
PREPRINT — the final version can be found in The Visual Computer.

Separating Semantics from Rendering:
A Scene Graph based Architecture
for Graphics Applications

Robert F. Tobler

Abstract A large number of rendering and graphics

applications developed in research and industry are based

on scene graphs. Traditionally scene graphs encapsulate

the hierarchical structure of a complete 3D scene, and

combine both semantic and rendering aspects. In this

paper we propose a clean separation of the semantic

and rendering parts of the scene graph. This leads to

a generally applicable architecture for graphics appli-

cations that is loosely based on the well known Model-

View-Controller (MVC) design pattern for separating

the user interface and computation parts of an applica-

tion. We explore the benefits of this new design for var-

ious rendering and modeling tasks, such as rendering

dynamic scenes, out-of-core rendering of large scenes,

generation of geometry for trees and vegetation, and

multi-view rendering. Finally we show some of the im-

plementation details that have been solved in the pro-

cess of using this software architecture in a large frame-

work for rapid development of visualization and render-

ing applications.

Keywords scene graph ¨ systems architecture ¨

semantics ¨ rendering ¨ design pattern

1 Introduction

Implementing complex applications using scene graphs—

the standard approach for representing 3D scenes—

requires a structured approach to the software archi-

tecture in order to deal with user input and simulation

results that need to be rendered. Although traditional

scene graph designs are well suited for abstracting away

the details of the rendering backend, they only offer lim-

ited support for complex application logic: there is no

Robert F. Tobler
VRVis Research Center, Vienna, Austria
E-mail: rft@vrvis.at

established design pattern for dealing with scene graphs

that constantly change. Thus, a number of applications

that require dynamically changing scene graphs, such

as out-of-core rendering, where scene-graph parts need

to be loaded and discarded from memory due to the

large size of the complete scene, procedural rendering,

where scene graphs are generated on the fly, or seman-

tically enhanced scene graphs, where the semantics of

nodes are used to interactively change rendering styles,

are difficult to realize with commonly used APIs. In

this paper we will show how the separation of seman-

tics from the rendering scene graph naturally leads to

an architecture that is well suited not only for these

tasks, but for most other applications of scene graphs

as well.

2 State of the art

With the advent of hardware accelerated graphics out-

put a number of rendering APIs have been developed in

order to provide a simple interface and hide the hard-

ware specific details of rendering. Many of these APIs

are based on scene graphs as a natural hierarchical rep-

resentation of the structure of 3D scenes. In the fol-

lowing, we will highlight some of the more widely used

scene graph systems, how they deal with changing state

due to user input or simulation results, and dynamic

scene graphs.

One of the first scene graph designs that saw wide-

spread use was Inventor [SC92] and its successor Open

Inventor [Wer93]. In addition to a wide variety of scene

graph nodes for standard rendering purposes, Inven-

tor also provides some support for handling state and

user input: namely engines and event nodes. Engines

encapsulate the concept of dynamic expressions that

depend on various input fields, and can thus be used to

2 Robert F. Tobler

perform arbitrary calculations within the scene graph.

Event nodes provide the mechanism to react to user in-

put via call back functions. In order to realize dynamic

scene graphs in Open Inventor, both new node types

that represent changing scene graph parts, and custom

actions, that actually expand the new types into scene

graphs, need to be implemented. Reitmayr and Schmal-

stieg have presented such a dynamic extension of Open

Inventor in order to create a context aware dynamical

scene graph [RS05]. This is achieved by creating a new

traversal which contains a context object or a context

state. In addition, the scene graph can be annotated

with context nodes. During the traversal, the context

state of the traversal is combined with the annotated

content in the graph. This combined data is then used

to make decisions for the rendering path in the scene

graph, or to modify properties of already existing nodes.

OpenSG is a scene graph system with a main fo-

cus on performance. OpenSG was developed by Rein-

ers [VBRR02] as part of OpenSG Plus that is now con-

tinued as an open source project. The core mechanism

for modifying the scene graph in OpenSG is the possi-

bility to define and use different traversals of the scene

graph that only visit the nodes needed for a certain ac-

tion. Although this is a powerful and performant way

to partially traverse the scene graph, the actual state

and triggers for these traversals need to be maintained

by the application. Actually creating additional parts

of the scene graph during traversal is not directly sup-

ported in the current version of OpenSG. Implementing

dynamic scene graphs requires special nodes and traver-

sals, just as in Open Inventor.

Open Scene Graph [BO04] was inspired by IRIS

Performer [RH94] with the emphasis on high render-

ing performance for 3D applications. It provides better

encapsulation of the OpenGL state than OpenInven-

tor and thus a better rendering performance. There is

no comparable implementation to the graph operators

from OpenSG. Dynamic content is again realized with

callbacks, these are however limited to functions for up-

date, cull and draw. In Open Scene Graph, changes to

the structure of the graph can only be done during the

update traversal. There is no concept for dynamic gen-

eration of graph structure, like in the two other scene

graph systems, and thus the tools for dynamic scene

graphs are somewhat restricted.

The SceniX scene graph system created by the graph-

ics company nVidia is a multi-purpose scene graph which

runs on different platforms and has been developed for

fast rendering with high image quality [KM09]. The

central design concept of the scene graph is to separate

the data stored in the scene graph from the operations

which are performed on them. These operations are im-

plemented with so called traverser objects that can be

programmed to perform specific actions on each node of

the scene-graph. SceniX includes the basic nodes for dy-

namic data in the graph, such as animated transforma-

tions, level of detail, switch and billboard nodes. It has,

however, no ready-made construct for creating scene

graph data on demand or during runtime. The concept

of the separation of data stored in the nodes, and the

actions applied to the graph, as it is implemented in

SceniX, provides a good extension point for dynamic

generation, facilitating the creation of new scene graph

data and hierarchies on demand in a simpler fashion

than the previously introduced frameworks.

Although all of these scene graph systems (and many

others that are based on similar principles, e.g. [Sea05],

[Bos09]) provide some support for reacting to user input

and the possibility to implement dynamic scene graphs,

there is no well-defined design pattern for the actual

implementation. In large and complex applications this

can lead to multiple solutions for similar problems, and

thereby significantly increase the maintenance overhead.

3 Separating semantic and rendering scene

graph

In any non-trivial rendering application, it is necessary

to modify the graphical output either according to user

input, according to changes in some simulation state,

according to a changed style based on the semantics, or

any combination of these changes. If the graphical out-

put of the application is represented by a scene graph, it

is therefore necessary to change the scene graph in some

fashion in order to reflect the changes. Additionally the

state of the input or simulation needs to be stored, so

that changes can be detected and applied to the scene

graph. With standard scene graph designs, there are

two possibilities to store this application state:

Application state outside the scene graph: In this ap-

proach, all state is stored in application specific data

structures outside the scene graph, and the scene

graph is only used as an internal representation of

the rendered output. In this case, the application

will maintain references to parts of the scene graph

in order to modify these parts whenever changes in

the input or state occur (see figure 1).

Application state inside the scene graph: Of course it is

also possible to implement specialized nodes in the

scene graph that store input and simulation state.

In this case, the state in these specialized nodes is

updated during traversal of the scene graph (see fig-

ure 2).

Separating Semantics from Rendering: A Scene Graph based Architecture for Graphics Applications 3

scene graph

application
state

Fig. 1 In traditional designs, the application can maintain
references to parts of the scene graph, in order to dynamically
modify the scene graph.

state

state

state

scene graph

Fig. 2 In traditional designs, the state can also be directly
stored in the scene graph, complicating traversal.

Both of these designs lead to draw-backs in large or

complex applications. In the first case, where the state

is separated from the scene graph, the hierarchical struc-

ture of the scene graph is not necessarily reflected in the

way the state is stored in the application. In order to

overcome this problem, the structure of the rendering

scene graph can be partially implemented in parallel

structures in the application, leading to a duplication

of effort, or the differently structured state can be hard
to maintain. Storing state in the scene graph, as in the

second case, may lead to a significantly increased com-

plexity if there are dependencies between different parts

of the scene graph.

As an example, if complex updates that can be trig-

gered multiple times during a traversal are implemented

in a lazy fashion, oftentimes a ”needs update” flag is in-

troduced to various nodes in the hierarchy, that is used

to fold multiple updates into one evaluation. If the up-

dates of different aspects of the same node are handled

with multiple such flags, the resulting application logic

can become very cumbersome to implement.

The root of the complexity is the handling of both

semantics and rendering specific operations in a com-

bined fashion within the scene graph. A first step in

the direction of separating the semantics from the ren-

dering parts of the scene graph has been introduced by

Mendez et al. [MSH˚08] by using semantic tags as at-

tributes in the scene graph. This leads to clear benefits

if the rendering styles of nodes with the same semantic

tag needs to be changed interactively.

We pursued a more complete solution for solving

these problems by completely separating semantics from

the rendering scene graph, and introducing a split scene

graph architecture:

The semantic scene graph: This is a scene graph of se-

mantic nodes, that embodies the scene as the user

modeled it. In a pure rendering application this graph

is never modified after its initial creation.

The rendering scene graph: This is the scene graph in

the traditional sense, that generates the sequence of

rendering operations that is necessary to display the

scene. Its structure is influenced by the rendering

backend that is used.

As an example consider a small table modeled by a user.

The semantic nodes are the legs of the table, the table

top each with an associated material as a parameter,

and a table node that groups the other five nodes, each

one a leg with a transformation. The rendering scene

graph for such an object has a number of transforma-

tions and shader nodes that are specific to the rendering

backend.

semantic scene graph rendering scene graph

translation

Fig. 3 A typical graphics application builds a rendering
scene graph by translating the nodes of a real or implied
semantic scene graph.

A typical graphics application acts like a compiler,

that takes a real or implied semantic scene graph as

an input and generates the rendering scene graph for

3D output. During this translation operation, a single

node of the semantic scene graph is often translated

into multiple connected nodes of the rendering scene

graph (see figure 3).

This works well for applications with static out-

put. However, if dynamic output is necessary the previ-

ously mentioned techniques for modifying the rendering

scene graph are normally employed. In order to exploit

the separation between semantic and rendering scene

4 Robert F. Tobler

graph, we can look at modern compiler technique: lan-

guages such as Java and C# translate the source code

into an intermediate language and use a just-in-time

compiler [DS84] to compile functions and methods as

they are needed.

semantic scene graph rendering scene graph

Fig. 4 During on-the-fly translation, the semantic scene
graph is translated into a forest of rendering scene graph
pieces.

By using the same technique for generating the ren-

dering scene graph from the semantic scene graph, the

rendering scene graph will become a forest of small

scene graph pieces that are generated on the fly as

they are needed when the semantic scene graph is tra-

versed (see figure 4). In a way our separation of se-

mantic and rendering scene graph is reminiscent of the

Scene Graph as a Bus System [ZHC˚00], however, the

forest of rendering scene graph pieces can be completely

reconstructed from the semantic scene graph, and rep-

resents an expanded or translated version.

In order to make the rendering scene graph truly dy-

namic we introduce state into the translation step, and

allow the traversal of the scene graph to modify the ex-

isting rendering scene graph pieces to reflect the new

state (see figure 5). This has been implemented by cre-

ating a dictionary of translation rules that contains cre-

ator functions for rule objects that contain the current

state of the translation. Each constructor of such a rule

object builds a rendering scene graph piece that cor-

responds to the translated semantic scene graph node,

and stores a reference to it.

All the rule objects are stored in the so-called traver-

sal cache of the render traversal, and on subsequent

traversals of the semantic scene graph, a look-up in this

cache is performed whenever a semantic scene graph

node is traversed. By making all rule objects implement

a single action method that is called before traversing

the corresponding rendering scene gaph piece, each rule

object can react to changes in the global state, and

modify its rendering scene graph piece.

semantic scene graph rendering scene graph

state

state

state

state

state

state

state

state

Model Controller View

traversal cache

Fig. 5 On-the-fly translation of each semantic scene graph
node creates a rule object that contains the current state of
the translation. Each rule object contains a reference to its
rendering scene graph piece. This structure can be viewed as
a variant of the model-view-controller design pattern.

This architecture for scene graphs can be viewed

as a variant of the well-known Model-View-Controller

design pattern [Ree79]. Here the semantic scene graph

represents the model, i.e. the data as the user conceived

it, the rendering scene graph represents the view of this

model, and the rule objects containing the current state

of the translation represent the controller (see figure 5).

4 Implementation

The presented architecture has been implemented in

a new rendering framework written in C#. Although it

would have been possible to implement the architecture

on top of one of the presented scene graph systems, the

support for modern language features such as type-safe
generics and functional programming simplified some

details of the implementation.

Generic scene graph traversal

In order to provide all the functionality that is neces-

sary in a typical rendering framework, multiple types of

traversal need to be allowed. If every traversal T needs

to be implemented for each and every node type N

this is an OpT ¨Nq implementation effort. Optimally we

would like to limit the implementation effort to adding

interface implementations to just those node types that

need to perform operations that are different from a de-

fault traversal. As an example, only nodes containing

geometry or shader information need to implement an

interface that contains the actual rendering method.

This can be achieved by implementing the actual

traversal function in a generic way with three type pa-

rameters: the type of the operation that needs to be

Separating Semantics from Rendering: A Scene Graph based Architecture for Graphics Applications 5

performed TInterface, the type of the traversal state

object TTraversal, and the result type TResult type.

In C# the signature of this generic traversal method

looks like this:

public interface NodeInterface {

TResult Traverse

<TInterface, TTraversal, TResult>(

TTraversal traversal,

Func<TInterface, TTraversal,

TResult> fun);

}

Implementations of this function on the various node

types use run-time type information to determine if the

supplied interface TInterface is implemented by the

node type, and if it is, they use the supplied function

Func<TInterface,TTraversal,TResult> fun to call

a specific method of the interface. This function receives

the node already cast to the specific interface and the

traversal state object as a parameter, and returns the

result of the traversal operation on the node. If the

specified interface is not implemented by the node, the

generic traversal function returns default values for leaf

nodes, or traverses the children of the node for inter-

mediate nodes, and aggregates the result by performing

result-type specific aggregation.

Specific traversals such as the typical render traver-

sal are then implemented by specifying an interface for

all renderable nodes:

public interface IRenderable {

RenderResult Render(

RenderTraversal traversal);

}

This interface needs to be implemented for all node

types that need to be rendered. An actual traversal calls

the methods in this interface via the generic traversal

method:

traversable.Traverse(

renderTraversal,

(IRenderable node, RenderTraversal t)

=> node.Render(t));

Traversal of semantic nodes

The generic traversal for a semantic scene graph node

takes the type (or a type identifier) together with a

unique identifier of the actual node as a key into the

traversal cache. If a rule object is found in the cache,

its Action method is called to allow the rule object

to make changes in its render scene graph part. This

action method returns the actual scene graph part that

will then be traversed.

If no rule object is found in the traversal cache, the

traversal state object’s rule map, a dictionary of creator

functions that uses the type as a key, is used to find a

creator function for the type of the semantic node. This

creator function is called to create the rule object and

its associated render scene graph part. The rule object

is stored in the traversal cache. Afterwards things pro-

ceed as if the rule object was found in the cache.

Attribute applicators

Attributes such as transformations and surfaces are ap-

plied to a scene graph with so call attribute applicator

nodes. These applicator nodes are binary nodes with

two sub-graphs: the left sub-graph specifies the scene

graph on which to apply the attribute, and the right

sub-graph specifies the actual attribute. The attribute

value is obtained by performing a GetAttribute traver-

sal on the right sub-graph. As an example, consider

applying a transformation consisting of a rotation and

a scale on a scene graph. Figure 6 shows the relevant

piece of the scene graph.

Trafo
Applicator

Group

RotateScale

GetTrafo()

GetTrafo() GetTrafo()

Render()

Render()

Fig. 6 A transformation applicator applies a transformation
to its left sub-node by performing a GetTrafo() traversal on
its right sub-node, and pushing the returned transformation
onto the traversal state before traversing its left sub-node.

The result-type specific aggregation for transforma-

tions, which is performed by the generic traversal of

the group node, is in this case the multiplication of the

transformation matrices.

This logical separation of attributes in sub-trees al-

lows the implementation of any type of attribute in a hi-

erarchical semantic fashion, with the concrete interpre-

6 Robert F. Tobler

tation of the attribute constructed on the fly as a ren-

dering scene graph. As an example, material properties

can be implemented as semantic shading trees [Coo84]

that are directly integrated in the scene graph system.

In a current rendering system, the translation of such

a shade tree will be a rendering scene graph that con-

tains the vertex and pixel shaders necessary for achiev-

ing the desired semantic material properties specified

in the semantic shading tree. By adding additional se-

mantic attributes that modify the visual style created

by the rendering scene graph, the semantic functional-

ity that has been presented by Mendez et al. [MSH˚08]

can be directly implemented within the rule objects of

the new scene graph system without resorting to appli-

cation logic outside the scene graph.

Dynamic scene graphs

The simplest form of a dynamic scene graph can be

realized with the attribute applicator nodes shown in

the previous section. In the example given in figure 6,

the GetTrafo() traversal employs the described oper-

ations on the semantic Rotate and Scale nodes. It is

thus possible to implement a Rotator node that can be

used in place of the static Rotate node, that returns a

time-dependent transformation (see figure 7).

Group

Rotator

GetTrafo()

GetTrafo()

GetTrafo()

TrafoLeaf

Action {
 t = GetWorldTime();
 TrafoLeaf.Matrix = Rotation(t);
 return TrafoLeaf;
}

RuleObject

Fig. 7 A rotator is implemented by modifying its ren-
dering scene graph—consisting of a single TrafoLeaf node
that contains a concrete transformation matrix—in its Ac-
tion method.

More complicated dynamic scene graphs have been

implemented by creating new pieces of rendering scene

graphs or performing more complex modifications on

the existing rendering scene graph in the Action method

of the various rule objects.

Out of core rendering

Out of core rendering represents a special case of a dy-

namic scene graph. In this case, we created semantic

nodes that contain file references and usage data of the

stored rendering scene graph. When the semantic node

is encountered during scene graph traversal, the creator

function loads the rendering scene graph from disk, if it

is not already in the traversal cache. In order to remove

rendering scene graph pieces from the traversal cache,

some cache statistics need to be maintained, such as size

and last access of nodes. If there is not enough space

for loading a scene graph piece, other scene graph pieces

that have not been used for a while can be deleted from

the traversal cache.

Level-of-detail

A simple semantic level-of-detail node can be imple-

mented by creating a rule object that maintains mul-

tiple rendering scene graph parts, each of which rep-

resents a single level-of-detail. The Action method of

the rule object can then return the appropriate part,

depending on the current position of the camera with

respect to the nodes (see example in figure 8).

Action {
 return level[
 LodFunction(cameraState)]; }

LOD

node

level 0

level 1

level 2

Fig. 8 A simple semantic LOD node is implemented by
having its rule object select one of multiple rendering scene
graph parts in the Action method.

Based on this simple design, we have implemented

more complex level-of-detail nodes that load the data

for the different levels onto the graphics card in the

background, before actually switching to the optimal

level of detail.

Procedural generation of geometry

Complex geometric objects such as trees and buildings

are often created by using procedural generation of ge-

ometry. The presented system for creating rendering

scene graphs on the fly has been extended to allow the

creation of semantic nodes as well. In this case, the

rendering scene graph part that is created by a rule ob-

ject will also contain semantic nodes, that again trigger

the creation of additional rule objects. Figure 9 shows

an example of the semantic and rendering scene graph

Separating Semantics from Rendering: A Scene Graph based Architecture for Graphics Applications 7

parts that could be created during the procedural gen-

eration of a tree.

The fact that one type of semantic node (in the ex-

ample the tree node) generates other semantic nodes

(such as the branch and indirectly the leaf nodes) re-

flects the fact that the semantic type and parameters

allowed for a sub-part of an object are dependent on

the parent object (e.g. a maple only has maple leaves),

nevertheless the sub-parts can exist as independent se-

mantic objects (e.g. a maple leaf that has fallen to the

ground).

tree state

branch

branch

state

state

twig state

leaf

Fig. 9 Procedural generation of a tree through the creation
of semantic nodes within the rendering scene graph parts cre-
ated by rule objects: the branch, twig, and leaf nodes are
created on the fly.

In such procedural geometry generation scenarios,

all of the semantic nodes of an object (the tree, branch,

twig, and leaf, in the example in figure 9) are para-
metrized, and may need to access some parameters of

their parent nodes. In order to facilitate this behavior,

the generic traversal of the semantic scene graph has

been extended to maintain a so-called scope stack. This

is actually a dictionary of stacks—one for each type of

semantic node—that maintains the last traversed rule

object of each type. Whenever the traversal enters a

semantic node, its rule object is pushed onto the ap-

propriate stack. As the traversal leaves, its rule object

is removed from this stack. With this stack in place,

each rule object has access to all its parents, i.e. the

rule objects that are based on semantic nodes higher

up in the semantic scene graph, and can thus access

any parameters that are made available to it via public

fields. In our example, the leaf can be made depen-

dent on various fields of the twig, branch, and trunk

rule objects. The reason for this scoping feature to be

implemented with a stack, is that even a recursion of

rule objects of the same type is made possible, and thus

typical L-system type procedural vegetation that gen-

erates a sequence of segments of a branch or stem can

be realized.

Although L-systems and other types of grammars

for procedural generation of vegetation geometry have

been successfully implemented on top of scene graphs

or similar systems [GT96], [SG97], the clear separation

between semantic and rendering nodes in the new de-

sign leads to a significantly simpler implementation.

Note that the rules in figure 9 represent only one

possible way of using the separation between the se-

mantic and rendering scene graphs for procedural gen-

eration of geometry. By implementing special traversals

that retrieve the geometry from a complete subgraph,

and adding semantic nodes for processing such geome-

try, it is also possible to implement other approaches,

such as the one introduced by Lintermann and Deussen

[LD98] within the presented architecture.

Multi-view rendering

In a number of application scenarios the same scene

must be displayed from multiple view-points at the same

time. Since the semantic scene graph is only accessed in

reading fashion during all traversal operations, the sim-

plest implementation provides separate traversal state

objects and separate traversal caches. Although this is

possible, it leads to a replication of a possibly large

number of nodes. A more sophisticated approach splits

the traversal cache of each traversal state object into

a shared part, containing rendering scene graph parts

that can be shared with other views, and a private part

that is not shared (see figure 10). Note that only the

shared cache needs to employ locking mechanisms if the

actual traversals happen in parallel. In our implementa-

tion the decision on where to put a specific rule object

and rendering scene graph, is based on the type of the

semantic scene graph node.

This type of parallel interpretation of the same scene

graph for multiple views highlights the advantages of

the separation between semantic and rendering scene

graphs: any design that involves fixed references from

the semantic to the rendering scene graph (in most of

the previous designs various rendering caches can be

viewed as such references), needs a much more com-

plex and elaborate locking scheme for the traversal of

a dynamic scene graph, if actual parallel execution is

involved.

Editing of semantic nodes

In modeling or editing applications, the one-way infor-

mation flow from semantic to rendering node needs to

8 Robert F. Tobler

state

state

state

state

state

state

state

state tr
a
v
e
r
s
a
l

c
a
c
h
e
 B

tr
a
v
e
r
s
a
l

c
a
c
h
e
 A

s
h
a
r
e
d

c
a
c
h
e

Fig. 10 When a semantic graph is traversed with two traver-
sal state objects, each builds its own traversal cache (A, B).
For some semantic node types it can be decided, that they
reside in a single shared cache.

be augmented with a way to actually modify the seman-

tic scene graph, since this graph represents the model as

it is stored on disk. This can be accomplished by having

each rule object maintain a reference back to the seman-

tic node from which it was created. In typical modeling

applications, objects that are edited are selected and

rendered with a set of handles for manipulating the ob-

ject. This can be easily realized in the new architecture

by having the rule object maintain two rendering scene

graphs: one for rendering, that just contains the visual

representation of the semantic node, and another one

for editing, that contains the visual representation of

the handles for editing (see figure 11).

semantic
node

editing
state

back reference
for modificatinos

editing view with
handles

rendering
view

Fig. 11 The rule object of a semantic node in a modeling
application, contains the editing state of the semantic object
and maintains references to the semantic node, and two ren-
dering scene graphs, one for rendering and one for editing.

Allowing every type of operation on semantic nodes

via the back reference could potentially undo some of

the advantages of the clean separation of semantic and

rendering scene graphs. In order to avoid this design

problem, we only allow a access via a special synchro-

nized interface, with the additional benefit that the in-

termediate layer that implements this interface acts as

a multi-level undo manager.

5 Practical considerations

The clean separation between semantics and render-

ing specific scene graph makes it very easy to build

reusable components that do not affect other parts of

the scene graph. Within the framework that was imple-

mented based on this architecture, more than 100 such

components, each represented by semantic nodes, have

been created. This ranges from various level-of-detail

nodes, over a number of editing nodes for a modeling

application, animation nodes for displaying animated

3D content, to nodes for procedural generation of veg-

etation (see figure 12 for some examples).

One of our decisions when implementing this archi-

tecture, was to opt for the more flexible implementation

as opposed to the optimized implementation in a num-

ber of cases. As an example, all nodes are traversed

with the generic traversal presented in the implemen-

tation section, even if they are nodes of the rendering

scene graph.

In practice this results in a limitation of about 1000

independently transformed and animated simple prim-

itives (with dynamic transformations as shown in the

previous section) for an interactive frame-rate of about

30 frames per second (all performance figures are given

for a state of the art desktop PC with a Quad-Core

Intel i7 processor at 2.7GHz, 12 GB of RAM and an

nVidia GTX 295 graphics card).

Although a specialized rendering traversal for these

nodes could potentially boost the traversal performance

of the framework, we avoided specialized implemen-

tations and the associated maintenance overhead and
opted for a different, more global optimization strategy

by offering generic tools for optimizing the scene graph

to obtain a smaller number of nodes, each with a larger

amount of geometry. This has been implemented with

a GetGeometry() traversal to extract geometry of vari-

ous types (e.g. static geometry) from a scene graph and

store it near the root node. Using such a traversal (that

additionally identifies identical primitives with different

transformations) and optimizing a scene of 1000 inde-

pendently transformed and animated simple objects to

use hardware instantiation results in a frame-rate of

more than 1200 frames per second.

In a number of application scenarios, such as terrain

rendering and rendering of laser-range point clouds, we

use a hierarchical scene structure with level-of-detail

nodes and leaf nodes containing a fairly large number

of triangles or points (10,000 to 100,000) in order to

achieve frame rates of more than 60 frames per second

while displaying around 10+ million textured triangles

or points.

Separating Semantics from Rendering: A Scene Graph based Architecture for Graphics Applications 9

Fig. 12 Examples of the use of semantic nodes in prac-
tice (from top to bottom): (1) A terrain rendered with LOD
nodes and animated trains in a previsualization of a large
construction project. (2) Vegetation geometry generated with
semantic nodes as described in the previous section. (3) A se-
lected object with handles and transformation UI elements
displayed via a semantic scene graph rule with editing view.

6 Conclusions and future work

The presented separation of semantic and rendering

scene graph constitutes a architecture that can be ap-

plied to all kinds of rendering applications. As an ex-

ample, rendering an HTML file in a web browser can

be easily expressed with this architecture: the parsed

HTML tree represents the semantic scene graph, the

HTML-page is rendered from a rendering scene graph

that is generated from this parsed HTML tree on the fly

with a set of rules that expands each semantic HTML

node into a rule object with a reference to a rendering

scene graph part describing its visual representation.

Implementing the architecture in a large rendering

framework called Aardvark, that is used as a basis for

numerous projects at the VRVis Research Center made

it possible to explore its implications and has proven

its applicability in a variety of scenarios, some of which

have been presented in this paper.

Since the architecture works similar to a just-in time

compiler, a number of optimizations from compiler tech-

nology can be used on the semantic scene graph. As an

example, the equivalent to constant folding in compiler

optimization is the combination of the static parts of

a scene graph into a small number of optimized ren-

dering scene graph nodes that can be quickly rendered

without state changes. Performing these optimizations

automatically, will be explored in the future, in order

to improve rendering performance.

Another research avenue that has not been followed

up yet, is parallelized rendering within this architecture.

Due to the clean separation of semantic and rendering

data this will be fairly straightforward to integrate.

Acknowledgements I would like to thank all my colleagues
at the VRVis Research Center who made this work possi-
ble. Especially Stefan Maierhofer, Matthias Buchetics, Harald
Steinlechner, Michael Schwärzler and Christian Luksch pro-
vided invaluable help in validating the approach presented in
this paper.

References

[BO04] Burns D., Osfield R.: Open scene graph a: In-
troduction, b: Examples and applications. In VR
’04: Proceedings of the IEEE Virtual Reality 2004
(Washington, DC, USA, 2004), IEEE Computer
Society, p. 265.

[Bos09] Bosi M.: Visualization library. First of-
ficial version, July 2009. available from:
http://www.visualizationlibrary.com/ (accessed
February 11, 2011).

[Coo84] Cook R.: Shade trees. In Proceedings of the 11th
annual conference on Computer graphics and in-
teractive techniques (1984), ACM, pp. 223–231.

[DS84] Deutsch L. P., Schiffman A. M.: Efficient im-
plementation of the smalltalk-80 system. In POPL
’84: Proceedings of the 11th ACM SIGACT-
SIGPLAN symposium on Principles of program-
ming languages (New York, NY, USA, 1984),
ACM, pp. 297–302.

[GT96] Gervautz M., Traxler C.: Representation and
realistic rendering of natural phenomena with
cyclic csg graphs. The Visual Computer 12, 2
(1996), 62–74.

10 Robert F. Tobler

[KM09] Kunz H., Miller P.: NVIDIA R© SceniX
TM

scene management engine. First offi-
cial version, 4 Aug 2009. available from:
http://developer.nvidia.com/object/scenix-
home.html (accessed February 11, 2011).

[LD98] Lintermann B., Deussen O.: A modelling
method and user interface for creating plants.
Computer Graphics Forum 17, 1 (1998), 73–??

[MSH˚08] Mendez E., Schall G., Havemann S., Jung-
hanns S., Fellner D., Schmalstieg D.: Gen-
erating Semantic 3D Models of Underground In-
frastructure. IEEE Computer Graphics and Ap-
plications (2008), 48–57.

[Ree79] Reenskaug T.: Models - views -
controllers. XEROX PARC tech
note, 19 Dec 1979. available from:
http://folk.uio.no/trygver/themes/mvc/mvc-
index.html (accessed February 11, 2011).

[RH94] Rohlf J., Helman J.: Iris performer: a high
performance multiprocessing toolkit for real-time
3d graphics. In SIGGRAPH ’94: Proceedings of
the 21st annual conference on Computer graphics
and interactive techniques (New York, NY, USA,
1994), ACM, pp. 381–394.

[RS05] Reitmayr G., Schmalstieg D.: Flexible
parametrization of scene graphs. Virtual Reality
Conference, IEEE 0 (2005), 51–58.

[SC92] Strauss P. S., Carey R.: An object-oriented 3d
graphics toolkit. In SIGGRAPH ’92: Proceedings
of the 19th annual conference on Computer graph-
ics and interactive techniques (New York, NY,
USA, 1992), ACM, pp. 341–349.

[Sea05] Streeting S., e. a.: Ogre3d: Object-
oriented graphics rendering engine. First
official version, Feb 2005. available from:
http://www.ogre3d.org/wiki/index.php/ (ac-
cessed February 11, 2011).

[SG97] Schmalstieg D., Gervautz M.: Modeling and
rendering of outdoor scenes for distributed virtual
environments. In VRST ’97: Proceedings of the
ACM symposium on Virtual reality software and
technology (New York, NY, USA, 1997), ACM,
pp. 209–215.

[VBRR02] Voss G., Behr J., Reiners D., Roth M.: A
multi-thread safe foundation for scene graphs and
its extension to clusters. In EGPGV ’02: Pro-
ceedings of the Fourth Eurographics Workshop
on Parallel Graphics and Visualization (Aire-la-
Ville, Switzerland, Switzerland, 2002), Eurograph-
ics Association, pp. 33–37.

[Wer93] Wernecke J.: The Inventor Mentor: Program-
ming Object-Oriented 3d Graphics with Open In-
ventor, Release 2. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1993.

[ZHC˚00] Zeleznik B., Holden L., Capps M., Abrams H.,
Miller T.: Scene-graph-as-bus: Collaboration be-
tween heterogeneous stand-alone 3-d graphical ap-
plications. In In Proceedings of Eurographics 2000
(2000), pp. 200–0.

