach also employed the
Gram style descriptor to quantify the stylistic differences between the input and output
images, and they refined the textures iteratively by backpropagating the error through a
differentiable pipeline.

2.2.2 Shader Graph Selection and Estimation

A closely related but significantly more intricate approach then the one presented in this
thesis has been implemented by Liang et al. in their work on MATch [Shi+20]. This
large-scale project involves the use of fully differentiable shader graphs, developed in
Substance Designer, to represent various types of materials.

For each shader graph, a dedicated neural network is trained to estimate its parameters.
The network takes as input the Gatys style descriptor of the target image and outputs
parameter values for each shader graph. Once the parameters are estimated, an image is
rendered with each shader. The output image’s Gatys style descriptor of each shader is
then computed and compared to the descriptor of the input image. Among all shaders,
the one with the smallest style difference is selected.

Since the shader graphs in MATch are fully differentiable, a gradient-based iterative
optimization step can further refine the parameters, enhancing the accuracy of the final
rendered image.

The results of this approach are highly impressive, with parametrized shaders producing
renders that closely resemble the input images. Additionally, the architecture of MATch
offers a significant advantage: each shader has its own parameter prediction network.
This reduces abstraction and simplifies the system by allowing new material types to be
added easily. Training networks for new materials requires no retraining of the existing
shader parametrization networks, enabling modular and scalable extensions of the system.
MATch shows that it is able to deliver easily customisable, compact shader graphs, that
produce results that resemble the inputs in many cases.

2.2.3 Procedural material synthesis through material decomposition

A recent article by Hu et al. [Hu+22] has the same goal as this thesis – generating
procedural materials to eliminate tiling issues and enable artistic customization from
texture-based materials. Hu et al. proposed a method which takes PBR textures as input,
and produces procedural Adobe Substance painter materials that mimic the input. Their
method decomposes the input SVBRDF pixel maps into sub-materials by segmenting
and masking, and uses multiple low and high frequency noise generators to mimic those
sub-materials. The sub-materials are then recomposed using the previously estimated

9

2. Related Work

masks, and optimised by an iterative rendering based optimisation. As a similarity metric,
they use the difference between by VGG generated Gram matrix style descriptors as well.

While the mask generation needs some minimal user interaction, this approach has the
grand benefit of not needing any previously crafted shader graphs at all, in comparison
to MATch ([Shi+20]) or the proposed method in this thesis. For the same reason it
is not limited to the capabilities of the existing source shaders. Materials featuring
complex structures or interwoven material differences like; tiles, multicoloured mosaics or
brick, are just as possible as simple self-similar materials like leather, concrete, or metals.
Although their approach needs SVBRDF maps to start with, there are multiple existing
solutions to generate those maps from a centrally lit photograph or render.

2.2.4 Procedural shader parametrisation

Unlike earlier methods that focused mainly on texture synthesis or simple parameter
mapping, Guo et al. [Guo+20] present a framework that addresses the entire process of
procedural material parametrisation. Their work distinguishes between parameters that
are continuous and differentiable versus those that are discrete and non-differentiable.
This separation allows for sampling a range of material parameters that can recreate an
input image, giving users the option to choose the most suitable parametrisation.

This concept is directly relevant to my thesis. The super-shader uses non-differentiable
multiplexing parameters, which adds an extra layer of complexity. By adopting a
parametrisation strategy similar to that of Guo et al., I could simplify the mapping
between style descriptors and shader parameters. In practice, this means I could separate
the challenge of handling discrete switching from multiplexing parameters from the
continuous mapping of the value parameters, potentially leading to better performance
in the parameter predictor network and more effective procedural shader generation.

10

CHAPTER 3
Methodology

In the previous chapters we built an understanding about the difficulties of 3D texturing;
On one hand, image-based materials offer high realism but struggle with scalability and
customization, often leading to tiling artifacts when applied to large surfaces. On the
other hand, procedural materials provide the flexibility and resolution independence
needed for creative applications, yet they require complex, time-consuming setups that
are not easily accessible to all artists. We also took a look on how the scientific community
tackled these issues in the past.

To overcome these limitations, this thesis proposes an automated system that generates
procedural Blender shaders directly from image-based inputs by employing a neural
network to parametrise a given hand-crafted super-shader, from which in a second step,
a smaller sub-shader is extracted. The goal is to harness the rich, readily available
image-based textures and convert them into flexible, easily customisable, procedural
materials that retain visual fidelity without the drawbacks of tiling or high storage
demands.

Central to this approach is a novel training pipeline that accomplishes two critical tasks:

1. Dataset Generation: By randomly sampling a comprehensive set of shader
parameters and rendering the corresponding images, the pipeline creates a paired
dataset where each sample consists of an image’s style descriptor and its ground-
truth shader parameters

2. Parameter Prediction: A neural network (specifically, a multi-layer perceptron)
is trained to map these style descriptors; extracted using a pre-trained VGG19
network and computed via Gram matrices—to the shader parameters. This mapping
captures the essential texture statistics needed to recreate the material appearance.

11

3. Methodology

To synthesize a material’s appearance without directly copying pixel values, and thereby
avoiding tiling and border issues inherent to image-based textures, it is crucial to employ
a metric that compares overall image statistics rather than individual pixel values. For
this purpose, I use the method described by Gatys et al. [GEB15b], which extracts
style information using a pre-trained deep convolutional neural network, VGG19 [SZ14]
(detailed in Section 4.2.3). The network’s layer activations are used to compute Gatys
style descriptors through Gram matrix calculations (see Section 4.3). These descriptors
have been successfully applied in style transfer and texture synthesis [GEB15a; GEB16;
AAL16; Shi+20], and they form the foundation for both the training and inference
pipeline mentioned in this chapter.

In the following sections, the training and inference pipelines, which are shown in
Figure 1.1 are detailed. The training pipeline automatically generates a large and diverse
dataset and trains a network, while the inference pipeline leverages the trained network
to predict shader parameters from new input images and then extracts the relevant
sub-shader. This unified approach provides a feasible and efficient pathway to generating
high-quality procedural materials, laying the groundwork for future enhancements in
automated shader creation.

3.1 Training Pipeline

The training pipeline leverages an automated process to generate a large dataset of paired
style descriptors and shader parameters. This approach eliminates the need for manual
labeling and reduces the computational complexity of training by abstracting the loss
calculation away from direct pixel-level or Gram matrix comparisons.

Dataset Generation

The dataset is generated through the following steps:

1. Random Parameter Generation: Random parameters (uniformly distributed
between 0 and 1) are assigned to the super-shader, which is capable of producing a
wide variety of materials.

2. Shader Rendering: The super-shader is rendered to produce an image that simu-
lates a close-up photograph of a material, capturing detailed surface characteristics.

3. Style Descriptor Extraction: The rendered image is processed through a modi-
fied VGG19 network to compute its Gatys style descriptor. This descriptor, obtained
via Gram matrix computations from selected convolutional layers, encapsulates the
overall texture and style of the material.

4. Pair Formation: Each style descriptor is paired with the corresponding shader
parameters used for rendering, forming a single training sample.

12

3.2. Inference Pipeline

MLP Training Pipeline

The MLP is trained to learn the mapping from style descriptors to shader parameters
using the following procedure:

1. Dataset Utilization: The generated dataset of style descriptor–parameter pairs
is employed to train the network. This process allows for a virtually unlimited
number of training examples without the need for manual labeling.

2. Loss Calculation: Instead of comparing the rendered image directly to an input
image using pixel values or Gram matrices, the loss is computed as the difference
between the shader parameters estimated by the MLP and the ground truth shader
parameters used for rendering. This abstraction reduces computational overhead
by removing the need of rendering as part of the training pipeline.

3. Parameter Prediction Training: The MLP is optimized using the above loss
function to accurately predict shader parameters from the extracted style descriptors.
This guides the network to capture the mapping from image statistics to shader
configurations despite the high level of abstraction and decoupling from the final
rendered output.

Unlike the approach by Gatys et al. [GEB16], where the output of a training step
is used to render an image, derive the style descriptors and use the difference of that
style descriptor with the the one of the input image, my method computes the loss as
the difference between the ground truth shader parameters used for rendering and the
parameters predicted by the MLP. This strategy reduces the computational load during
training significantly, as no rendering or style descriptor calculation has to be done,
at the cost of yet another layer of abstraction, as the compared values are themselves,
abstractions of the image.

3.2 Inference Pipeline

During inference, the goal is to generate a procedural material that resembles a user-
provided image while avoiding tiling and border issues. The process works as follows:

1. User Input: The user supplies an image, such as a close-up photograph of a flat
surface (e.g., taken with a flash) or a rendered photo-based texture.

2. Style Descriptor Extraction: The input image is processed by the same modified
VGG19 network to compute its Gatys style descriptor.

3. Parameter Prediction: The computed style descriptor is fed into the trained
MLP, which outputs estimates for the 50 shader parameters.

13

3. Methodology

4. Shader Generation and Simplification: The estimated parameters are applied
to the super-shader to generate a parametrised shader.

5. Sub-shader extraction: Due to the branching structure introduced by multiplex-
ing, many nodes in the shader may be redundant or inactive after parametriza-
tion. To address this, a sub-shader extraction script is employed to simplify the
parametrised shader, by extracting a sub-shader graph, reducing the complex graph
from over 500 nodes to a more manageable structure (approximately 30 nodes).
This simplification improves usability for artists and enhances rendering efficiency.

By integrating these components, the proposed methodology demonstrates a unified
approach to procedural shader generation that leverages style descriptors for parameter
prediction. While simpler than methods such as MATch [Shi+20], this approach provides
a feasible pathway for creating high-quality, scalable procedural materials within the
constraints of a bachelor’s project.

In this chapter, I have detailed the comprehensive methodology for generating procedural
shaders from input images. Key processes such as style descriptor extraction, shader
parametrization, and automated data generation were introduced. The next chapter
delves into the technical background underpinning these methods, including an exploration
of convolutional neural networks, Gram matrix derivation, and Blender’s node-based
shader system.

14

CHAPTER 4
Technical Background

Building on the methodology discussed above, this chapter outlines the technical concepts
essential for this work. I will start with giving an overview of Blenders node based shader
system to provide a solid foundation to support this thesis’s ideas.
The following Section (4.2) gives an overview of convolutional neural networks, focusing on
VGG19, a pre-trained CNN used for image classification and instrumental in calculating
Gatys style descriptors, which will be detailed right after in Section 4.3.

4.1 Blender Material Node Graph
Like many other 3D modelling applications, blender uses a node based material editor.
These editors make it possible for beginners as well as trained artists to create materials
with varying complexity relatively easy, without any need for coding skills. There are
multiple different types of nodes, I will describe a small subset;

• Input nodes: Deliver different values, like surface normal vector, vertex colour,
texture coordinates, ambient occlusion values but also more complex information
like which type of ray is currently requesting the shading information; shadow ray,
camera ray, etc.

• Value nodes: Can be used to manually input values into the network like a colour,
vector, texture or float.

• Maths nodes: Offer a wide array of different calculations for vectors (colours,
coordinates, etc) and floats.

• Noise generator nodes: Voronoi, Musgrave, White or general noise generation
nodes deliver the possibility to generate one or more dimensional noise textures. A
wide range of input parameters can be used to alter the output.

15

4. Technical Background

Figure 4.1: Selection of different Blender shader nodes. Teal: Shaders, Pink: Inputs, Blue:
Numerical maths and converters, Purple: Vector maths, Orange: Noise Generators

• Group node: Are used to group nodes together to make the graph more readable.

• Shader nodes: Here the previous calculated values are fed into a light transport
algorithm to do the actual shading. For most materials the Principled BSDF node
can be used

The super-shader uses only a small subset of available nodes. Those nodes are used to
calculate 4 texture maps that are fed into the Principled BSDF shader ; Base colour
(Albedo), Metallic, Roughness and Normal. The Principled BSDF shader output is
connected to the surface input of the output node. The other outputs (Volume and
Displacement) are not used.
Node inputs and outputs are colour coded to describe the offered or requested type: float,
vector, colour and shader. Vector and colour do have different colours but are practically
the same and can be used interchangeably.

4.1.1 Procedural Materials

Procedural materials differ from traditional (non-procedural) materials in how texture
maps are generated. While non-procedural materials rely on multiple 2D image texture

16

4.1. Blender Material Node Graph

(a) Complex node setup for a hardwood floor material.

(b) Resulting hardwood floor material. (c) Specular detail of the material.

Figure 4.2: A complex procedural material node setup to produce a hardwood floor material.
Customizable parameters, such as grout width, damage amount, and grain size, allow for artistic
control.

maps (e.g., colour, roughness, metal-ness, normal) to describe the surface’s response to
light, procedural materials derive these maps mathematically.

Noise Generators in Procedural Textures

In Blender, noise generator nodes play a central role in creating procedural textures.
These nodes can generate different types of noise, typically controlled by just a few
parameters. Textures can be generated with dimensions ranging from 1D to 4D:

• 1D and 2D Noise: Suitable for simple textures like gradients or surface patterns.

• 3D Noise: Allows textures to seamlessly extend across three spatial dimensions
without discontinuities, making it ideal for volumetric textures or seamless surfaces.

• 4D Noise: Adds an additional parameter (often time or evolution), enabling
dynamic effects.

17

4. Technical Background

(a) Procedural generation using three noise textures feeding into each other, combined with a color ramp
and mix node to map values to colors.

(b) Image texture setup with a single image outputting colour information.

Figure 4.3: Comparison of shader node setups for image texture and procedural shaders. This
excerpt shows the generation of the color texture map only. Principled BSDF and output nodes
are omitted for brevity.

Noise generators typically provide at least one intensity output (float values), with
many also offering colour outputs. This versatility enables the generation of textures
for various applications, including volumetric materials or multi-surface objects, without
visible repetition or seams. Figure 4.3 compares a simple procedural shader setup with
an image texture setup.

Complex Procedural Materials

Creating believable procedural materials often requires multiple noise generator nodes
working in tandem. For instance:

• General Noise Generator: Simulates micro-surface roughness and base coloura-
tion using a low scale.

• Voronoi Noise Generator: Creates larger pores, cracks, or surface details.

18

4.2. Convolutional Neural Networks (CNN)

• General Noise Generator with different parameters: Adds irregular patches
of discolouration or roughness.

The outputs of these generators can be further processed to generate color, roughness,
and normal maps.

Grouping and parameter exposition

To simplify complex procedural node setups, Blender allows artists to group nodes
together. Parameters can then be exposed and named. By exposing only the relevant
parameters, artists can focus on creative decisions rather than technical details. As an
example; for a concrete material; grout size, damage amount or wetness could be exposed,
enabling the artist to tune those parameters without editing the underlying node setup.

Figure 4.2 illustrates a complex procedural material for a hardwood floor. The setup
includes multiple noise generators and mathematical operations, all customizable through
user-defined parameters.

The Blender material system I just described should provide a basic understanding of
the concepts needed for this thesis as it is used to create the training dataset, as well as
the output of the inference pipeline. A completely different part of these pipelines is how
the system tries do understand and replicate style, without relying on pixel values. To
give some background into Gatys style descriptors, and the underlying CNN architecture,
follow me into the next section.

4.2 Convolutional Neural Networks (CNN)
In order of creating materials with the aforementioned shader system, that try to replicate
a given materials look without copying pixel values, we need to gain some understanding
in how a Gatys style descriptor works. To get a step closer to that goal, I will give some
foundational insight into CNNs in this section. Right after we dive into Gatys style
descriptors.

When working with images and neural networks, CNNs are a natural first choice. They
mimic how biological visual systems process information, progressing from simple to
complex patterns, making them both efficient and effective in understanding visual
features. In this work, input images are processed by VGG19, a CNN, to extract the
Gatys style descriptor [GEB15b].

CNNs operate similarly to the brain’s visual processing and are particularly powerful
in image classification tasks, though they can be applied to other data types as well.
Compared to traditional ANNs, CNNs offer several key advantages [Che+21]:

• Parameter sharing: Unlike fully connected ANNs, where each neuron connects
to all neurons in the next layer, requiring a weight for every connection, CNNs

19

4. Technical Background

use the same set of weights (the kernel) across the entire input. This reduces the
number of parameters and allows the network to detect similar features across
different regions of the input image.

• Spatial awareness and hierarchical structure: CNNs analyse neighbouring
pixel values in earlier layers to detect simple features like edges and lines. In deeper
layers, they combine these features to detect more complex patterns and structures.

• Translational invariance: The sliding nature of kernel filters and the abstraction
provided by pooling layers make CNNs less sensitive to the exact positions of
features in the input.

• Context preservation: By applying convolutions to local neighbourhoods, CNNs
maintain spatial relationships between pixels and later between features, improving
their understanding of the input.

Figure 4.4: Convolution on a 2D image with a 3 × 3 kernel. Pixel values in the input image are
multiplied by the corresponding kernel values and summed to produce a new pixel value. This
example shows an emboss filter. Image courtesy of Apple [App].

A CNN is a specialized type of ANN that uses the mathematical operation of convolution
instead of general matrix multiplication in at least one of its layers. In a convolutional
layer (which is further explained in Section 4.2.1), each neuron applies a filter kernel
to the input image (or the output of the previous layer). The kernel has dimensions
w × h × k, where w and h are the width and height of the kernel, and k corresponds to
the number of input channels (e.g., for an RGB image, k = 3).

For example, consider a neuron using a 3 × 3 × 3 kernel on an RGB image. The neuron
requires 3 · 3 · 3 = 27 weights to process the input. Sliding the kernel over the input
generates a greyscale output with the same resolution as the input, containing information
about the presence of a specific feature in each local neighbourhood. In contrast, a
neuron in a fully connected network would require a separate weight for every pixel in
the input, losing spatial information and being more prone to over fitting.

20

4.2. Convolutional Neural Networks (CNN)

The hierarchical structure of CNNs, combined with pooling layers (detailed in Section
4.2.2), allows them to detect relationships between features at multiple levels of abstraction.
Early layers detect simple features, such as edges, while deeper layers combine these
features to recognize complex patterns and objects.

While convolutional architectures like VGG19 use a large number of parameters (e.g., 144
million [SZ14]), their efficiency lies in the reuse of weights through convolutions. This
approach allows CNNs to scale with input resolution and maintain spatial awareness
without an exponential increase in weights.

4.2.1 Convolutional Layers

Convolutions are used extensively in image processing as filters, where a numerical matrix
(the kernel) slides over the input image. At each position, the pixel values in the current
window are multiplied by the corresponding kernel values and summed:

yij =
w∑

m=1

h∑
n=1

k∑
c=1

x(i+m)(j+n)c · wmnc

where yij is the output at position (i, j), x is the input image, and w is the kernel. Figure
4.4 illustrates this process for a single-channel image. In multi-channel images (e.g.,
RGB), the kernel depth k matches the number of input channels. Kernels can detect
specific patterns, such as edges or textures. For tasks like image classification, these
kernels are trainable, enabling the network to learn features relevant to the input data.

4.2.2 Pooling Layers

Pooling layers perform a down-sampling operation along the spatial dimensions (width
and height) of the input image. The most common pooling method is max pooling, which
selects the maximum value in a defined neighbourhood (e.g., a 2 × 2 window):

yij = max{x(i+m)(j+n) | 0 ≤ m, n < p}

where p is the pooling window size. Average pooling, another common method, computes
the mean value within the neighbourhood.

Pooling reduces the spatial resolution of the input, lowering the computational load in
subsequent layers and providing some additional translation invariance. It also increases
the receptive field of neurons in deeper layers, enabling them to consider larger regions
of the input. This abstraction is crucial for tasks like object recognition, where exact
feature positions are less important. The explanations by Jason Brownlee [Bro19; Ian16;
Cho17] were particularly useful in understanding these mechanisms.

4.2.3 VGG19

Simonyan et al. investigated the impact of network depth on CNN performance [SZ14].
In their research, they developed and trained multiple CNNs with depths of up to 19

21

4. Technical Background

Figure 4.5: VGG19 network layer overview. For style extraction, only the convolutional part is
necessary. The fully connected part is discarded for style extraction. The layer activations before
every pooling layer (here signified by arrows) are used to calculate the Gatys style descriptors.
(ReLU layers are not shown for brevity.)

layers for image classification. The 16-layer and 19-layer weighted versions of these
networks were made publicly available for further research. The term VGG19 refers to
the version with 19 weighted layers.

They demonstrated that even a CNN using very small convolutional kernels (3 × 3
pixels) can achieve excellent results when the network depth is sufficiently increased.
The network comprises 19 weighted layers, including 16 convolutional layers and 3 fully
connected layers, which are used for classifying the convoluted image data. In addition
to the weighted layers, there are 5 pooling layers that divide the convolutional layers into
5 groups, as illustrated in Figure 4.5.

Style Transfer and VGG Networks

Style transfer algorithms have extensively utilized the VGG networks for style extraction
[GEB15b; GEB15a; GEB16; AAL16]. For this purpose, the fully connected part of the
network is not necessary, as it is solely used for classification. The convolutional layers,
particularly the activations before each pooling layer, are used to calculate the Gatys
style descriptors, as explained in Section 4.3.

Now that we achieved some foundational understanding of CNNs, we can take a look
into how style descriptors are extracted from them.

4.3 Gatys Style Descriptor

In the previous section we learned how CNNs are trained to abstract and understand
features form an input image. Now we will take a look on how these features can be used

22

4.3. Gatys Style Descriptor

to gain statistical information about the same input image.

The Gatys Style Descriptor, first introduced by Gatys et al. [GEB15b], was originally used
for artistic style transfer. Since then, it has been extensively applied in style extraction,
style transfer, and material generation [GEB15b; GEB15a; GEB16; AAL16; Li+17].
The descriptor represents texture and style as a statistical image feature by capturing
relationships between features in a convolutional neural network (CNN) layer. This is
achieved by computing the Gram matrix, which encodes correlations between neuron
activations in the same layer.

Understanding the Gram matrix is crucial, even though its quite a simple calculation, its
effect is very important; as it enables the style descriptors to capture the relationships
between different features in the input image.

4.3.1 Gram Matrix Calculation

The Gram matrix measures how frequently different visual features appear together in an
image, effectively summarizing its overall texture and style. It does this by computing the
inner products between pairs of feature maps. In this thesis, a Gram matrix is computed
for each of five different VGG layers by taking the inner product between that layer’s
activations and their transpose, capturing the relationships among detected features at
various levels of abstraction.

The Gram matrix for a convolutional layer l is defined as:

Gl
ij =

∑
k

F l
ikF l

jk

where:
• F l is the feature map of layer l,

• i and j are indices corresponding to the feature maps, and

• k iterates over the spatial dimensions of the feature maps (height and width).

Figure 4.6: The Gram matrix represents correlations between feature maps by computing the
inner product of the activation vectors in a CNN layer. Graphic adapted from [Res24].

23

4. Technical Background

The resulting matrix Gl describes how the activations of different feature maps in layer
l correlate with one another, capturing the style or texture without relying on spatial
information. A visual aid for this calculation can be found in Figure 4.6.

4.3.2 Multiple Layers for Varying Levels of Abstraction

Gatys et al. proposed using activations from multiple CNN layers to generate a more
comprehensive style descriptor. This approach leverages the fact that different layers
capture different aspects of an image’s style. Lower layers tend to preserve fine, local
details—such as textures and edges—while higher layers capture more abstract and global
features like overall patterns and color distributions.

In practice, the style representation is constructed by computing the Gram matrix for
several layers and then combining them. This multi-layer strategy allows for:

• Enhanced Detail: Lower layers contribute precise texture information.

• Robust Abstraction: Higher layers provide a holistic view of the style.

• Balanced Representation: The combined descriptor reflects both local and
global style features, leading to more precise and versatile style extraction.

This layered approach is central to achieving effective style extraction, as it ensures
that both subtle details and overall aesthetics are incorporated into the final material
generation process. In this thesis I the activations of 5 layers of the VGG19 network as
further explained in Section 5.2.2.
With this overview of underlying technical ideas, the next chapter will dive head first
into how these concepts were implemented.

24

CHAPTER 5
Implementation

Now that the technical foundation has been laid, I will go into detail how those concepts
were used and implemented. I will again start with the Blender shader system, this time
focusing on the construction of the super-shader and the extraction of sub-shaders after
it was parametrised. Right after, in Section 5.2 I will explain how the training data-set is
generated. Following that we will take a look into the training process of the parameter
predictor.

5.1 Super-Shader
The system is capable of delivering a wide variety of materials, all of which are derived
from a single, large, and non-differentiable shader referred to as the super-shader. It
was built manually, with the goal of providing a way of control different approaches
to noise layering with parameters. The resulting noise textures are used for multiple
SVBRDF maps (base colour, metallic, roughness and normals). Because the same few
noise textures are used for all four SVBRDF maps, just combined differently, the resulting
materials make sense, and do not look/feel random. Parameters coming from the MLP

Figure 5.1: While the super-shader is capable of delivering a wide range of different materials
by changing its parameters, with its 507 nodes it is too large and complicated to be manageable
by an artist.

25

5. Implementation

or from randomisation on data generation are always between 0 and 1. But most node
parameters need other value ranges. The mapping to sensible ranges is done via nodes
as well, and the ranges have been selected by hand.

The super-shader employs different modules; noise generation, mathematical operations
and value mapping. Multiplexers in those modules are used to select which type of noise,
mathematical operation or mapping should be used. These multiplexers make the shader
non-differentiable because they involve discrete choices between operations. This modular
design, while powerful, adds significant complexity and abstraction.

All together, the shader contains 507 nodes, organized into modules and is controlled by 50
mutable parameters. These parameters allow the shader to produce diverse materials by
selecting combinations of mathematical operations, value mappings, and noise generators.
However, its complexity and size make it difficult to use directly in practical applications.

To address this, the shader parametrisation is followed by an optimization step executed
by a script (theory and implementation details can be found in Section 5.1.2). This
process extracts a smaller, simplified sub-shader from the parametrised super-shader that
is easier to use, comprehend and customise. After execution of the script, the amount of
nodes is reduced by more then a magnitude, from 507 to around 30 (exact number is
different for different parametrisations) and still yields the same result. This optimisation
step significantly reduces rendering times by removing unused nodes and modules.

5.1.1 Node Modules

Because the same group of nodes are useful in different places in the shader, a modular
approach was chosen. These modules in itself use multiplexing modules, which select
the operations that will be used, the operations themselves, and the handling of the
additional parameters the operations might need.

Noise Generators: In Blender current version (4.2), it has three different noise generator
nodes (general noise, Voronoi noise and white noise, although the latter is not used in
the super-shader) that can be setup with different parameters to produce a wide variety
of different types of noise pattern. The module defines nine different noise patters that
themselves are further customized with numerical parameters.

Mathematical Operations: Implements addition, subtraction, multiplication between
signals as well as taking the minimum or the maximum or lastly getting the relation
between the first and second signal by division.

Multiplexing: For most other modules, hard switching multiplexers are used. A floating
point input between 0 and 1 is used to select between different amount of inputs. For
the colour blending a interpolating, smooth switching multiplexer is used.

26

5.1. Super-Shader

5.1.2 Sub-Shader Extraction

A script is used to make the very large and hard to work with super-shader more manage-
able for artists. When the super-shader is parametrised, the multiplexing parameters will
have already switched off large parts of the shader, and some value parameters will have
lead to redundant or trivial calculations. Those switched off sub graphs can be removed
entirely, and calculations that are trivial can be removed and replaced with precomputed
values as well. A detailed description of the scripts process can be found below.

Extraction Process

The script walks through the shader graph multiple times and performs following opera-
tions:

1. Node Pruning: Removing or bypassing nodes where the calculation can be
performed by the script:

• Detecting maths nodes with only static values as inputs; The mathematical
operation is computed by the script, and the result is assigned as a static value
to the input of the next node that would have received the original result.

• Maths nodes with one varying input v and one static input s, where the
operation always returns the varying input. For example:

f(v, s) = v if s = 1 (e.g., multiplication: v · 1 = v).

In this case, the varying input v is directly connected to the input of the
subsequent node. Leaving the currently optimised node without having any
outgoing connection.

• If the operation results in a static output regardless of the varying input v,
the static value can replace the operation entirely. For example:

f(v, s) = 0 if s = 0 (e.g., multiplication: v · 0 = 0).

This static value is then directly assigned as the input to the following node.
Here the connection to the following node is just removed entirely, making
the currently optimised node having no outgoing connection again.

2. Node Clean-up: Remove nodes whose output is not connected to any subsequent
node. These nodes do not contribute to the shader tree and can be safely deleted.

3. Ungrouping: Ungroup all node groups, as their functionality is no longer necessary
after pruning and they hinder usability by obscuring the simplified shader structure.

4. Reordering: After removing nodes and groups, the shader tree may become
disorganized. The script will reorder all nodes into a structured grid layout,
aligning them according to the data flow from left to right.

27

5. Implementation

Figure 5.2: Comparison between full super-shader with its 507 nodes (with its groups intact,
ungrouped is displayed in 5.1), and minimised and reordered shaders produced by the sub-shader
extraction script with around 30 nodes and their corresponding renders.

28

5.2. Learning Data Generation

Improved Usability

After the sub-shader extraction process, the resulting shader retains only the parameters
necessary for material calculation and noise configuration. Meaning the resulting render
will look exactly the same. This simplification enhances usability for artists, providing a
streamlined interface while maintaining the shader’s flexibility. Results of this script can
be seen in 5.2.

5.2 Learning Data Generation

To train the parameter predictor to infer shader parameters from style descriptors, a
comprehensive training dataset must be generated. This dataset comprises pairs of
network inputs and their corresponding ground truth outputs. In my approach, the
inputs consist of transformed Gatys style descriptors, while the outputs are the shader
parameters used to generate the corresponding material.

These input-output pairs are generated by randomly selecting 50 shader parameter
configurations for the super shader, rendering the resulting image, and then extracting
its style descriptor. The random shader parameters serve as the ground truth outputs,
and the extracted style descriptors become the network inputs.

5.2.1 Rendering with Random Shader Parameters

Rendering with random parameters is an essential step in generating a diverse dataset for
training. Blender’s Python scripting capabilities are leveraged to automate this process,
ensuring reproducibility and efficiency.

Random Parameter Generation

The super-shader is parametrized using 50 uniformly distributed random values between
0 and 1. These values are generated by a Python script registered to run every frame.
The script uses the frame number as the seed for the random number generator, ensuring
that the parameter set for each frame is unique and reproducible. The script logs the
random parameter values into a file and includes them in the rendering metadata.

Scene Setup for Rendering

A simple rendering setup is used to accentuate surface properties like bumpiness and
reflectance. The scene consists of:

• A single, relatively dim point light source placed close to the surface.

• A rendering resolution of 256 × 256 pixels.

• 252 samples per frame using Blenders cycles rendering engine.

29

5. Implementation

(a) Blender scene setup. Cam-
era perfectly frames the surface,
single point light source close to
the surface accentuates material
bumpiness.

(b) Nine randomly selected material samples that have
been generated for the learning data set. The effect of the
single point light source is clearly visible.

Figure 5.3: Learning data set generation in blender and some results.

• no de-noising.

Figure 5.3a illustrates this setup. Using this configuration, 100,000 frames were rendered
to create the training dataset. Additional frames can be generated as needed with
minimal effort.

Rendering Automation and Scalability

The rendering process is automated using a Python script that efficiently manages render
jobs. Users can specify a range of frames to be rendered, and the script checks the output
folder for any missing frames; rendering only those to avoid redundant computations.
Furthermore, the script supports concurrent rendering, thereby fully utilising available
processing power to expedite dataset generation. This flexible setup ensures that new
frames can be seamlessly generated on demand. A selection of rendered samples is shown
in Figure 5.3b.

5.2.2 Gatys Texture Descriptor

The process of generating Gatys texture descriptors involves computing Gram matrices
from layer activations of the VGG19 network (details on gram matrix calculation in
Section 4.3.1). Five convolutional layers of the pre-trained VGG19 network were used to
calculate style descriptors. Each layer produced a Gram matrix, which was flattened and

30

5.2. Learning Data Generation

concatenated into a single 1D vector that served as the input for the parameter predictor
(see Figure 4.5 for details on which layer activations were used)1.

Descriptor Construction

Several modifications were made to adapt the pretrained VGG19 network for this task.
To compute style descriptors just the layer activations of some of the convolutional layers
are used. The classification will not be used at all, therefore all fully connected layers,
normally used for image classification, were removed to improve computational efficiency.
Additionally, new layers were added after each convolutional block to compute and store
the Gram matrices, which capture pairwise relationships between feature maps, while
passing the activations through unchanged. Following the approach of Liang et al. in the
MATch paper [Shi+20], in-place ReLU layers were replaced with out-of-place versions to
avoid overwriting activations during calculations.

To ensure compatibility with the training data used to train VGG19, the colour values
of the input images were normalized using values defined by Simonyan et al. in their
original paper [SZ14]. During the calculation of Gram matrices, the system also tracked
the maxima and minima of each matrix, which were later used to normalize the values
for consistency.

The descriptor calculation script processes the outputs of five selected layers in the
network. Gram matrices are computed for each layer and saved to disk, along with
metadata that records which renders have already been processed and min/max values
over all gram matrices per layer. This approach ensures that previously processed renders
are not recalculated unnecessarily, which is particularly important when working with
datasets requiring hours or even days of computation.

Normalization is performed in a separate script, which loads the stored Gram matrices
into memory, scales them based on the previously recorded min/max values, and saves the
normalized results back to disk. The metadata file is updated to reflect the completion
of this step. This setup allows for seamless expansion of the dataset—new frames can be
rendered and integrated into the workflow without recalculating completed data. In cases
where new renders introduce differing min/max values for a layer, all Gram matrices for
that layer are re-normalized to maintain consistency.

This system’s use of metadata not only ensures scalability but also makes it robust against
interruptions. Previously computed results are preserved, and new frames can be added
without redoing earlier calculations, enabling efficient incremental dataset generation.

1Retrospective Analysis: The chosen approach of flattening and concatenating Gram matrices captures
intra-layer correlations effectively but fails to account for inter-layer relationships. A more effective
method might involve concatenating the feature activations of all convolutional layers into a single vector
and calculating one large Gram matrix. This combined Gram matrix would represent both intra- and
inter-layer correlations, potentially yielding a richer and more comprehensive style descriptor. However,
this alternate approach would result in a significantly larger descriptor, introducing challenges in terms
of computational requirements and memory usage. These trade-offs should be carefully considered in
future implementations, as discussed in Section 6.3.2.

31

5. Implementation

5.3 Parameter Predictor Training and Evaluation

Input Layer Output
348170 FC 1 1000
1000 FC 2 1000
1000 FC 3 100
100 FC 4 50

(a) Prior input reduction via RFR.

Input Layer Output
2500 FC 1 2500
2500 FC 2 2000
2000 FC 3 1000
1000 FC 4 1000
1000 FC 5-10 1000
1000 FC 11 500
500 FC 12-14 500
500 FC 15 100
100 FC 16-18 100
100 FC 19 50
50 FC 20-22 50
50 FC 23 Num Classes

(b) After input reduction.

Table 5.1: Network layer setup (RELU layers omitted, layers with same parameters grouped).
FC stands for Fully Connected.

The training process was implemented using PyTorch, utilizing a simple fully connected
network architecture and the ADAM optimizer. Various configurations for network depth,
layer width, and batch size were tested to balance VRAM limitations with performance.
However, the large number of input parameters quickly overwhelmed the VRAM capacity
of consumer hardware. To address this, a random forest regressor was tested for input
reduction across multiple outputs (see Section 5.3.1). While PCA [Shl14] was considered
as an alternative, it was ultimately not implemented due to its lack of support for multiple
output nodes by default.

For the loss function, MSE loss was initially used. The MSE loss function is defined as:

MSE = 1
n

n∑
i=1

(yi − ŷi)2

where yi represents the true values, ŷi are the predicted values, and n is the number of
samples. While MSE is effective for many tasks, in this case the network to converged to
the mean of the dataset, failing to capture finer details in the output.

To address this issue, MSLE loss was adopted. The MSLE loss function is defined as:

MSLE = 1
n

n∑
i=1

(log(1 + yi) − log(1 + ŷi))2

Unlike MSE, MSLE incorporates a logarithmic component that assigns greater weight
to smaller discrepancies, making it more robust to data imbalances. This adjustment

32

5.3. Parameter Predictor Training and Evaluation

helped slightly to mitigate the network’s tendency to over fit the dataset mean, but did
not succeed fully (further discussed in Chapter 6).

The best results were achieved with a very shallow fully connected network architecture
consisting of two hidden layers (see Table 5.1a). Despite these promising results, the
training run was terminated after nearly four days due to computational constraints, as
further detailed in Chapter 6.1.1.

5.3.1 Input Reduction Using Random Forest Regression (RFR)

The initial approach was to use the flattened and concatenated Gatys texture descriptors
as input nodes for the estimator network. However, the large number of input nodes
(348, 170 in total) made it infeasible to train a deep or wide neural network. The resulting
small network lacked the capacity to learn effectively from such abstract data.

To address this, a RFR from Scikit-learn [sci25a] was employed to evaluate the importance
of each input parameter in predicting the shader parameters. The RFR builds an ensemble
of decision trees and combines their outputs, making it effective at capturing complex,
non-linear relationships. However, the basic RFR is designed to work with only a single
output variable.

To overcome this limitation, a multi-output regressor from Scikit-learn [sci25b] was paired
with the RFR2. This wrapper fits a separate RFR model for each output, thereby allowing
all target shader parameters to be evaluated independently.

Because training this multi-output model on the full dataset was computationally de-
manding, the regression was performed on a small subset of the data. After several days
of computation, it became clear that only about 2, 500 of the input parameters had a
significant effect on the target values.

This reduction in input features was crucial for lowering computational demands and for
enabling the subsequent MLP to be trained more effectively. By filtering the inputs and
retaining only the 2, 500 most impactful parameters, it became possible to train a much
larger and deeper neural network (see Table 5.1b). Despite this improvement in network
architecture, the training process still did not achieve convergence.

This chapter has outlined the practical realization of my system. From constructing the
super-shader and employing the sub-shader extraction script, to training and evaluating
the parameter predictor. The detailed implementation demonstrates both the capabilities
and challenges of the approach. In the final chapter, I reflect on these challenges, discuss
the successes achieved, failures encountered, and propose ways for future work that could
build upon these findings. This concluding discussion will not only assess the current
contributions but also hopes to set the stage for further advancements in procedural
shader generation.

2After the fact, I discovered that scikit-learn’s Random Forest Regressor can handle multi-output
regression natively when provided with a multi-dimensional output array. Using this built-in capability
might have had offered faster computation at the expense of some flexibility.

33

CHAPTER 6
Results and Conclusions

The core goal of this project was to train a network that could generate a Blender
shader to produce a material resembling an input image. Although this main objective
was not met, there are clear successes that can be built upon for further study and
experimentation.

My experiments revealed that the chosen network architecture struggled with the complex
mapping from the input image (and its Gatys style descriptors) to the shader parameters.
With small training samples, the network over-fitted, while with larger datasets it
consistently converged to the average of all desired outputs. In one instance, the network
did show some improvement, but the progress was so slow that training was halted after
four days.

I conclude that the network architecture was not well-suited for the high level of abstrac-
tion in this problem. The mapping between the input image, the Gatys style descriptors,
and the shader parameters is inherently abstract, and adding the multiplexing nodes only
increased that complexity. Overcoming this would likely require a deeper network, more
training iterations, and extensive parameter tuning. Unfortunately resource limitations
prevented further exploration.

On the other hand, the work done on the super-shader has proven successful. With its 50
shader parameters, it can generate an impressive range of diverse materials. Combined
with the sub-shader extraction script, this offers a straightforward way to create hundreds
of thousands of small, understandable shaders that could serve as datasets, tools for
artists, or even the foundation of a material database.

While potential implementation errors may have also contributed to the challenges, this
project provided valuable insights. I gained a deeper understanding of neural networks,
their limitations, and the intricacies of applying them in complex workflows. These
lessons have already been beneficial for my professional development.

35

6. Results and Conclusions

Figure 6.1: The loss graph of 40 different training runs shows the inability of the network to
converge to the correct results, using different network and hyper parameter configurations. The
two notable curves that seam to converge, show runs where I tested if the network is able to
overfit given a very limited dataset.

6.1 Issues
The primary challenge of this project leading to its core objective staying unfulfilled
was the incorrect estimation of its scope and complexity, compounded by a suboptimal
allocation of time and resources. These factors severely limited the ability to adapt to
unforeseen issues and iterate on the project.

The majority of time was spent developing the super-shader, generating and rendering
the training data, and extracting Gatys style descriptors. As a result, insufficient
time was dedicated to neural network research and development. This limitation was
further exacerbated by the long training durations for each attempt and the inconsistent
availability of the necessary hardware.

Another significant issue was the late realization, that my understanding of neural
networks and their requirements was inadequate. This led to flawed ideas and incorrect
estimations during the early stages. A key oversight was underestimating the challenges
posed by the high dimensionality of the input data. The project revealed that a large
part of successful neural network training lies in preprocessing and optimizing input data.
Time would have been better spent exploring data reduction techniques such as principal
component analysis (PCA) [Shl14], which could have been applied to the activation
tensors of the VGG19 layers. Other potential improvements include using convolutional
or grouping layers and more extensive use of methods like the RFR for dimensionality
reduction.

Additionally, paths to reduce abstraction could have been explored. For example, rather
than comparing shader parameters directly, frames could have been rendered during
training, and style descriptors of the renders could have been compared to the inputs.
This approach, similar to the method employed by Liang et al. in MATch [Shi+20], might

36

6.1. Issues

have produced more meaningful loss calculations and improved results. Another way to
reduce the level of abstraction would have been a different handling of shader parameters.
Even without removing multiplexers, unique value parameter to node function mapping
could have simplified the estimator problem (more on this in Section 6.1.3).

An early pivot to a system that is able to produce a vast catalogue of unique but simple
Blender shaders, searchable via style descriptors, could have lead to a more positive and
productive outcome as well.

In hindsight, addressing these issues earlier in the project would have significantly
improved the outcomes. The experience gained has highlighted the importance of careful
planning, prioritizing foundational preprocessing techniques, and iterating quickly to
adapt to challenges.

6.1.1 Non-Convergence of Estimator Network

The vast majority of training runs converged rapidly to non-functional solutions, where
all outputs were identical and equal to the average of the desired output values, regardless
of input. To address this, I implemented MSLE loss, which assigns more weight to small
discrepancies in the desired values. Using the network configuration shown in Table 5.1
and a fixed learning rate of 0.000001, I observed some initial signs of meaningful learning.
However, after nearly four days of training (3 days and 20 hours), the accuracy improved
by only 0.03%, as shown in Figure 6.2. While the graph indicated that training had not
plateaued, the rate of improvement was deemed too slow given the available resources,
and the run was cancelled.

Subsequent attempts to reproduce meaningful convergence were unsuccessful as can be
seen in Figure 6.1, even with a much larger and deeper network. Unfortunately, due
to resource constraints, I was unable to perform any parameter tuning during data
generation, or training. In a last-ditch effort, I reduced the input size significantly using
RFR as described in Section 5.3.1. This enabled a much deeper and wider network, but
also lead to no functional convergence.

(a) Training and test accuracy. Note that the y-axis
does not start at zero. (b) Loss during training.

Figure 6.2: After nearly four days, the graphs show minimal improvement in accuracy and loss.
The training was canceled due to slow progression.

37

6. Results and Conclusions

Additionally, since the training set was custom-generated for this project, no comparative
evaluation with other methods or approaches was possible.

6.1.2 Network Choice and High Level of Abstraction

As previously discussed, the relationship between the input image and the output shader
parameters is highly abstract. This abstraction is compounded by intermediate steps,
such as the Gatys style descriptor and the super-shader, which remain entirely unknown
to the estimator network. For the network to effectively learn this connection, it would
likely need to be both very deep and, given the high dimensionality of the input data,
also quite wide. Supporting such a configuration would require an enormous number of
parameters. For instance, with 30,000 input nodes, 10,000 nodes per hidden layer, and
three hidden layers, approximately 600million weights would need to be trained—a scale
far beyond what consumer hardware can handle.

Despite these complexities, the most basic fully connected ANN was chosen as the
parameter predictor network. This network was fed unfiltered and unprocessed Gatys
style descriptor data, consisting of 304, 416 float values per input. With this many nodes
in the input layer, the network’s width and depth were severely constrained by hardware
limitations. Most training attempts used a network with only four fully connected layers
(see Table 5.1a). Initially, the primary limitation was assumed to be insufficient hardware,
but it later became evident that preprocessing steps to reduce input dimensionality were
crucial for successful training.

When RFR was eventually employed to reduce the input nodes to just 2, 500, the network
still failed to learn and did not converge. This suggested that the underlying architecture
and preprocessing were not well-suited to the complexity of the task.

Further reflections revealed that the Gatys style descriptor could be restructured into a
2D matrix, potentially increasing the informational richness of the input while making it
more amenable to analysis using a CNN. By employing a CNN as an encoder network
to process this matrix, the dimensionality of the input to the subsequent ANN could
be significantly reduced. This hybrid architecture would allow the ANN to operate on
far fewer inputs, enabling deeper and more complex networks within the constraints of
consumer hardware.

Such a design, resembling common image classifier architectures, could better capture
the abstract relationship between style descriptors and shader parameters. It would
potentially address the system’s limitations without requiring more powerful hardware,
providing a more effective solution to the challenges faced in this project.

6.1.3 Multiplexing Super-Shader Parameters

The super-shader relies on two types of parameters: multiplexing parameters and value
parameters. Multiplexing parameters control the branching within the shader by switching
between different functions or operations. Value parameters are mapped internally to

38

6.1. Issues

suitable ranges and fed into the shader, where their role depends on the current state of
the multiplexing parameters.

The integration of multiplexers into the super-shader significantly increases both the
abstraction level and the complexity of the parameter space. Multiplexers serve as
discrete switches controlled by parameters (aptly named multiplexing parameters) that
determine which subsets of nodes and parameters are activated. This results in two
primary challenges:

Non-Differentiability

Multiplexers inherently introduce non-differentiable behaviour into the shader. During
training, gradient-based methods rely on smooth transitions in the output, given smooth
transitions in the input. But the discrete nature of multiplexers creates abrupt changes
in the network’s output. For example, a slight change in a multiplexing parameter might
redirect the flow of information, causing a sudden jump in the shader’s behaviour. This
disrupts the gradient flow and makes it exceedingly difficult for the network to converge.

Multi-Modal Parameter Mapping

The multiplexers not only switch between different shader subcomponents but also
redefine the role of various parameters based on the active branch. Consequently, the
same parameter may control entirely different aspects of the shader depending on the
current multiplexer configuration. This leads to a highly non-linear and non-continuous
mapping between the input (Gatys style descriptors) and the output (shader parameters).
The network is then faced with the challenge of figuring out the role of specific value
parameters in the context of the set multiplexing parameters. The resulting combinatorial
explosion in possible configurations can cause the network to converge to an average
solution rather than specializing in the appropriate modes.

In summary, the multiplexing mechanism adds a layer of conditional abstraction that
complicates the learning process. Not only does it break the smooth differentiability
required for effective gradient descent, but it also imposes a multi-modal structure on
the parameter space, demanding a deeper, more sophisticated network architecture and
more advanced training strategies. These challenges, combined with resource constraints,
likely contributed to the observed inability to achieve meaningful learning outcomes in
this work.

Removing multiplexing parameters entirely would be quite difficult. However, by increas-
ing the number of parameters and mapping them to the same node inputs, regardless
of whether a node is currently activated by a multiplexer, the additional complexity
introduced by the multi-modal parameter mapping could be reduced.

Liang Shi et al.’s approach in MATch [Shi+20] avoids these challenges entirely. Instead of
relying on non-differentiable parameters, their method fixes such parameters to predefined
values and employs separate estimator networks for each shader configuration. This

39

6. Results and Conclusions

not only simplifies the task for their networks but also enables them to back propagate
through their shader graphs. By iteratively refining their results as a post-processing
step, they achieve greater accuracy and flexibility in parameter prediction.

6.2 Successes
Despite the challenges faced in training the neural network, the development of the
super-shader and sub-shader extractor stands out as an achievement. In particular,
these components demonstrate that a single, unified shader can be highly versatile and
practical. Key successes include:

• Versatile Shader Generation: The super-shader, controlled by 50 adjustable
parameters, can produce a wide range of diverse materials. This confirms that
complex material properties can be encapsulated within a single shader framework.

• Efficient Simplification: The sub-shader extraction script successfully reduces
the parametrised complex shader graph from over 500 nodes to around 30 nodes.
This simplification not only improves usability and manageability for artists but
also reduces rendering times significantly.

• Dataset and Catalogue Creation: Together, the super-shader and sub-shader
extraction process enable the automated generation of extensive shader datasets.
These datasets can serve as a foundation for further academic studies in material
synthesis and provide a space-efficient Blender material catalogue comprised of
random, yet comprehensible, shaders.

• Commercial and Practical Potential: Beyond research, the methods developed
here could be adapted into commercial tools, offering 3D artists a flexible and
customizable approach to material creation.

These successes lay the groundwork for future work, suggesting that a unified procedural
approach to shader generation holds promise for both academic exploration and practical
application.

6.3 Future Work
This project, while yielding limited positive results, provided valuable insights and
identified key areas for improvement in shader generation workflows. The knowledge
gained should assist future research and experimentation. To support these efforts, the
dataset generation code, which leverages Blender’s free and open-source platform, is
accessible on GitHub [Win25]. Additionally, the Gram style descriptor code, RFR, and
network training scripts, complete with a Docker environment for easy setup, is available
in the same repository.

40

6.3. Future Work

6.3.1 Super-Shader

The super-shader is effective in generating diverse materials but presents challenges
for parameter prediction. A promising approach to address this involves splitting the
super-shader into multiple differentiable shaders. This can be achieved by iterating
through all combinations of multiplexing parameters and using the optimization script
to prune unused nodes for each combination. The result would be a collection of simpler,
differentiable shaders with relatable value parameters. Everything except the iteration
through combinations is already possible with the provided code.

A method similar to the approach used in MATch [Shi+20] could then be employed to
select the appropriate shader for a given task. This modular strategy also enables adding
new shaders to the pipeline without requiring retraining.

6.3.2 Style Descriptor Handling

The current implementation calculates five independent Gram matrices from the feature
activations of VGG19’s convolutional blocks as detailed in Section 5.2.2. These matrices
are flattened and concatenated into a single 1D vector fed into the decoder network.
However, this method has several limitations:

• Relationships between feature activations across different layers are ignored.

• Flattening Gram matrices into a 1D vector results in the loss of spatial structure.

An alternative approach would be to calculate a single, large Gram matrix from all
feature activations combined. This matrix would capture both intra- and inter-layer
relationships, providing richer information for parameter prediction. While this approach
would increase the size of the style descriptor, the use of an appropriate encoder network
could mitigate the computational challenges (see 6.3.3).

6.3.3 Network Choice

CNNs are well-suited for tasks involving multidimensional data with spatial relationships,
making them a promising choice for this project. By reshaping the input data into a
multidimensional field, a CNN encoder could be used to reduce the dimensionality of the
input before passing it to a parameter predictor decoder. This approach would allow for
deeper and more complex networks without exceeding the VRAM limitations of consumer
hardware.

Two potential methods for reshaping the input data include:

• Stacking Gram matrices from different layers into a multichannel input. Padding
or upscaling may be required due to differing resolutions.

41

6. Results and Conclusions

• Concatenating feature activations from VGG19’s convolutional blocks into a single
vector and computing one large Gram matrix that includes inter-layer relationships.

Alternatively, separate CNNs could be trained for each Gram matrix and their combined
outputs fed into the decoder network. This approach offers flexibility but may increase
computational complexity.

6.3.4 Data Augmentation

No data augmentation was performed in this project, which likely limited the network’s
ability to generalize. Since the dataset is fully generated, implementing augmentation
techniques is straightforward. Potential methods include:

• Translating UV coordinates at render time, altering the pixel values of the input
images without changing the desired shader parameters.

• Moving the light source to generate multiple images with varying lighting conditions
for the same shader settings, improving robustness to different lighting scenarios.

• Adjusting light colour or white balance to enhance abstraction and improve perfor-
mance on varying input conditions.

• Slightly changing the render angle to introduce variability while maintaining the
same output parameters.

6.3.5 Domain Shift

Once successful training has been achieved, addressing domain shift will be crucial
for practical applications. Differences in input data from new renders or photographs
can significantly degrade network performance. To mitigate this, datasets collected
from diverse domains can be used to augment training. Additionally, introducing a
domain-identifying output parameter and penalizing its accuracy in the loss function can
encourage the network to become domain-invariant, as suggested by Heinze-Deml et al.
[HM21].

42

List of Figures

1.1 Overview of training and inference pipeline 1
1.2 Comparison between texture based (a) and procedural concrete (b). Both

resulting renders (right) use the same scaling. The photo based approach
leads to tiling issues because the source texture has to be repeated once the
surface size exceeds the source image size. 4

2.1 Gatys et al [GEB15a] texture generation using back propagation on white
noise image using Gatys style descriptor L2 distance as loss. Top: generated
texture. Bottom: source image. Image courtesy of Gatys et al. [GEB15a] 6

2.2 Texture sample photo setup. Image courtesy of Aittala et al. [AWL+15] . 8

4.1 Selection of different Blender shader nodes. Teal: Shaders, Pink: Inputs,
Blue: Numerical maths and converters, Purple: Vector maths, Orange:
Noise Generators . 16

4.2 A complex procedural material node setup to produce a hardwood floor
material. Customizable parameters, such as grout width, damage amount,
and grain size, allow for artistic control. 17

4.3 Comparison of shader node setups for image texture and procedural shaders.
This excerpt shows the generation of the color texture map only. Principled
BSDF and output nodes are omitted for brevity. 18

4.4 Convolution on a 2D image with a 3×3 kernel. Pixel values in the input image
are multiplied by the corresponding kernel values and summed to produce
a new pixel value. This example shows an emboss filter. Image courtesy of
Apple [App]. 20

4.5 VGG19 network layer overview. For style extraction, only the convolutional
part is necessary. The fully connected part is discarded for style extraction.
The layer activations before every pooling layer (here signified by arrows) are
used to calculate the Gatys style descriptors. (ReLU layers are not shown for
brevity.) . 22

4.6 The Gram matrix represents correlations between feature maps by computing
the inner product of the activation vectors in a CNN layer. Graphic adapted
from [Res24]. 23

43

5.1 While the super-shader is capable of delivering a wide range of different
materials by changing its parameters, with its 507 nodes it is too large and
complicated to be manageable by an artist. 25

5.2 Comparison between full super-shader with its 507 nodes (with its groups
intact, ungrouped is displayed in 5.1), and minimised and reordered shaders
produced by the sub-shader extraction script with around 30 nodes and their
corresponding renders. 28

5.3 Learning data set generation in blender and some results. 30

6.1 The loss graph of 40 different training runs shows the inability of the network
to converge to the correct results, using different network and hyper parameter
configurations. The two notable curves that seam to converge, show runs
where I tested if the network is able to overfit given a very limited dataset. 36

6.2 After nearly four days, the graphs show minimal improvement in accuracy
and loss. The training was canceled due to slow progression. 37

44

Acronyms

ANN Artificial Neural Network. 19, 20, 38

CNN Convolutional Neural Network. vii, ix, 6, 19–24, 38, 41–43

MLP Multi Layer Perceptron. vii, ix, 13, 25

MSE Mean Squared Error. 32

MSLE Mean Squared Logarithmic Error. 32

PBR Physics Based Rendering. 2, 8, 9

PCA Principal Component Analysis. 32

RFR Random Forest Regressor. 1, 3, 32, 33, 36–38, 40

SVBRDF Specially Varyin Bidirectional Reflectance Distribution Function. 8–10, 25

45

Bibliography

[AAL16] Miika Aittala, Timo Aila, and Jaakko Lehtinen. “Reflectance modeling by
neural texture synthesis”. In: ACM Transactions on Graphics (ToG) 35.4
(2016), pp. 1–13.

[App] Apple. “Blurring an image”. In: (). [Online; accessed February 25, 2024]. url:
https://developer.apple.com/documentation/accelerate/
blurring_an_image.

[AWL+15] Miika Aittala, Tim Weyrich, Jaakko Lehtinen, et al. “Two-shot SVBRDF
capture for stationary materials.” In: ACM Trans. Graph. 34.4 (2015),
pp. 110–1.

[Bro19] Jason Brownlee. A Gentle Introduction to Pooling Layers for Convolutional
Neural Networks. Adapted from: Ian Goodfellow, Yoshua Bengio, Aaron
Courville, Deep Learning (Adaptive Computation and Machine Learning se-
ries), The MIT Press, 2016. and Francois Chollet, Deep Learning with Python,
Manning, 2017. 2019. url: https://machinelearningmastery.com/
pooling-layers-for-convolutional-neural-networks/.

[Che+21] Leiyu Chen et al. “Review of Image Classification Algorithms Based on
Convolutional Neural Networks”. In: Remote Sensing 13.22 (2021). issn:
2072-4292. doi: 10.3390/rs13224712. url: https://www.mdpi.
com/2072-4292/13/22/4712.

[Cho17] Francois Chollet. Deep Learning with Python. Manning, 2017.
[EF01] Alexei A Efros and William T Freeman. “Image quilting for texture synthesis

and transfer”. In: Proceedings of the 28th annual conference on Computer
graphics and interactive techniques. 2001, pp. 341–346.

[EL99] Alexei A Efros and Thomas K Leung. “Texture synthesis by non-parametric
sampling”. In: Proceedings of the seventh IEEE international conference on
computer vision. Vol. 2. IEEE. 1999, pp. 1033–1038.

[GEB15a] Leon Gatys, Alexander S Ecker, and Matthias Bethge. “Texture synthesis
using convolutional neural networks”. In: Advances in neural information
processing systems 28 (2015).

[GEB15b] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. “A neural algorithm
of artistic style”. In: arXiv preprint arXiv:1508.06576 (2015).

47

https://developer.apple.com/documentation/accelerate/blurring_an_image
https://developer.apple.com/documentation/accelerate/blurring_an_image
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
https://doi.org/10.3390/rs13224712
https://www.mdpi.com/2072-4292/13/22/4712
https://www.mdpi.com/2072-4292/13/22/4712

[GEB16] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. “Image style
transfer using convolutional neural networks”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 2414–2423.

[Guo+20] Yu Guo et al. “A bayesian inference framework for procedural material
parameter estimation”. In: Computer Graphics Forum. Vol. 39. 7. Wiley
Online Library. 2020, pp. 255–266.

[HB95] David J Heeger and James R Bergen. “Pyramid-based texture analy-
sis/synthesis”. In: Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques. 1995, pp. 229–238.

[HM21] Christina Heinze-Deml and Nicolai Meinshausen. “Conditional variance
penalties and domain shift robustness”. In: Machine Learning 110.2 (2021),
pp. 303–348. issn: 1573-0565. doi: 10.1007/s10994-020-05924-1.
url: https://doi.org/10.1007/s10994-020-05924-1.

[Hu+22] Yiwei Hu et al. “An Inverse Procedural Modeling Pipeline for SVBRDF
Maps”. In: ACM Trans. Graph. 41.2 (Jan. 2022). issn: 0730-0301. doi:
10.1145/3502431. url: https://doi.org/10.1145/3502431.

[Ian16] Aaron Courville Ian Goodfellow Yoshua Bengio. Deep Learning (Adaptive
Computation and Machine Learning series). The MIT Press, 2016.

[Jul62] Bela Julesz. “Visual pattern discrimination”. In: IRE transactions on Infor-
mation Theory 8.2 (1962), pp. 84–92.

[Kaj86] James T. Kajiya. “The Rendering Equation”. In: SIGGRAPH Comput.
Graph. 20.4 (Aug. 1986), pp. 143–150. issn: 0097-8930. doi: 10.1145/
15886.15902. url: https://doi.org/10.1145/15886.15902.

[Kum20] Abhishek Kumar. “PBR Texturing vs. Traditional Texturing”. In: Beginning
PBR Texturing: Learn Physically Based Rendering with Allegorithmic’s
Substance Painter. Berkeley, CA: Apress, 2020, pp. 43–46. isbn: 978-1-
4842-5899-6. doi: 10.1007/978-1-4842-5899-6_5. url: https:
//doi.org/10.1007/978-1-4842-5899-6_5.

[Li+17] Yanghao Li et al. “Demystifying neural style transfer”. In: arXiv preprint
arXiv:1701.01036 (2017).

[Mae+24] Arman Maesumi et al. “One Noise to Rule Them All: Learning a Unified
Model of Spatially-Varying Noise Patterns”. In: (2024).

[PS00] Javier Portilla and Eero P Simoncelli. “A parametric texture model based
on joint statistics of complex wavelet coefficients”. In: International journal
of computer vision 40.1 (2000), pp. 49–70.

[Res24] ResearchGate. Artwork Style Transfer Model using Deep Learning Approach
- Scientific Figure. https://www.researchgate.net/figure/The-
Gram- Matrix- is- created- from- a- target- image- and- a-
reference-image_fig4_356667127. [accessed 3 Mar, 2024]. 2024.

48

https://doi.org/10.1007/s10994-020-05924-1
https://doi.org/10.1007/s10994-020-05924-1
https://doi.org/10.1145/3502431
https://doi.org/10.1145/3502431
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/15886.15902
https://doi.org/10.1007/978-1-4842-5899-6_5
https://doi.org/10.1007/978-1-4842-5899-6_5
https://doi.org/10.1007/978-1-4842-5899-6_5
https://www.researchgate.net/figure/The-Gram-Matrix-is-created-from-a-target-image-and-a-reference-image_fig4_356667127
https://www.researchgate.net/figure/The-Gram-Matrix-is-created-from-a-target-image-and-a-reference-image_fig4_356667127
https://www.researchgate.net/figure/The-Gram-Matrix-is-created-from-a-target-image-and-a-reference-image_fig4_356667127

[sci25a] scikit-learn developers. sklearn.ensemble.RandomForestRegressor – scikit-
learn 1.0.2 documentation. https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.RandomForestRegressor.
html. Accessed: 15 February 2025. 2025.

[sci25b] scikit-learn developers. sklearn.multioutput.MultiOutputRegressor – scikit-
learn 1.0.2 documentation. https://scikit-learn.org/stable/
modules/generated/sklearn.multioutput.MultiOutputRegressor.
html. Accessed: 15 February 2025. 2025.

[SF95] Eero P Simoncelli and William T Freeman. “The steerable pyramid: A
flexible architecture for multi-scale derivative computation”. In: Proceedings.,
International Conference on Image Processing. Vol. 3. IEEE. 1995, pp. 444–
447.

[Shi+20] Liang Shi et al. “Match: differentiable material graphs for procedural material
capture”. In: (2020).

[Shl14] Jonathon Shlens. A Tutorial on Principal Component Analysis. 2014. arXiv:
1404.1100 [cs.LG]. url: https://arxiv.org/abs/1404.1100.

[SZ14] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks
for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[VG97] Eric Veach and Leonidas J Guibas. “Metropolis light transport”. In: Pro-
ceedings of the 24th annual conference on Computer graphics and interactive
techniques. 1997, pp. 65–76.

[Win25] Marcel Winklmüller. Inverse Material Synthesis via Sub-Shader Extraction.
Accessed: 2025-03-19. 2025. url: https://github.com/Liquidmasl/
Inverse-Material-Synthesis-via-Sub-Shader-Extraction.

[WL00] Li-Yi Wei and Marc Levoy. “Fast texture synthesis using tree-structured
vector quantization”. In: Proceedings of the 27th annual conference on
Computer graphics and interactive techniques. 2000, pp. 479–488.

49

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html
https://arxiv.org/abs/1404.1100
https://arxiv.org/abs/1404.1100
https://github.com/Liquidmasl/Inverse-Material-Synthesis-via-Sub-Shader-Extraction
https://github.com/Liquidmasl/Inverse-Material-Synthesis-via-Sub-Shader-Extraction

	Kurzfassung
	Abstract
	Introduction
	Motivation

	Related Work
	Texture Synthesis
	Material Synthesis

	Methodology
	Training Pipeline
	Inference Pipeline

	Technical Background
	Blender Material Node Graph
	Convolutional Neural Networks (CNN)
	Gatys Style Descriptor

	Implementation
	Super-Shader
	Learning Data Generation
	Parameter Predictor Training and Evaluation

	Results and Conclusions
	Issues
	Successes
	Future Work

	List of Figures
	Acronyms
	Bibliography

