
‭Documentation‬
‭Group/Game Name:‬‭Night Souls‬

‭Brief description of implementation:‬

‭You are in an Arena with an opponent. The Camera is centered on the Player Character‬
‭from a top down view (45 degrees). You can attack, and the goal is to kill the Boss, while‬
‭avoiding being hit by him.‬

‭Controls:‬

‭WASD:‬‭Move the character‬

‭Q:‬‭Drink flask to heal‬

‭Left Mouse Button:‬‭Attack‬

‭Scroll Wheel:‬‭Zoom camera in and out‬

‭Additional libraries:‬

‭●‬ ‭freetype: to render text‬

‭Gameplay‬‭:‬

‭Mandatory:‬

‭●‬ ‭3D Geometry:‬‭We implemented an object loader‬‭that uses .obj files and‬
‭the connected .dds files to create a Geometry object and a connected‬
‭texture material.‬

‭●‬ ‭Playable:‬‭You can move and fight an opponent.‬

‭●‬ ‭Advanced Gameplay:‬‭The Boss makes decisions‬‭when to attack based‬
‭on a random value and based on how close he is to the player. The‬
‭player’s attacks consume stamina which slowly regenerates over time.‬

‭●‬ ‭Min 60 FPS and Framerate Independence:‬‭Framerate‬‭can be shown‬
‭with “F4 , and delta time is used to calculate the movement.‬

‭●‬ ‭Win/Lose Condition:‬‭When you hit the opponent‬‭he loses life and‬
‭when his life reaches 0 you win. When you are hit by the opponent you‬
‭lose life and when your life reaches 0 you lose.‬



‭●‬ ‭Intuitive controls:‬‭WASD controls the character movement and a‬
‭mouse click lets you attack. “Q” to drink a life flask.‬

‭●‬ ‭Intuitive Camera:‬‭The camera follows the player,‬‭but can be switched to‬
‭a free camera by holding “C”. The camera can also be zoomed by‬
‭scrolling.‬

‭●‬ ‭Illumination model:‬‭There are multiple light‬‭sources . Each imported‬
‭object also imports normal vectors and material properties for the‬
‭textures.‬

‭●‬ ‭Textures:‬‭The imported objects also import the‬‭.dds textures.‬

‭●‬ ‭Moving Objects:‬‭The player can move and the‬‭opponent moves around‬
‭automatically.‬

‭●‬ ‭Documentation:‬‭This.‬

‭Optional:‬

‭●‬ ‭Collision Detection (Basic Physics):‬‭The player,‬‭the player attacks‬
‭and the opponent have axis aligned collision boxes.The AABB method is‬
‭used for the collision detection. When the player collides with the‬
‭opponent the player loses health. When the players attack collides with‬
‭the opponent, the opponent loses health. The Bounding boxes of the‬
‭player, the boss and the player’s last attack can be visualized by pressing‬
‭“F3”.‬

‭(https://learnopengl.com/In-Practice/2D-Game/Collisions/Collision-detection)‬

‭●‬ ‭Heads-up Display:‬‭A HUD displays the player’s‬‭health, stamina and the‬
‭amount of life flasks he has left. The HUD also displays the opponents‬
‭health.‬



‭Effects:‬

‭Advanced Modelling:‬

‭●‬ ‭CPU Particle System:‬‭Particle System that is‬‭initialized with certain‬
‭variables. They are updated on the cpu and rendered on the gpu using‬
‭instancing (also lerps color and size in gpu)‬

‭Terrain:‬

‭●‬ ‭Tessellation from Height Map:‬‭A heightmap is‬‭read from the‬
‭grayscale values of an image file. The corresponding geometry is created‬
‭and the player and the boss move on top of the terrain. The player and‬
‭the boss can’t move over a specific height value and therefore can’t move‬
‭out of the map.‬

‭Texturing:‬

‭●‬ ‭Procedural Texture:‬

‭Torch Wood Texture:‬

‭Hash: Pseudo Random number generator‬

‭Noise: Noise based on position‬

‭Fractal Brownian Motion(fbm): Layering noise to make it look more natural..‬
‭(‬‭https://www.youtube.com/watch?v=cWiLGZPwXCs‬‭)‬

‭Wood Grain: sinus based on fbm and added knots also based on fbm.‬

‭Shading:‬

‭●‬ ‭Physically Based Shading:‬

‭The Texture Fragment Shader uses PBR to render the lighting. It uses‬
‭roughness, metallicness, and albedo to calculate more realistic lighting.‬

‭(‬‭https://www.youtube.com/watch?v=XK_p2MxGBQs‬‭)‬

‭The floor and enemy are non Metallic and the player is Metallic.‬

‭●‬ ‭Simple Normal Mapping:‬

‭A normal map texture is read from a file and passed to the texture.frag‬
‭shader. There the normal value is read from the texture and taken for the‬
‭calculation of the normal vector. (The normal mapping can be toggled on and‬
‭off by pressing F5)‬

‭https://learnopengl.com/Advanced-Lighting/Normal-Mapping‬

https://www.youtube.com/watch?v=cWiLGZPwXCs
https://www.youtube.com/watch?v=XK_p2MxGBQs
https://learnopengl.com/Advanced-Lighting/Normal-Mapping


‭Post Processing:‬

‭●‬ ‭Bloom:‬

‭I added a Framebuffer i use to render the normal image onto a texture and‬
‭another texture that only receives the brightest pixels. Then i blur the bright‬
‭texture. Finally the 2 textures are added together and rendered onto a plain‬
‭that covers the screen.‬


