A 3D FANTASY STYLE TOWER DEFENSE

Defense of the Skylands is gonna be a tactical Tower Defense. As the captain of a flying
ship called The Empress you and your crew are the first ones to reach those legendary
floating islands. What you don't know is that there’s already various different creatures
living there. As you stop to measure the lands and to restock resources you're about to
find out that those creatures do not have the intention of sharing those Worlds.

The structure

The general approach behind our engine’s structure is the following: A window shows a
certain scene. The scene itself holds one tree of 3D-nodes and a separate tree of 2D
nodes, as well as some other instances like a general scene animator. Both the 3D and
2D-nodes themselves possess at least a name and a translation matrix and always
update their global translation in respect to their parents. Specialised nodes like
Mesh-Nodes, Camera-Nodes or Light-Nodes extend this basic set of functionalities and
allow furthermore the appropriate handling of those different objects.

Having a data structure like this is quite common in computer graphics and the
standard in Modelling software. It made the implementation of certain features, like the

Object Loader a lot easier as ASSIMP is also using a hierarchical structure like that.



Feature-List

Category

Gameplay

Feature

Compulsory

Description/Usage

3D Geometry (6 Points)

Our 3D node system allows us to simply create 3D
scenes, such as the game’s levels.

Every node uses not only its own transform, but
also applies the parent's transform.

Playable (3 Points)

Players can move the camera around the scene,
interact with the environment and influence what is
happening by building towers.

Advanced Gameplay (3 Points)

You may win or loose. :D

Min. 60 FPS and Framerate
Independence (3 Points)

We pass time that has passed since the previous
frame (delta time) to every update and render
function. This allows us to scale actions and
ensure a smooth experience.

Win/Lose Condition (3 Points)

You win by successfully defending The Empress
from hordes of enemies. Should you fail to do so
you will lose.

Intuitive Controls (2 Points)

Most of our game is mouse controlled, so players
should be able to figure out things quickly. We try
to use hover highlights on buttons and other tricks
to make it obvious what objects can be interacted
with.

Intuitive Camera (2 Points)

Since DotS is a strategy game we decided to go
with an overhead perspective. The camera can be
controlled with the mouse and should feel familiar
to what people are used to from other 3D software
and games.

Illumination Model (2 Points)

In addition to the sunlight with shadows (see
ShadowMaps) our scene UBO allows us to provide
an array of light sources, which will be applied to
all 3D objects. For an example of a point light
please look at the portal that is spawning enemies.

Textures (2 Points)

Textures are loaded by our TextureManager and
have by default mipmaps and trilinear filtering
enabled. Our system allows us to overwrite those
standards though as we see fit. (e.g. we don’t want
mipmaps neither linear filtering for the color
swatch)

Moving Objects (2 Points)

We have a number of moving objects in our game:
animated enemies, moving particles, and a handful
of objects that are simply following a spline.

Optional Gamepla

Heads up Display
(4 Points)

We have an entire 2D system which we use for Ul
elements in the game.




Collision Detection
(4 Points)

We use PhysX for everything physics related. Our
primary use case is to raycast against geometry
objects for mouse interactions. (e.g. placing
towers)

Advanced Physics

We have a very rich physx integration, where

Effects

(6 Points) physX bodies can already be attached at modelling
time. We wanna reffer to our Readme.md on our
github if further information are required.

Lighting

Shadow Map with PCF
(16 Points)

We implemented stabilized cascading shadow
mapping which should be a good fit for most
scenarios. Right now we have 3 shadow maps for
different camera distances.

This allows us to cast shadows not only on static
objects, but also on dynamic objects like enemies.

Advanced Modelling

CPU Particle System (8 Points)

We have a simple ParticleSystem node that allows
us to spawn and manage a large number of
particles. Information about the particles is handed
over to the GPU using instanced arrays.

An example for this effect is the dust that is emitted
whenever a new tower is built.

Animation

Hierarchical Animation
(4 Points)

Or as we call them: Node Animations. They can be
set up in Blender and are imported in the FBX-File.
Further information can again be found on the
github Readme file.We use them for the enemy
movement aswell as the ship intro.

GPU Vertex Skinning
(20 Points)

They are used on turrets for the construction
animation but also on the enemies.

Texturing

Video Texture (8 Points)

They can be seen on the TV-like thing aswell as on
the Tower-Building cards. You can see the tower
Building cards when pressing on a Tower-Site.

Shading
PBR All our materials use a PBR shader for rendering.
(16 Points) However, due to time constraints we were unable

to make full use of this. The cannonball that is
spawned at the start of the game should show
what our shader is capable of,

Post Processing

Lens Flares
(8 Points)

Lens Flares are rendered on top of the framebuffer
when you look in the direction of the sun.

To implement this we draw elements of the lens
flare to the screen using quads depending on the
camera position and orientation in relation to the
sun. We also implemented Occlusion Queries so
they are not visible when behind objects.




The Game

All of the core mechanics are in place and working fine, but we had to cut some
additional features since we couldn’t get them working in time for the deadline.
Possible future additions are:

Projectiles: We already got physx working with our scene. Once we figure out why Physx
starts crashing whenever we spawn too many projectiles we plan to actually shoot stuff
at the enemies.

More PBR content: While our engine and shaders are finished and fully capable of
handling PBR materials we severely underestimated how time consuming texture
painting and baking PBR content would be.

More levels, enemies, towers: Our entire engine was designed to be as modulare as
possible. Now that everything is ready and battle-tested, adding additional content
should be relatively easy.

Controls

LM & Drag ... orbit around current focus point

RM & Drag .. strafe

Scroll +/- ...Zoom in and out

LMB ... interact with buttons and objects ingame
Libraries

e We use assimp for loading 3d models, scenes and even cameras into our scene:

e And PhysX for anything physics related:
https://developer.nvidia.com/physx-sdk

e FreeType to load and create renderable images from TrueType fonts.

https://www.freetype.org/

In addition we are using CCO textures from TextureHaven & opengameart.org and
Blender for any 3D modelling.


https://www.assimp.org/
https://developer.nvidia.com/physx-sdk
https://www.freetype.org/

