Documentation

Group Name/ Clumzilla
Game Name
GitHub Link https://github.com/Anmoriso/cgue21-clumzilla
Student Anna Zweckstetter, 01526822
Goal Reach the other side of the city without destroying too much of it!
Implementation Game Play
The character happened to become a huge hamster and wants to become
Win/Lose smaller again without destroying too much of the city. To do this, he must
Condition reach the drink me bottle on the other side of the city. Once he has done
that, the game is won. But if he is destroying at least 5 buildings on his way,
he loses. (The finish is currently in the back left corner)
The character Clumsy moves through the city and desperately wants to
Gameplay return to a normal hamster size. But he crashes into the buildings (or other
things like fountains) and unfortunately destroys them.
There are two different cameras in the game: One third person camera and
Cameras the debug camera. The view direction of both cameras can be manipulated
with the mouse movement.
The normal game camera moves together with the character.
The other moves independently from the character in the viewing direction
with WASD and Q, E for moving up and down the y-axe. You can switch
between them with R.
e WASD: Moving Clumsy, the hamster, direction of the movement
Controls depends on the viewing direction of the camera
e R: Toggle debug camera
e new Movement with debug camera: WASD for front and sideway
movement, Q for moving up und E for moving down
e Mouse: Camera view direction
e mouse wheel: Zoom the camera in and out a little bit
e ESC: Quit
e +/- (german keyboard): Increase/Decrease illumination multiplier
e F1: Toggle wire-frame mode
e F2: Toggle back-face culling
e N: Toggle usage of normal map
e O: for debugging, see the shadow map on the screen
3D Objects The buildings in the scene are implemented as simple boxes and the only

objects in the game that are not imported out of an obj-File.

The other more complex objects (fountain, character, ground) were
modelled in Blender and imported via a simple object file loader, which can
only handle triangle data. These objects also have a representative in physx
with a simplified geometry.




The bottle that marks the target of the game is a model from the Internet
(https://www.turbosquid.com/de/Search/3D-Models/free/bottle) and is also
loaded into the scene with the object loader.

To mark the borders of the city, only static actors in physX are used with no
visual representation. So the character is running against an invisible wall.

Scene lighting

The main light source is a directional light (the sun light). Additionally
there is a point light at the bottle (finish) to mark it special.

Moving Objects

Clumsy is moving around in the city and if he crashes into a building, it
will disappear in the ground.

Adjustable
Parameters

The following Parameters can be adjusted in the config file in
assets/settings.ini

e Screen Resolution (Width/Height)
e Fullscreen-Mode (true/false)
e Refresh-Rate

The brightness of the scene can be manipulated with a illumination
multiplier in the game (using the keys +/- on a german keyboard (or }
and / on a english keyboard)

Collision Detection

Clumsy is implemented in physX with a Character Controller. If he
collides with any dynamic actor (building, fountain), the physX shape will
be removed from the simulation. Now the building is no longer standing
on the ground (static actor) and will fall through it. After that, the physX
position of the object is synchronized with the graphical position.

Effekts
Feature Description (Usage)
Lighting: To calculate the shadows in the game shadow mapping

Shadow Map with PCF

with PCF is used for the sunlight (directional light, main light
source). An orthographic perspective for rendering the
scene to get the depth values is used.

Antialiasing of the shadow calculation:

e To avoid Shadow acne, a bias is added to the
comparison of the pixel depth and the depth stored
in the shadow texture. (fixed bias of 0.02 is used)

e to avoid peter panning, the back faces of the solid
objects (not the ground) are used while rendering
the scene from the lights point of view.



https://www.turbosquid.com/de/Search/3D-Models/free/bottle

e to get all the shadows of the scene the parameters
are set to the size the scenery has (no over
sampling)

(https://learnopengl.com/Advanced-Lighting/Shadows/Shad
ow-Mapping)

Shading:

Simple normal mapping

All the buildings and the ground of the city each have a
normal texture that is used in the fragment shader. With the
N key, the normal Map can be switched on / off.
(https://learnopengl.com/Advanced-Lighting/Normal-Mappin
Q)

Post Processing:

Contours via Backfaces

all objects that the character can destroy have a brownish
contour.

Iexturing:

Specular

Map

The buildings additionally have a specular Map, especially
to have a difference between the wall parts and the
windows on the diffuse texture. the effect can best be seen
with the debug camera.

(https://learnopengl.com/Lighting/Lighting-maps)



https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping
https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://learnopengl.com/Lighting/Lighting-maps

