Project Duration: 2001 -
This page assembles some results (figures) of work that is part of our visualization research. The figures are provided in JPEG format.
header
< abstract
> paper
> figures
> footer
The classification of volumetric data sets as well as their rendering algorithms are typically based on the representation of the underlying grid. Grid structures based on a Cartesian lattice are the de-facto standard for regular representations of volumetric data. In this paper we introduce a more general concept of regular grids for the representation of volumetric data. We demonstrate that a specific type of regular lattice - the so-called \emph{body-centered cubic} - is able to represent the same data set as a Cartesian grid to the same accuracy but with 29.3% less samples. This speeds up traditional volume rendering algorithms by the same ratio, which we demonstrate by adopting a splatting implementation for these new lattices. We investigate different filtering methods required for computing the normals on this lattice. The lattice representation results also in lossless compression ratios that are better than previously reported. Although other regular grid structures achieve the same sample efficiency, the body-centered cubic is particularly easy to use. The only assumption necessary is that the underlying volume is isotropic and band-limited - an assumption that is valid for most practical data sets.
header
< abstract
< paper
> figures
> footer
header
< abstract
< paper
< figures
> footer
header
< abstract
< paper
< figures
< footer
Thomas Theußl, last update on April 4, 2001.