Documentation

Group/Game Name: Night Souls

Brief description of implementation:

You are in an Arena with an opponent. The Camera is centered on the Player Character
from a top down view (45 degrees). You can attack, and the goal is to kill the Boss, while
avoiding being hit by him.

Controls:

WASD: Move the character
Q: Drink flask to heal

Left Mouse Button: Attack

Scroll Wheel: Zoom camera in and out

Additional libraries:

o freetype: to render text

Gameplay:

Mandatory:

o 3D Geometry: We implemented an object loader that uses .obj files and
the connected .dds files to create a Geometry object and a connected
texture material.

e Playable: You can move and fight an opponent.

e Advanced Gameplay: The Boss makes decisions when to attack based
on a random value and based on how close he is to the player. The
player’s attacks consume stamina which slowly regenerates over time.

¢ Min 60 FPS and Framerate Independence: Framerate can be shown
with “F4 , and delta time is used to calculate the movement.

e Win/Lose Condition: When you hit the opponent he loses life and
when his life reaches 0 you win. When you are hit by the opponent you
lose life and when your life reaches 0 you lose.



e Intuitive controls: WASD controls the character movement and a
mouse click lets you attack. “Q” to drink a life flask.

¢ Intuitive Camera: The camera follows the player, but can be switched to
a free camera by holding “C”. The camera can also be zoomed by
scrolling.

¢ lllumination model: There are multiple light sources . Each imported
object also imports normal vectors and material properties for the
textures.

e Textures: The imported objects also import the .dds textures.

e Moving Objects: The player can move and the opponent moves around
automatically.

¢ Documentation: This.

Optional:

e Collision Detection (Basic Physics): The player, the player attacks
and the opponent have axis aligned collision boxes.The AABB method is
used for the collision detection. When the player collides with the
opponent the player loses health. When the players attack collides with
the opponent, the opponent loses health. The Bounding boxes of the
player, the boss and the player’s last attack can be visualized by pressing
“F3”.

(https://learnopengl.com/In-Practice/2D-Game/Collisions/Collision-detection)

e Heads-up Display: A HUD displays the player’s health, stamina and the
amount of life flasks he has left. The HUD also displays the opponents
health.



Effects:

Advanced Modelling:

e CPU Particle System: Particle System that is initialized with certain
variables. They are updated on the cpu and rendered on the gpu using
instancing (also lerps color and size in gpu)

Terrain:

e Tessellation from Height Map: A heightmap is read from the
grayscale values of an image file. The corresponding geometry is created
and the player and the boss move on top of the terrain. The player and
the boss can’t move over a specific height value and therefore can’t move
out of the map.

Texturing:

e Procedural Texture:

Torch Wood Texture:

Hash: Pseudo Random number generator
Noise: Noise based on position

Fractal Brownian Motion(fbm): Layering noise to make it look more natural..
(https://www.youtube.com/watch?v=cWiL GZPwXCs)

Wood Grain: sinus based on fom and added knots also based on fom.

Shading:

e Physically Based Shading:

The Texture Fragment Shader uses PBR to render the lighting. It uses
roughness, metallicness, and albedo to calculate more realistic lighting.

(https://www.youtube.com/watch?v=XK_p2MxGBQs)

The floor and enemy are non Metallic and the player is Metallic.
e Simple Normal Mapping:

A normal map texture is read from a file and passed to the texture.frag
shader. There the normal value is read from the texture and taken for the
calculation of the normal vector. (The normal mapping can be toggled on and
off by pressing F5)

https://learnopengl.com/Advanced-Lighting/Normal-Mapping



https://www.youtube.com/watch?v=cWiLGZPwXCs
https://www.youtube.com/watch?v=XK_p2MxGBQs
https://learnopengl.com/Advanced-Lighting/Normal-Mapping

Post Processing:

¢ Bloom:

| added a Framebuffer i use to render the normal image onto a texture and
another texture that only receives the brightest pixels. Then i blur the bright
texture. Finally the 2 textures are added together and rendered onto a plain

that covers the screen.



