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Overview

● SLAM
● RGBD: 

Kinect Fusion
And non-rigid Objects: Dynamic Fusion

● RGB:
How to obtain Depth?
Live Dense Reconstruction with a Single Moving Camera
Monofusion



  

Direct Methods



  

SLAM
Simultaneous Localization and Mapping

● Inputs:
Cameras, GPS, IMUs, …

● Output:

Camera parameters,
surrounding map

● Applications in:
autonomos robots (cars)
augmented reality
...



  

Mapping

● Mapping

● Recognition

● Loop Closure



  

SLAM Terminology

● Indirect
● Direct

● Sparse
● Dense

● RGB
● Depth Sensor



  

Depth Cameras

● Depth value for each image section

● Noisy image

● Accessible through Kinect 



  

Kinect Fusion
Richard A. Newcombe Shahram Izadi et al. - Cambridge 2011



  

Kinect Fusion



  

Kinect Fusion

● Convert raw depth map
to vertex & normal map

● Vertex Map:
Using Intrinsic calibration

● Normal Map:
neighbouring points



  

Kinect Fusion

● Camera Tracking:

- Remove Outliers

- Iterative Closest Points



  

Kinect Fusion

● Find Correspondence
● Improve 6DoF
● Error: Euclidian Distance

Normal



  

Kinect Fusion

● Voxel Grid

● Volume of 5123

512 mB memory
2ms per sweep (read write op) on GTX470



  

Kinect Fusion

● Truncated Signed Distance
Field

A Disc and its 
SDF A 2D TSDF 



  

Kinect Fusion

● Volumetric Integration

For each Voxel:
● Find Distance from

Camera to voxel Position
● Perspective project and compare to 

Distance in Depth Map
● Apply Thresholds and update Voxel grid



  

Kinect Fusion

● Raycasting/Rendering

Find the zero-crossing



  

Kinect Fusion Video



  

Real-time 3D Reconstruction at Scale 
using Voxel Hashing

● Empty Voxels not stored

● 8x8x8 Voxelblocks
● Voxels 4mm each

● Efficient GPU algorithms for 
storage and retrival



  

Dynamic Fusion
Richard A. Newcombe, Dieter Fox, Steven M. Seitz  
University of Washington 2015



  

Dynamic Fusion

● Extends Kinect Fusion to non-rigid objects

● Store canonical (non-moved-pose) model

● Estimate Warp Field to transform canonical to live 
frame 

● Refine canonical model and warping parameters 



  

Dynamic Fusion

● Estimation of model-to-frame warp:
- Extract Mesh of canonical model with     
  marching cubes
- Transform it with current warp field
- Render it to a buffer (projective)
- Compare to rendering of live depth map
- Produces an Error term

● Add regularization Term and Deformations
● Solve with Gauss Newton



  

Dynamic Fusion



  

Dynamic Fusion Video



  

Feature Based Methods
(e.g. ORB-SLAM2)

● Finding Depth



  

ORB-SLAM 2
Raúl Mur-Artal and Juan D. Tardós



  

Camera Parameters

● Camera tracks points over
multiple frames

● Approximate camera position
and surrounding



  

Reprojection Error

● Xj = predicted point

● xj = point as seen from
Camera Pi

● Modifying Intrinsic
and Extrinsic Parameters
decreases Error 
(distance Xj to xj)



  

Camera Position & Depth

Linear System with Error metric to minimize estimates parameters

Extrinsic parameters
(rotation, translation)

Intrinsic parameters 
(focal length, pixel size, principal point) 

Feature Points from
multiple Frames/Cameras



  

ORB-SLAM 2 Results



  

Direct Sparse Odometry
Jakob Engel, Vladen Koltun, Daniel Cremers
TU Munich 2016



  

Direct Methods

● Instead of Feature Points, Image Intensities 
are tracked



  

Direct Methods

● Point XL projected into space must be along 
the epipolar line XR



  

Camera Position & Depth

Linear System with Error metric to minimize estimates parameters

Extrinsic parameters
(rotation, translation)

Intrinsic parameters 
(focal length, pixel size, principal point) 

Feature Keypoints from
multiple Frames/Cameras

Vignetting

Exposure Time



  

Camera Position

● Instead of Reprojection Error:
Minimizing Photometric Error 

● Results in a System of Linear equations to 
be solved by Gauss-Newton



  

Semi-Dense Visual Odometry for AR 
on a Smartphone



  

Live Dense Reconstruction with a Single Moving 
Camera
Richard A. Newcombe and Andrew J. Davison
Imperial College London - 2010



  

Live Dense Reconstruction with a 
Single Moving Camera

● Simple Mesh triangulation unsatisfactory

● Small movements of Camera add accuracy

● Refine model over time



  

Optical Flow



  

Live Dense Reconstruction with a 
Single Moving Camera

● Approximate Base Surface

● Refine Depth Estimations

● Fuse Depth Maps



  

Live Dense Reconstruction with a 
Single Moving Camera

● Find Feature Points
(PTAM)

● Remove outliers
● Reconstruct coarse Base Mesh



  

Live Dense Reconstruction with a 
Single Moving Camera

● Select Bundles of
cameras with 
overlapping surface visibility

● For each pixel: Intersect ray with base 
model, predict position in bundle



  

Live Dense Reconstruction with a 
Single Moving Camera

● Form linear system
of predictions

● Find least squares solution
and update surface

● Link up surface points to form depth map
● Integrate into Model



  

Monofusion
Vivek Pradeep, Christoph Rhemann, et al.
Cambridge 2013

● Depth estimation by baseline-matching
● Volumetric Fusion - SDF



  

Summary

Camera Type Results in Heavily Utilizes

Kinect Fusion RGBD Voxel Grid GPU, RAM

Dynamic Fusion RGBD Voxel Grid + Warp 
field

GPU, RAM

Live Dense 
Reconstruction 
with a single 
moving camera

RGB Mesh CPU, GPU(optical 
flow)

Monofusion RGB Voxel Grid



  

Comparison

Kinect Fusion:

Monofusion:

Live Dense Reconstruction:
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