Documentation

Administrative

(e (Y11 N VET CWACET N\ ET Bl HoleInOne (Group 30)

GitHub Link https://github.com/FlorianStei/cque21-HolelnOne

Students Florian Steiner, 11909426
Yizhou Cui, 11807884

Genre Casual / Puzzle

Goal Hit the golf ball to the hole with a limited amount of strokes
and while keeping the ball on the field.

Game Idea and Content

Gameplay Hit the mini golf ball to the goal, with max. 9 strokes allowed,
(max. 4 sentences) just like a golf game in the real world. To make things a bit
more exciting, collect power-ups (heavier, lighterball) on
pressure plates and experience different friction on the course.

User interaction Mouse drag, on or near the ball: Shoot direction and
strength

Mouse drag, elsewhere: Pan camera (arcball around the ball)
Tab: Toggle HUD

F8: Print out the ball position debugging.

F9: Place the ball to the goal coordinate directly for debugging.
HUD buttons: Start game, pick/skip level.

Scene lighting The sun (level 1 & 2), or multiple point lights with dimmer
sunlight (level 3).

Implemented Features



Category

Optional Gameplay

Feature

Collision Detection (4 Points)

Description (Usage)

Golf ball is colliding with the
floor and obstacles.

Advanced Physics (6 Points)

Simulate the physics of the
golf ball with the barrier or the
floor. Friction and mass
changes are demonstrated in
some levels.

Both points above are
achieved with Bullet Physics

Heads-Up Display (4 Points)

Displays the number of
strokes used, power ups and
menus.

I's rendered with an
orthogonal projection matrix
in screen space.

Effects

Shadow Map with PCF (16
Points)

Course, flagpoles etc. cast
shadows.

The depth is rendered to a
shadow map. This
framebuffer texture is used in
the main shader to get the
closest depth. A bias is used
to prevent shadow acne and
front culling on selected
objects are used to counter
peter panning.

Cel Shading (4 Points)

Cel shading for achieving a
flat comic style look.

The diffuse color variable is
floor-divided to several levels
to achieve the cel shading.

Contours via Edge Detection
(12 Points)

Is used for achieving the final
look of the game.

The normals and depth are
rendered into 2 framebuffer
textures. “fwidth” is used to
generate a gradient and is
matched against a threshold.




Description

The game loads models from OBJ files and uses Bullet Physics to do collision detection. Cel
shading with edge detection contours is used to achieve the look. Shadow is applied to the first
directional.

The models are generated via blender and exported as an obj. Inside model.h vertices and
textures are loaded. The mesh is passed to Bullet Physics and OpenGL.

Due to lang object sizes, the loading time is quite long.
No other sources besides those provided in TUWEL were used. ECG_Framework and Bullet
Physics are used as 3rd-party frameworks.



